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Early-stage aggregation in three-dimensional charged granular gas

Chamkor Singh1,2 and Marco G. Mazza1

1Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077, Göttingen, Germany
2Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

(Received 27 October 2017; published 14 February 2018)

Neutral grains made of the same dielectric material can attain considerable charges due to collisions and
generate long-range interactions. We perform molecular dynamic simulations in three dimensions for a dilute,
freely cooling granular gas of viscoelastic particles that exchange charges during collisions. As compared to the
case of clustering of viscoelastic particles solely due to dissipation, we find that the electrostatic interactions
due to collisional charging alter the characteristic size, morphology, and growth rate of the clusters. The average
cluster size grows with time as a power law, whose exponent is relatively larger in the charged gas than the neutral
case. The growth of the average cluster size is found to be independent of the ratio of characteristic Coulomb
to kinetic energy, or equivalently, of the typical Bjerrum length. However, this ratio alters the crossover time
of the growth. Both simulations and mean-field calculations based on Smoluchowski’s equation suggest that a
suppression of particle diffusion due to the electrostatic interactions helps in the aggregation process.
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I. INTRODUCTION

Since classical antiquity lightnings have been associated
with the ashes produced during volcanic activity [1,2]. It
has been long speculated that collisional charging may play
a significant role in particle’s aggregation [3,4] in natural
processes such as the formation of planetesimals during the
early stages of the birth of a planet [4,5], charging in dust
devils [6], lightenings in thunderclouds [7], and electric sparks
in dunes [8]. At such length scales (102–104 m), a number
of processes are observed such as charge separation, buildup
of significant potential differences and electric discharge [9].
A specific example is the electrostatic re-accretion in the
protoplanetary disks where the charged fragmented ejecta from
a larger body are re-attracted toward the parent body due to
its electrostatic field [10]. On a more mundane scale, this
phenomenon also affects the processes at length scales which
are technologically relevant, e.g., in vibrated granular beds
[11], in transportation of coal [12], and in electrostatic powder
spraying [13]. The origin of the above intriguing processes
inside a granular gas is due to the charging of particles during
collisions. This phenomenon, however, is rather stochastic as
indicated by experimental measurements [5,14,15]. On the
other hand, the consequences of this local exchange on a
collection of particles have been experimentally observed to
be quite complex as it shows highly fluctuating characteristics
[16]. Very recently, these fluctuations also shown numerically
in dense granular systems [17]. The collective consequences
on particle aggregation and their growth due to this very local
charge exchange in dilute granular system, however, are not
yet well understood. Relevant exceptions are the theoretical
findings in Refs. [18,19] for a monopolarly charged granular
gas neglecting collisional charging, and the Smoluchowski’s
aggregation analysis in Ref. [20] for the monopolarly charged
suspensions undergoing Brownian motion.

A granular gas is an adequate theoretical setup to study
such particle aggregation processes in the dilute limit. The

clusters in a neutral granular gas typically exhibit a power law
growth during its time evolution [21,22]. It is, however, unclear
if bipolar collisional charging of grains, which is ubiquitous
in technological settings [11–13,23,24], and in natural flows
[10,25–27], enhances or suppresses the cluster growth.

The dissipation in neutral granular gases leads to the
formation of clusters. The growth of these clusters in two and
three dimensions has been investigated in the past [28–31]. In
three-dimensions, it is found that the cluster growth can be
described by a power-law behavior with similar exponents as
in percolation theory [28]. The same is shown for the growing
clusters in two dimensions [29]. Furthermore, the coagulation
equations for inelastic dust particles in a surrounding molecular
gas, which is more relevant to natural settings, has also been
studied from a mean-field point of view [31]. The growth of
the clusters in granular gases has also been investigated for
different nature of the interactions between the particles for
example under short-range attractive potentials [32] and square
well potential [33].

In this study we show that the time dependent average
cluster size S(t) in a charged granular gas obeys the power
law

S(t) ∼ t z. (1)

We elucidate that (i) the early stage aggregation after the ho-
mogeneous cooling state (HCS) of the granular gas is relatively
enhanced due to the collisional charging with z changing from
≈6/5 for the uncharged gas to ≈3/2 for the charged gas, (ii)
the growth exponent z is found to be independent of the ratio
of the characteristic Coulomb to kinetic energy K or equiva-
lently the ratioK = �B/d of the Bjerrum length �B = keq

2
ref/T0

to the particle diameter d, where qref is the typical charge
on the particles, T0 the kinetic energy scale or the granular
temperature, and ke = 1/(4πε0) is the Coulomb constant
with vacuum permittivity ε0 = 8.85418782 × 10−12 F m−1.
A change in �B, however, influences the characteristic time

2470-0045/2018/97(2)/022904(11) 022904-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.022904&domain=pdf&date_stamp=2018-02-14
https://doi.org/10.1103/PhysRevE.97.022904


CHAMKOR SINGH AND MARCO G. MAZZA PHYSICAL REVIEW E 97, 022904 (2018)

of emergence of clustering. (iii) We find that contrary to the
case of neutral viscoelastic particles, the velocity distribution
of the charged viscoelastic particles does not show a relaxation
back towards the Maxwellian within the characteristic time of
emergence of the inhomogeneous cooling state (ICS).

II. MODEL

To model the charged granular gas, we employ Hertzian
elastic forces, nonlinearly dissipative viscoelastic model [34–
36] and the classical Coulomb forces in the framework of
granular molecular dynamics (MD) in three dimensions. We
numerically integrate the following form of Newton’s equation
of motion for the position r∗

i of a particle,

r̈∗
i (t∗) =

∑
j

[
�(ξ ∗

ij )
(
Eξ

∗ 3
2

ij − Dξ
∗ 1

2
ij ξ̇ ∗

ij

)
nji

]

+ K
∑
k,k �=i

q∗
i q∗

k

r∗2
ki

nki , (2)

where ξij = d − |r i − rj | is the overlap distance due to
viscoelastic deformation of a particle i upon collision with
particle j , �(ξij ) is the Heaviside step function (�(ξij ) = 1 if
ξij � 0, and 0, otherwise), nji = rji/rji (with rji = r i − rj ,
rji = |rji |) is the unit vector pointing from the center of
particle j toward the center of particle i, and q∗ is the charge
on the particles at time t∗. The symbol ∗ indicates that we
measure length, mass, time and charge in units of particle
diameter d, mass m, reference time

√
md2/T0, and a reference

charge qref discussed below, respectively. The nondimensional
parameter E = αd5/2/T0 represents the ratio of characteristic
elastic to kinetic energy, and D = αAd3/2/

√
mT0 the ratio of

characteristic viscous to kinetic energy. The coefficient α =
2Y

3(1−ν2)

√
Reff collects material and geometric properties namely

Young’s modulus Y , Poisson’s ratio ν and the effective radius
Reff ≡ RiRj/(Ri + Rj ) of the colliding pair [36]. The constant
A is a material parameter that depends on the viscous properties
of the particles [36]. The dissipative term in Eq. (2) takes into
account a coefficient of restitution ε, which depends upon the
impact velocity. ε is the fractional reduction in the normal
component of the relative velocities of colliding particles, and
reads ε = ξ̇ ∗′

ij /ξ̇
∗
ij where ξ̇ ∗

ij and ξ̇ ∗′
ij are the relative normal

velocities of the particles just before and after the contact. The
granular temperature Tg(t) = 1

3m〈[vi(t) − 〈v(t)〉]2〉 at t = 0 is
chosen as the energy scale T0, i.e., T0 ≡ Tg(0), where v are the
particle velocities. Because the elastic and dissipative parts in
Eq. (2) are contact forces, the first sum extends only to particles
j in contact with particle i, while the second some extends over
all the particles k with k �= i.

We simulate N ∼ 104–105 identical, viscoelastic particles
in a three-dimensional domain of volume V = L3. The filling
fraction of the system φ ≡ Nπd3/(6V ) = 0.076 and the ratio
E/D ≈ 10 are kept constant [37] while the effect of K = �B/d

on the particle aggregation is studied, with K = 0 correspond-
ing to the neutral viscoelastic granular gas. In addition, the
particles attain charge during the pairwise collisions according
to a charge exchange rule, discussed below.

Collisional charging has far-reaching consequences. Large
amounts of charges are generated in volcanic plumes [1];

estimated figures are of the order of 105 or 106 elementary
charges per cubic centimeter [1], and this effect might have
played a role for the origin of life by synthesizing amino acids
[38]. Dust and sand storms also exhibit contact electrification
and lightnings [39–41], and such phenomena might even exist
on Mars [42]. Contact electrification can result in explosions
if a flammable material is present [12,41,43]; pharmaceutical
processes are often plagued by electrostatic charge buildup
[23,44] leading to high maintenance costs. Understandably, a
vast amount of attention has been put to explore what mecha-
nisms stimulate the charge buildup, separation, transport, and
its effect on the dynamics of granular flows [1,3,8,17,24,45].
Additionally, the collective behavior is are unclear in spite of
great experimental [5,14,16,16] and theoretical [11,17–19,46]
efforts. Moreover, the theory of contact electrification, i.e.,
charging of similar or dissimilar surfaces due to mutual contact
is not yet rigorously established. Two basic, experimental facts
still defy a consistent explanation: (i) insulators can transfer
large amounts of charge, though they have no free charge
carriers; (ii) upon contact and impact even the grains with
identical material charge up [45]. However, there are certain
observations which have been made repeatedly in the context of
collisional charging. For instance, an extensive and systematic
experimental study conducted by Poppe et al. [5] has revealed
that the number of elementary charges transferred during a
collision of silica particles on polished quartz and silicon
wafer surfaces, on average, are proportional to a power of
the relative kinetic energy during the collision, i.e., Zi↔j =
(CEkin)κ , where Ekin is the relative kinetic energy during the
collision and C [J−1] (C−1 ∼ 10−12 − 10−15J) and κ = 0.83
are constants [5]. Similar observations have also been made
in Ref. [15] for single collisions of glass particles exhibiting
dependence of charge transfer on impact energy. This, in
one sense, is analogous with the impact velocity-dependent
coefficient of restitution. However, the widespread nature of
data in the collisional charging experiments also suggests
that the collisional charge exchange is influenced by myriad
factors. Indeed, among possible influential parameters are the
surface material and its roughness, contact pressure, surface
cleaning, humidity, the orientation of the crystalline lattice, the
temperature of the surfaces, and the size of the colliding objects
[5]. Taking this into account, we introduce a collisional impact
energy dependent model for the charge exchange augmented
by a stochasticity in its parameters

qi↔j = ±eZi↔j = ±e
[
�1C

1
2meff ξ̇ 2

ij

]κ+�2
, (3)

or in nondimensional terms

q∗
i↔j = ±Q

[
�1m

∗
eff ξ̇ ∗2

ij

]κ+�2
, (4)

where Q = e(Cmv2
ref )κ

qref
= e(CT0)κ

qref
, meff = mimj/(mi + mj ) is

the reduced mass of the colliding particles, e = 1.6021765 ×
10−19 C is the absolute value of the electron charge, Z is the
number of elementary charges exchanged, mv2

ref = T0 is the ki-
netic energy scale. In our calculations, we fix qref such thatQ ∼
eC. The numbers �1 and �2 are equally distributed noise with
〈�1〉 = 1.63, 〈�2〉 = 0, in the intervals �1 ∈ [0.1,3.1623] and
�2 ∈ [κ − 0.05κ,κ + 0.05κ]. The mean and the interval of the
noise �1 are chosen such that the charge exchange qi↔j fits the
experimental power law eZi↔j = e(CEkin)κ found in Ref. [5].
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The multiplicative noise �1 indicates that the charge exchange
in the system has a dependence on the current state of the
kinetic energies of collisions while the stochasticity in the ex-
ponent does not depend on the kinetic conditions, which is re-
flected through an additive noise �2. In other words, in a freely
cooling granular gas, where the impact kinetic energies keep
decreasing over time, the stochastic coupling coefficient �1 as-
sures an upper limit to the charge on an individual particle and
avoids any unphysical divergence of the amount of charge on it.
It should be noted that here we make the simplifying assump-
tion, in lack of any established theory of tribocharging, that the
charge exchange is independent of the preexisting charge on the
particles before the collisions. This simplification is partially
based on the experiments in Ref. [47], where it was observed
that even precharged particles acquire additional charge upon
collision, indicating a negligible influence of electrical conduc-
tance during the short collision time. Therefore, neglecting the
possibility of discharging of the particles due to the combined
effect of potential created by the preexisting charge and the
electrical conductivity of the particle’s material is a reasonable
simplification. The addition of the stochastic variable �2 in
the exponent is based on the fact that its value is reported to be
fluctuating (0.83 in Ref. [5] while later 0.79 in Ref. [47]).

To minimize the finite size effects, we use the customary
periodic boundary conditions. This choice effectively means
that the system is replicated infinite times along each Cartesian
axis. Because of the long-range nature of Coulomb’s force, all
periodic images of k �= i contribute to the electrostatic force
on i. For a periodic domain, then, the Coulomb force F∗(C)

i on
a particle i reads

F∗(C)
i = keq

∗
i

N∑
k=1

∑
b

′ q∗
k

|r∗
ki + bL|3 (r∗

ki + bL), (5)

where b = (bx,by,bz) is a vector of integers (∈ Z) representing
the periodic replicas of the system in each Cartesian direction.
The ′ symbol indicates that k �= i if and only if b = 0 to
avoid Coulomb interaction of particles with themselves. The
long-range Coulomb force sum in Eq. (5) for a setup with
periodic boundary conditions is challenging and conditionally
convergent as it depends on the order of summation. We
employ the Ewald summation that converges rapidly, and
has a computational complexity O(N3/2) [48]. The Ewald
summation breaks the calculation into two sums, one in the real
space and the other in Fourier/reciprocal space. We consider
the minimum image convention for the real part of the sum
while consider 16 Fourier replicas in each Cartesian direction.
The algorithm is parallelized and highly optimized on graphics
processing unit (GPU). In our simulations, the total computing
time to reach simulation time t∗ ∼ 103 for a typical simulation
with N ∼ 105, including the long-range electrostatic forces,
is of the order of weeks. Due to the existence of long-range
interactions, the trajectories of the particles are essentially non-
ballistic. This prevents the usage of event driven algorithms.
We employ the velocity-Verlet algorithm to integrate Newton’s
equations. The simulations are initialized by randomly placing
the particles in a 3D domain with initial velocities distributed
according to a Gaussian with zero mean and

√
T0 standard

deviation. Any remaining, initial net velocity of the system∑N
i=1 vi is removed to ensure that no net macroscopic flux is

FIG. 1. (a) The evolution of the granular temperature Tg for
a purely repulsive dilute granular gas with monopolarly charged
particles and constant coefficient of restitution ε = 0.85. We study the
dependence on the ratio of characteristic Coulomb to kinetic energy
K. The K = 0 curve corresponds to a neutral granular gas. At very
short times, the granular gas follows Haff’s law [Tg(t) ∼ t−2] in the
homogeneous cooling state. The repulsive electrostatic interactions
among the particles reduce the collision frequency and thus result in a
slower decay of Tg as time progresses [Tg(t) ∼ 1/ ln(t/tc), also shown
analytically in Ref. [18], where tc is the characteristic time separating
power law from inverse logarithmic decay]. As K increases, the
deviation from Haff’s law is more pronounced and occurs earlier
in time. The solid line represents the theoretical prediction of Haff’s
law for a neutral granular gas with ε = const., and the dashed line
is a theoretical prediction for monopolarly charged granular gases.
(b) Same as (a) but for early stage of evolution of the viscoelastic
(ε �= const.) granular gas with charge exchange. The dashed line
represents the theoretical prediction of Haff’s law for a neutral
viscoelastic granular gas.

present in our system. Initially, all particles have zero charge.
We also ensure that the system is at all times globally neutral,
i.e.,

∑N
i=1 qi = 0, by enforcing conservation of charge during

each collision event. We let the system equilibrate for some
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FIG. 2. Snapshots of the granular gas showing the time evolution of the neutral system of viscoelastic particles (left column) and charged
viscoelastic particles (center and right columns). Here time t∗ = tvref/d , particle number N = 50 016 and the particle filling fraction in the
system φ = 0.076. As the ratio of characteristic Coulomb to kinetic energy K increases, the characteristic time for the emergence of clustering
decreases, however, their growth rate is unchanged (see also Fig. 5). The clusters exhibit a relatively compact morphology in the charged system.

time (marked as t0) only under the influence of elastic forces.
The dissipation and collisional charging is then switched on.
For the sake of simplicity, we remove the ∗ symbols in the
following.

III. RESULTS AND DISCUSSION

The dynamics of granular gases in the absence of electro-
statics are reasonably well understood [49–53] and exhibit

numerous intriguing features, such as universal Gaussian
velocity distributions in the long time limit [49], multiscal-
ing and self-similarity in collisions [54,55], nonequilibrium
steady states and asymmetric velocity distributions under
energy inputs [51], anomalous diffusion [56,57], ballistic
aggregation of clusters as a whole [21], and dissimilarity
between ensemble-averages and long-time averages of ob-
servables (nonergodicity) [58]. In addition, it is now known
from Refs. [18,19,46] that if a granular gas is composed of
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FIG. 3. Sticking of particles during clustering in the charged
system. We observe a mechanism similar to collide-and-capture
events observed in experiments on a falling granular stream in
Ref. [14]. Particles stick together in clusters and exhibit pronounced
persistence in each cluster over a considerable duration of time. This
mechanism is not observed in the neutral system, where instead
particles collide and separate. (a) Specific particles and their first
neighbors are shown at different times. (b)–(d) The evolution of the
number of contacts, Nstick, with time for the same particles shown in
panel (a). The occasional fragmentation results in the fluctuation of
Nstick with time.

equally charged particles (that is, the charge on each particle
is equal in sign and magnitude), the number of collisions
per unit time decreases due to the Coulomb repulsions. This,
in comparison to a neutral granular gas, results in a slower
decay rate of the kinetic energy per particle or the granular
temperature Tg as the time progresses. This feature is recovered
in our simulations as depicted in Fig. 1(a), which shows the
decay of Tg with time for constant coefficient of restitution.
At short times, the granular temperature follows Haff’s law
[Tg(t) ∼ t−2] [59,60], however at later times, it deviates from
it and approaches a slower, inverse logarithmic scaling as
was shown analytically in Ref. [18]. Moreover, the HCS
becomes unstable due to dissipative cooling of the granular
gas, and clustering emerges. Here we show that the additional
perturbations due to collisional charging alters the geometrical
morphology of clusters and their growth in time.

Figure 2 shows the time snapshots of the system for both
neutral (K = 0.0) and charged viscoelastic granular gas (K =
0.25 and 5.0). The clusters are relatively elongated for neutral
viscoelastic systems, while they are relatively compact in
the collisionally charged system. The clustering for nonzero
K initiates through mutual sticking of charged particles and
results in the formation of very localized agglomerates of
particles (Fig. 3). This agglomeration process is identified by
following the trajectories of particles and, via nearest-neighbor
search, identifying the particles which are in contact with

the followed particle. A contact is defined if |r ij | � d. As
the time progresses, we see that there is a definite trend of
particles to stick together [see Fig. 3(a)], and the persistence
of individual particles in these localized aggregates is rather
long lived [Figs. 3(b)–3(d)]. The long persistence of particle
contacts is not present in the ICS of the neutral granular gas
where particles aggregate due to a mechanism described as a
hydrodynamic instability [50]. In fact, a collide-and-capture
mechanism has been observed experimentally in Ref. [14],
for collisional charging in a falling dilute granular stream. In
the experiments [14], the particles collide, bounce multiple
times, and then tend to stick together giving rise to local
aggregates. One particular observation made in Ref. [14] is
that when a single particle hits a cluster, it can either get
trapped in the electrostatic field or can cause other particles to
leave the cluster leading to fragmentation. In our simulations,
the fragmentation is observed occasionally as suggested by
fluctuating neighbor contacts Nstick in [Figs. 3(b)–3(d)] over
time.

Figure 4(a) shows the time evolution of the mean absolute
charge, q̄ = 1

N

∑N
i=1 |qi |, in the system. According to our

ansatz, the rate and extent of collisional charging strongly
depend on the number of collisions occurring per unit time, as
well as on the relative velocities between the colliding particles.
Due to dissipation, on the other hand, the kinetic energies of
the particles keep decreasing and thus effectively contributing
to the reduction of charge exchange between the particles.
Once the kinetic energy per particle becomes sufficiently low,
the mean charge in the system begins to saturate. The initial
evolution of the mean charge can be estimated by the product
of the initial collision frequency ω and the charge exchange
during single collision qi↔j . Since initially all particles are
neutral, the collision frequency must coincide with its neutral
counterpart ω(t = 0) = nπσ 2〈ξ̇12〉 [18], where 〈ξ̇12〉 is the
mean relative velocity between colliding particles, n is the
number density, and σ = d is the impact parameter. Then the
initial rate of collisional charge exchange is

ω〈qi↔j 〉 = nπσ 2〈ξ̇12〉
[
Cmeff

〈
ξ̇ 2

12

〉]κ
e, (6)

which is proportional to the rate of mean collisional charging
˙̄q. Assuming initially a Gaussian velocity distribution, so that
〈ξ̇12〉 ∝ Tg

1/2, and considering the fact that for viscoelastic
particles Tg ∝ t−5/3, the evolution of q̄ obeys

˙̄q ∝ Tg
1/2Tg

κ ∝ t−5/6t−5/(3κ). (7)

As experiments show that κ ≈ 0.8 [5], the rate of mean charge
buildup with time is then

˙̄q ∝ t−13/6. (8)

A fit of the simulation results to Eq. (8) is also shown in
Fig. 4(a), which closely follows the initial charge buildup.
However, later in time it deviates from the prediction in
equation Eq. (8), indicating that the collision rate or the relative
velocities of impact between particles after charge buildup are
suppressed. This is expected after mutual sticking of particles.

The conservation of charge at a single collision level
and the initial condition

∑N
i=1 qi = 0 results in the fact that

there are statistically equal number of pairwise attractions
and repulsions. This symmetry of the sign of charge among
monodispersed particles has also been shown recently for a
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FIG. 4. (a) The evolution of mean absolute charge, q̄ = 1
N

∑N

i=1 |qi |, for the viscoelastic model. The mean charge saturates as a consequence
of continuous reduction in the granular temperature. The solid line is the theoretical prediction in Eq. (8). (b–d) Comparison of the cluster size
distribution Ns(s) for charged (K = 5.0) and neutral granular gases at different times: (b) tvref/d = 50; (c) tvref/d = 100; (d) tvref/d = 150,
from an average over twenty independently initialized simulation runs. The dashed lines are the corresponding best fits. During the evolution
of the granular gases, the slope of the distributions, or equivalently, the Fisher exponent decreases. However, the charged gas exhibits a more
rapid decrease of the slope indicating an enhanced cluster growth (see also Fig. 5).

globally charge conserved system through experiments when
no other material or wall is present [14]. As a consequence of
this symmetric charge distribution, the early evolution of the
granular temperature does not show any considerable deviation
from the Haff’s law [Fig. 1(b)]. On the other hand, if the number
of pairwise repulsive interactions exceed the attractive, the rate
of the decay of Tg slows down, as evident in Fig. 1(a).

A. Clustering

To investigate the statistical properties of the clusters, we
calculate the cluster size distribution. A time dependent matrix
which contains information about the occupied (or dense)
and unoccupied (or dilute) sites in the system is obtained by
thresholding the coarse-grained particle density in the system
[21]. Specifically, we divide the simulation domain into equal-
size boxes and, at any given time, compute the particle density
in each of the boxes. The boxes which have particle density
higher than a threshold value are then labeled as an “occupied
site” and the rest of the boxes as “unoccupied” [61]. A cluster
is then defined as the region of such connected occupied sites.
This definition of clusters provides the advantage that it is
independent of whether granular particles are in contact with
each other in a strict sense (as they are in the charged case) or
they only form density inhomogeneities without contacts (as
in neutral granular gases). The size distribution Ns(s) of such
connected occupied sites is then obtained. The size distribution
asymptotically scales as

Ns(s) ∼ s−τ , (9)

where τ is the Fisher exponent [62,63]. Figures 4(b)–4(d)
shows Ns(s) for both the neutral and the charged scenarios. The
Fisher exponent during early aggregation increases relatively
quickly in the charged case (from −1.62 to −1.34) compared
to the neutral system (from −2.51 to −2.45). Additionally, the
size distribution of the occupied sites is relatively broader for
the charged gas. The count for a given cluster size s is larger
in the charged system, except for very small s. This suggests,
in relation to the observations in Fig. 2, that the clusters in the
charged gas are compact and more numerous.

This difference in the rate of change of Fisher exponent in
the charged system results in a different growth exponent of
the so-called average cluster size,

S(t) =
∑

s s2Ns(s)∑
s sNs(s)

. (10)

For the neutral gas, a best fit to the average over twenty
independently initialized simulations reveals (Fig. 5)

S(t) ∼ [t1.21±0.04 ≈ t6/5], (11)

FIG. 5. Temporal dependence of the average cluster size S(t),
from an average over 20 independently initialized simulation runs
and corresponding best fits. Granular gas with collisional charging
exhibits faster growth of clusters than for neutral system. (Inset)
Saturation of the growth exponent z as 1/t → 0 using the method of
local slope. A change in the ratio of characteristic Coulomb to kinetic
energy K does not alter the growth exponent z and only influences
the crossover time of initiation of clustering.
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which is close to the mean field result based on the Smolu-
chowski’s aggregation equation [64,65]. The error in the
exponent represents a 95% confidence level. For the charged
gas, we obtain

S(t) ∼ [t1.49±0.012 ≈ t3/2], (12)

which clearly indicates a relatively faster cluster growth
(Fig. 5). The growth exponent z can be precisely obtained using
the method of local slope

z = log[S(t)/S(t/p)]

log(p)
, (13)

where p characterizes the time resolution [66]. In the limit
1/t → 0, the function should attain a saturation value, which
is the best estimate for z. Figure 5 (inset) shows this saturation
of z to ≈1.5 for the charged while to ≈1.21 for the neutral gas
as t increases (or 1/t → 0).

In the charged system, the cluster growth exponent z,
remarkably, does not show a dependence on the ratio of the
characteristic Coulomb to kinetic energy K or equivalently on
the typical dimensionless Bjerrum length �B/d. In Fig. 5 we
show S(t) for increasing K = 0.25, 1.0 and K = 5.0. Upon
decreasing K, the characteristic time tc for the emergence of
aggregation increases and approaches the neutral case as K →
0. However, once the aggregation starts, it does not influence
the growth exponent z. An increase of tc upon decreasing K
is reminiscent of the self-focusing Brownian aggregation of
monopolarly charged particles found in Ref. [20].

B. Mean field

Aggregation phenomena are very common in nature, for
example, coalescence of rain drops, coagulation of snow,
aerosol and powders, polymerization, or agglomeration in
colloids. One is often interested in determining, at a given time
during the aggregation process, the sizes of the aggregates and
the rate at which they grow in time. A simple way to approach
is via mean-field theory, which has been extensively applied
(mainly for uncharged particle systems) to precisely predict
the time dependent aggregate size distributions and their
growth rate by taking into account only the crudest features
of the underlying transport processes and the nature of the
physical interactions between the aggregates. Smoluchowski’s
coagulation equation is one such approximation. Here we make
a mean-field approximation of the aggregation of the initially
monodisperse system using the Smoluchowski’s equation

∂n(i,t)

∂t
= 1

2

i−1∑
j=1

Ka(j,i − j )n(j,t)n(i − j,t)

− n(i,t)
∞∑

j=1

Ka(j,i)n(j,t), (14)

where n(i,t) is the number density of aggregate of size i in the
system at time t , and Ka(j,i) is the aggregation kernel. The
kernel Ka(j,i) is typically related to the collision cross-section
σ (j,i) of the colliding aggregates and the relative aggregate
velocity ν(j,i) as [67]

Ka(j,i) ∝ σ (j,i)ν(j,i). (15)

The collision-cross section is typically dependent on the
aggregate size while the velocity part of the kernel is related to
the diffusion of the aggregates. Numerical solution of Eq. (14)
with a well-known kernel of the form

Ka(j,i) ∝ (i1/3 + j 1/3)2(i−1 + j−1)1/2 (16)

from the kinetic theory of uncharged particle aggregation [68]
yields a growth exponent z = 1.19, which is close to our result
for the neutral case in Fig. 5.

Electrostatic interactions are difficult to treat as they result
in an additional dependence of Ka on the charge distribution
among the aggregates besides the dependence on the size
distribution. It is, however, possible to include the effects of
electrostatic interactions in the aggregation kernel [20,69]. If
the charge on the individual particles is time dependent and
fluctuating, as in the present study, even the solution of the
above mean-field theory becomes quite complex. As a first
attempt for a collisionally charged granular gas, here we indi-
rectly introduce the electrostatic effects in the Smoluchowski’s
kernel Ka based on the results from the MD simulations.
Under this, for a bipolarly charged gas, we argue that the
average collision cross-section 〈σ (j,i)〉 remains statistically
unchanged due to the symmetry of the charge distribution.
This is true as long as the net charge in the system is zero.
This conjecture is consistent with the result in Fig. 1(b), which
shows no significant deviation of Tg from the neutral system,
at least in the early stage of evolution. However, the relative
aggregate velocities ν(j,i) are expected to be suppressed due
to the mutual sticking of particles and their entrapment in the
electrostatic field, as discussed previously. This fact is modeled
in the kernel by introducing a variable β as

Ka(j,i) ∝ (i1/3 + j 1/3)2(i−1 + j−1)1/β, (17)

where β = 2 corresponds to the neutral aggregation. An
increasing β simply implies a suppressed diffusion. We nu-
merically solve the Smoluchowski’s equation with the kernel
Eq. (17). The growth exponent z → 1.49 when β → 3. The
increase in the value of z in the mean-field theory when the
velocity term ν(j,i) is suppressed supports the argument of
reduction in the relative aggregate velocities.

To support the inclusion of the parameter β in the diffusion
part of the kernel, we study the mean square displacement
(MSD) of the particles. This is depicted in Fig. 6. The MSD in
a dissipative granular gas is known to exhibit a subdiffusive
behavior [56]. Figure 6 (inset) shows that the subdiffusive
regime due to dissipation is further suppressed due to the
electrostatic interactions. The fact that the MSD is strongly
subdiffusive is consistent with a reduced relative aggregate
velocities and thus with increasing β.

The Smoluchowski’s equation can be further simplified, if
a strict monodisperse mass distribution of the aggregates is
assumed at any time t , i.e., at a given time t , only aggregates
with size i are present and the number density of aggregates
of size j other than i is zero. This approximation is rather
severe; however, it reduces the Smoluchowski’s equation to an
analytically solvable form, written as [67]

∂n(i,t)

∂t
= −Ka(i,i)n2(i,t), (18)
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FIG. 6. Comparison of the average cluster size S(t) predicted by
the Smoluchowski equation with the MD results. At β = 2 (dashed
line) the mean-field solution agrees reasonably well with the neutral
gas, while as β → 3 (solid lines) the growth rate for the charged
granular gas is recovered. (Inset) Comparison of the MSD of particles
between the charged and the neutral gas. The sub-diffusion due to
dissipation is further suppressed by the electrostatics, which in the
mean-field approximation is modeled by increasing β. Here Sc and τc

are factors used to shift the curves and plot them close to each other
for the sake of comparison of the slopes.

where the kernel Ka(i,i) now takes the following form:

Ka(i,i) ∝ (i1/3)2(i−1)1/β = i1/6i−1/β . (19)

If the total mass in the system is conserved, then n(i,t)i(t) =
const., and one can transform Eq. (18) to the following:

∂i(t)

∂t
= 1

τo

(i1/6i−1/β ), (20)

where τo is some characteristic time. The solution of this
ordinary, but nonlinear differential equation is

i(t) ∼ t z, with

⎧⎨
⎩

z = 6/5, if β = 2,

z > 6/5, if β > 2,

z = 3/2, if β = 3.

(21)

Figure 6 also shows the comparison of Eq. (21) with the MD re-
sults. Upon changing β from 2 to 3 the mean-field calculations
agree reasonably well with the MD results, which is consistent
with the suppression of diffusivity due to electrostatics [Fig. 6
(inset)]. We find that the system size does not affect our results.
Here it should be noted that the size/mass i(t) scales linearly
with the average size of the occupied sites S(t) by definition.
The consistency of the results from numerically solving the
kernel in Eq. (17), MD calculations, and Eq. (21) suggest
that the suppression of particle diffusion due to electrostatics
enhances the aggregation process.

FIG. 7. (a) The relaxation of the scaled velocity (ṽ = v/〈v2〉1/2)
distribution function toward the Maxwellian for neutral viscoelastic
particles. This result from our simulations for neutral viscoelastic
particles is consistent with the Sonine expansion for the time depen-
dent distribution function [50], which depicts that the distribution
relaxes back toward the Maxwellian in the long time limit. (b) The
time evolution of the distribution f (ṽ) for a charged system, however,
shows a behavior opposite to the neutral case: the distribution does
not relax back to the Maxwellian. (Insets) Same results as in (a) and
(b) but on a linear scale to highlight the shift of the most probable
velocity for the charged granular gas.

C. Velocity distribution

To analyze the global effects of charging on the dynamical
state of the system, we also study the evolution of the normal-
ized velocity distribution function f (ṽ), where ṽ = v/〈v2〉1/2,
and its deviation from the equilibrium, Maxwellian distribution
fMB(ṽ). For viscoelastic particles f (ṽ) quickly deviates from
the Maxwell distribution early in time, attains a maximal
deviation regime and tends to approach back the Maxwellian
[50]. This behavior for neutral viscoelastic particles is shown
in Fig. 7(a), where the relaxation of f (ṽ) after its maximal
deviation is highlighted. The physical reasoning behind this
relaxation is that as t → ∞, the impact velocities ξ̇ij tend
to reduce which implies the coefficient of restitution ε =
(ξ̇ ′

ij /ξ̇ij ) → 1. This causes most collisions to be effectively
elastic and thus f (ṽ,t) → fMB(ṽ) [70]. The intriguing finding
in our study is that the deviation of f (ṽ) from the Maxwellian
is more significant in dynamically charged systems and it
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FIG. 8. Scatter plot of the particles’ charges and velocities at
different times. As time progresses, a subpopulation of high velocity,
nearly neutral particles develops (highlighted in the dashed ellipse),
which contributes to the exponential tails in the velocity distribution
function (see Fig. 7). This subpopulation is expected to cause the
occasional fragmentation of the local aggregates (see Fig. 3). Here,
q̃ = q/〈q2〉1/2 and ṽ = v/〈v2〉1/2.

does not exhibit a relaxation toward fMB(ṽ) within the early
stage of aggregation. Figure 7(b) shows f (ṽ) at different times
for a charged system. The deviation of fMB(ṽ) from f (ṽ)
is more pronounced in the charged case than in the neutral
gas and indicates that the nature of the clustering is different
in case of dynamically charged systems as compared to the
neutral system. The tail of the distribution nearly scales as
f (ṽ) ∼ exp(−ṽ) in both cases. Over time, the most probable
value of ṽ is reduced in the charged system [Fig. 7(b) (inset)].
On the other hand, this deviation is minimal for the neutral
gas particles [Fig. 7(a) (inset)]. The difference between the
two cases again indicates a reduced motility of particles in the
charged gas.

The high speed particles from the tail of f (ṽ) compensate
the reduction of the most probable velocity. To understand
which particles are—statistically—responsible for the fat ex-
ponential tail of the distribution, we consider a scatter plot
of charge and speed for our system, as shown in Fig. 8. As
the time elapses, a subpopulation of weakly charged particles
with high velocities can be identified. This subpopulation
corresponding to the fat tail of the distribution suggests an
interesting and counterintuitive fact. Although the tail of the
distribution deviates significantly from fMB(ṽ) in the charged
systems, weakly charged particles are actually responsible
for it. These weakly charged and high speed particles fail
to stick and form agglomerates. It can be imagined that
these particles experience fewer collisions due to the fact
that more space is provided by the agglomeration process.
Thus, the nonequilibrium nature of the charged granular gas is
enhanced indirectly through the agglomerating particles and

directly by the weakly charged, high-speed particles. This
scenario implies a thermal decoupling between highly charged
particles and the subpopulation of weakly charged particles.
We expect that due to their relatively high velocities, these
weakly charged particles are then the most probable reason
behind the occasional fragmentation of the local aggregates, as
observed in Fig. 3. In neutral freely cooling granular gases, the
exponential tails of the velocity distribution during the interme-
diate time regime are dominated by the fastest moving particles
which manage to avoid any collision with other particles [49].
However, the number of such particles decreases over time and
eventually the large-velocity tail tends to diminish [49]. In the
present scenario, the “survival probability” of such uncharged
fastest-moving particles is expected to be higher as they gain
more accessible volume due to the compact coagulation of
the other charged particles. Consequently, the large-velocity
tail survives, at least during the early-stages of the particle
aggregation.

IV. CONCLUSIONS

We have studied the effect of collisional charging on the
aggregation dynamics of dilute, freely cooling granular gases
of viscoelastic particles. We perform molecular dynamics
simulations that take into account the collisional charge ex-
change, and the electrostatic interactions by means of the
Ewald summation. Our simulations depict that the electrostatic
interactions due to collisional charging alter the morphology
and the growth rate of the clusters. In a charged system, the
local sticking of particles triggers the aggregation, and the
subsequent growth of the average cluster size is enhanced. The
growth of the average cluster size is found to be independent
of the ratio of characteristic Coulomb to kinetic energy, or
equivalently, of the typical Bjerrum length. The combined
results from the numerical solution of Eq. (14) with the kernel
in Eq. (17), the results in Eq. (21), the behavior of f (ṽ)
as shown in Fig. 7(b), and the MD results all suggest that
electrostatic interactions enhance the aggregation process in
a charged granular gas.

In our work, some important physical ingredients such
as friction, rotational degrees of freedom of the particles as
well as other charging mechanisms such as ionization of the
particle interstitial gas due to irradiation, are not included.
Especially important is to further improve the charge exchange
model [Eq. (3)]. However, our study, we believe, will be
helpful in clarifying very basic feature of natural processes
which produce dust aggregation in charged environments
e.g., the agglomeration of planetary dust [25] and cohesive
powder substructures [27]. In the perspective of planetary
dust aggregation, it will also be interesting to include the
effects due to drag caused by interstitial gas surrounding the
particles, dipolar effects [4,71], as well as van der Waals
effects [25].
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