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Evidence of reverse and intermediate size segregation in dry granular flows down a rough incline
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In a dry granular flow, size segregation had been shown to behave differently for a mixture containing a few
large particles with a size ratio above 5 [N. Thomas, Phys. Rev. E 62, 961 (2000)]. For moderately large size ratios,
large particles migrate to an intermediate depth in the bed: this is called “intermediate segregation.” For the largest
size ratios, large particles migrate down to the bottom of the flow: this is called “reverse segregation,” in contrast
with surface segregation. As the reversal and intermediate depth values depend on the fraction of particles, this
numerical study mainly uses one single large tracer. Small fractions of large beads are also computed showing
the link between single tracer behavior and collective segregation process. For each device (half-filled rotating
tumbler and rough plane), two (2D) and three (3D) dimensional cases are distinguished. In the tumbler, the
trajectories of a large tracer show that it reaches a constant depth during the flowing phase. For large size ratios,
this depth is intermediate. A progressive sinking of the depth is obtained when the size ratio is increased. The
largest size ratios correspond to tracers being at the bottom of the flowing layer. All 3D simulation results are in
quantitative agreement with the experimental surface, intermediate, and reverse-segregation results. In the flow
down a rough incline, a large tracer reaches an equilibrium depth during flow. For large size ratios, the depth is
inside the bed, at an intermediate position, and for the largest size ratios, this depth is reverse, located near the
bottom. Results are slightly different for a thin or a thick flow. For 3D thick flows, the reversal between surface and
bottom positions occurs within a short range of size ratios: no tracer stabilizes near half-height and two reachable
intermediate depth layers exist, below the surface and above the bottom reverse layer. For 3D thin flows, all
intermediate depths are reachable by a tracer, depending on the size ratio. The numerical study of larger fractions
of tracers (5% or 10%) shows the three segregation patterns (surface, intermediate, reverse) corresponding to the
three types of equilibrium depth. The reversal is smoother than for a single tracer, and happens around the size
ratio 4.5, in good agreement with experiments.

DOI: 10.1103/PhysRevE.97.022903

I. INTRODUCTION

Size segregation in dry granular flow has been extensively
studied as it is an important phenomenon occurring in natural
flows or in industrial applications [1–8]. Recently, there have
been significant advances in the modeling of segregation in
dense granular flows. Models based on kinetic theory have
been established for segregation in rapid flows, in the case
of particles of different sizes and/or densities [9–11]. These
models, based on particle properties and with no adjustable
parameter, are able to predict the evolution of the volume
fraction of two types of particles that do not differ much
in size or mass [9]. Alternative models based on mixture
theory have been proposed in which unequal stress partitioning
reflects the mechanisms that are responsible for the segre-
gation: kinetic sieving and squeeze expulsion [12]. In this
continuum framework, particle segregation results from the
lithostatic pressure gradient induced by gravity [7,13]. Several
groups have proposed improvements to take into account the
effects of shear rate [14–17], kinetic stress gradients (derived
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from vertical chutes) [18,19], or the polydispersity of flows
with particles of different sizes and densities [20], leading
to further developments for flows on inclined planes [21].
Quantitative agreement with experiments has been obtained
for the stationary concentration profile of a mixture with a size
ratio of 2 [22]. A comparative review can be found in [23].

Most of these studies are concerned with small size ratios,
the large particles being generally 1.5 to 2 times the size of the
small ones. In some studies, size ratio is varied up to 3 [16],
3.5 [24], or 4 [25]. This variation remains small compared with
the size ratio range in our present study. Even so, it already
induces a nonmonotonic variation of some parameters, e.g.,
the segregation rate [25]. One of the studies concerning the
measurement of the force acting on an object plunged into
a granular flow [26–28] provides interesting information on
the segregation phenomenon because the intruder is free to
move with the flow [29], instead of being an obstacle exerting
drag. In these two dimensional (2D) simulations, the authors
also noticed an extremum for the normalized segregation force
obtained at the size ratio 2. Some segregation theory has been
extended to large size ratios (up to 10) [20] and predicts a
monotonic decrease in the segregation time with the size ratio
and without any change in the segregation pattern. Most of the
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FIG. 1. A D = 4.85 cm rotating cylindrical tumbler with d = 0.3
mm small particles and dt = 3 mm large particles (tracers): (a) cross
section of an experiment with 3% blue tracers, slowly impregnated
with water after the flow has stopped, then sliced [30], (b) 2D
simulation with one tracer.

models do not explicitly depend on the size ratio, but rather on
a segregating velocity determined for each species [23]. In the
few models where the size ratio is explicitly mentioned [15,20],
the segregating velocity cannot change sign when the size ratio
is increased, for any particle fraction. In these models, only a
difference in density between particles could induce a reversal
of the segregating velocity direction [15].

Nevertheless, the segregation phenomenon is observed to
be different when increasing the size ratio above 4 or 5. It has
been shown experimentally that large particles do not reach
the surface, as they usually do in surface segregation, but
move downwards and stabilize either at an intermediate depth
or at the bottom of the flow for the largest size ratios [30].
Particle stabilization at an intermediate depth has been named
“intermediate segregation.” Large particle segregation at the
bottom of the flow has been named “reverse segregation” by
analogy with the “reverse Brazil-nut effect” [31–33] observed
in vibrated granular systems. The origin of this vibrating
effect [34] is due to an inertia driven segregation process
induced by high amplitude vibrations [31,34] as well as
to the absence of convective motion [35]. The reverse and
intermediate segregations of particles of different sizes (and
having the same density) have been observed experimentally
in various sheared flows: channel flow, half-filled cylindrical
rotating tumbler, and three dimensional (3D) heap flow [30,36].
The corresponding segregation patterns take different forms.
In a rotating tumbler, if large particles are close to the tumbler
center in the static part, reverse segregation occurs because
particles move to the bottom of the flowing layer during
flow. By contrast, tracers having a small size ratio (from 1.5
to 3) end up at the periphery on the solid part, undergoing
surface segregation during flow. For a flow down an incline, the
reverse-segregating large particles disappear from the surface
during flow, and are present near the bottom of the deposit,
while the surface-segregating large particles cover the flow
and deposit surface. For a flow feeding a heap, very large beads
form a vertical core (reverse segregation). For a small size ratio,
a ring of large beads forms at the bottom periphery of the heap
(surface segregation).

Intermediate segregation has been precisely observed in the
tumbler: all large particles are found at the same intermediate
radial position in the static part (Fig. 1) [30,36], forming a seg-
regation half-ring pattern. An intermediate ring corresponds
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FIG. 2. (a) Each depth hi in the flowing layer corresponds to a
radial position Rti in the static part. (b) A 4.85 cm diameter rotating
tumbler with 187 μm red small disks and a 3 mm white tracer dt/d =
16. The blue curve is the tracer trajectory. The tracer stabilizes at
an intermediate depth and radial position. Green thin lines are the
streamlines of the small disks.

to an intermediate depth in the flowing layer [Fig. 2(a)]. This
was measured for size ratios ranging from 4 to approximately
15, for small fractions of large particles (3%) [30]. In the
experiments, the ring mean radius decreased continuously with
increasing size ratios, corresponding in the flowing layer to a
mean depth passing continuously from surface to bottom.

The reversal of the segregation from the surface toward
the bottom depends both on the size ratio and on the relative
fraction of particles [30]: a limit between surface and reverse
segregations can be defined and it corresponds to a size ratio
between 4 and 5 for small fractions (1% to 10%) of large
particles; around 14 for a 30% fraction; and no reversal
has been observed for a 50% fraction, for size ratios below
45. As most of the size segregation studies were done for
equivalent fractions of both species, the reversal was not
observed. Moreover, surface and reverse segregations give
opposite, although not symmetrical, patterns between the two
species. This asymmetry is partly due to the use of a smaller
fraction of large particles. However, when the tracer fraction
is increased in an attempt to reduce the pattern difference,
this asymmetry is enhanced: surface segregation leads to a
bilayered (or two concentric zones) system made up of pure
components, although reverse segregation progressively leads
to an apparent mixing, except near the surface (near the tumbler
periphery) [30]. Reverse segregation is not another kind of
surface segregation process, by which large particles are placed
at the bottom: it is a different phenomenon with a different
behavior. Note that the reversal of the segregation pattern is
not due to percolation effects, as suggested by some authors
[37], because they happen for a large fraction of large particle
[38]. For these reasons, we limit our present study to one single
large particle or to small fractions (5% and 10%).

Another series of experiments involves particles of different
densities and sizes in tumbler flow [36]. Similarly, reverse and
intermediate segregations of large particles are observed. The
mean segregation depths are shifted toward the surface for less
dense large particles, and shifted toward the bottom for denser
large particles. For each tracer particle material, the reversal
of the segregation is therefore enhanced (resp. reduced) by an
increase (resp. a decrease) in the density of large tracers. Only
large beads made of very light material always segregate to
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the surface, and only very dense beads always segregate to
the bottom (reverse segregation), whatever their size. These
observations suggest that for particles of the same density,
the reversal of the size segregation is due to the increase in
their mass ratio. Heavy (because large) particles push light
(because small) particles around to make their way down.
Moreover, the fact that large particles locate themselves at
a precise intermediate depth shows the existence of vertical
gradients of force acting on them. Further studies are needed
to extend these results to the case of flow down a solid rough
incline.

In fact, for an incline flow, we have the “intermediate
segregation” if large particles are found at intermediate depths
inside the deposit. Our previous experiments have shown that
the mean depth for the large beads in the deposit varies
continuously with the size ratio from top to bottom [30].
However, these experiments were not precise enough to assess
the occurrence of intermediate segregation in channel flow:
there was a large spread of the individual positions for these
intermediate mean depths. This may be due to the use of 10% of
large beads, but it could also be related to a nonstationary state
of the flow, and/or to the modification of the tracer positions
during the deposit aggradation. For these reasons, the existence
or nonexistence of intermediate equilibrium depths for a single
large tracer in a granular flow down an incline is the main
focus of this article. The case of several tracers (5% and 10%
volume fraction) will also be considered for a comparison
with a single tracer behavior and with previous experiments
of reverse segregation [30].

This article is organized as follows. In Sec. II, the numerical
method is presented. Section III studies the tracer trajectory and
equilibrium radial position in a rotating cylindrical tumbler
in two (2D) and three dimensions (3D). The method is
validated through quantitative comparison with previous 3D
experimental results. In Sec. IV, the displacement of tracers
in a granular flow down an incline is studied in 2D and in
3D. Similarities and discrepancies between 2D and 3D, as
well as the comparison between incline and tumbler flow,
are discussed. Then, a study of multiple-tracer flows and a
comparison with previous experiments are presented.

II. NUMERICAL METHOD

The numerical method used is the distinct element method
(DEM). A linear-spring and viscous damper force model
[39,40] is used to calculate the normal force between con-
tacting particles: Fn

ij = [kn δ − 2γnmeff(Vij · r̂ij )]r̂ij where δ

and Vij = Vi − Vj are the particle overlap and the relative
velocity of contacting particles, respectively, r̂ij is the unit
vector in the direction between two particles i and j , meff =
mimj/(mi + mj ) is the reduced mass of the two particles, kn =
meff[( π

�t
)2 + γ 2

n ] is the normal stiffness, and γn = ln e /�t

is the normal damping with �t the collision time and e the
restitution coefficient.

A standard tangential force with elasticity is implemented:
Ft

ij = − min(|μFn
ij |,|ksζ |)sign(Vs

ij ) where Vs
ij is the relative

tangential velocity of the two particles, ks is the tangen-
tial stiffness, and ζ (t) = ∫ t

t0
Vs

ij (t ′) dt ′ is the net tangential
displacement after contact is first established at time t =
t0. The gravitational acceleration is g = 9.81 m s−2. The

particle properties correspond to those of cellulose acetate:
density ρ = 1308 kg m−3, restitution coefficient e = 0.87,
and friction coefficient μ = 0.7 [39,41–43]. To prevent the
formation of a close-packed structure, the particles have a
uniform size distribution ranging from 0.95d to 1.05d, with
d the particle diameter. The collision time is �t = 10−4 s,
consistent with previous simulations [43–45] and sufficient for
modeling hard spheres [46–48]. These parameters correspond
to a stiffness coefficient kn = 7.32 × 104 N m−1 [39] and
a damping coefficient γn = 0.206 kg s−1. The integration
time step is �t/50 = 2 × 10−6 s to meet the requirement of
numerical stability [46].

The rough incline and the tumbler walls are modeled as a
monolayer of bonded particles of the same size. The tumbler
walls are composed of small particles in solid body rotation.
In the incline simulations, small beads (or disks) are placed
randomly in the simulation domain and, as gravity is set,
they fall on a sticky plane (or line). All small beads touching
the bottom of the domain (z = 0) stop moving and form the
rough bottom of the incline. The other beads constitute the
flowing granular material. With this procedure, rough inclines
whose compacity is around 0.57 are obtained in 3D. A large
tracer bead (or disk) is placed usually at the top of the free
surface and at time zero gravity is tilted from 0◦ to 23◦ in
3D (or to θ = 20◦ in 2D), except where otherwise stated, and
the flow starts. For tumblers, the large tracer is placed first
randomly inside the drum, or at a defined location if needed.
The other flowing particles are then placed randomly inside
the tumbler. At time zero, gravity is switched on, the flowing
particles fall, and the wall particles start a rotational movement.
In tumblers and inclines, wall particles are assumed to have
an infinite mass for calculation of the collision force between
flowing and fixed particles. The velocity-Verlet algorithm is
used to update the position, orientation, and linear and angular
momentum of each particle. Periodic boundary conditions are
applied in the directions x or x-y of the box (flow direction or
flow-horizontal directions) in the case of an incline, and along
the tumbler horizontal axis y in the case of a 3D cylinder.
In the tumbler case, velocity maps are obtained by binning
particles into boxes. The simulation domain is divided into
60 × 60 boxes in the x-z directions. The tumbler having a
diameter of 4.85 cm (plus 2 small bead diameters), each box is
a square of size around 0.8 mm. From these maps, streamlines
and velocity profiles are extracted. Velocity maps are obtained,
the tracer being either included or excluded in the binning, or
by generating a monodisperse flow where the tracer is replaced
by exactly the same volume of small particles. All the velocity
maps obtained are identical.

III. ROTATING CYLINDRICAL TUMBLERS

In this section, the aim is to obtain numerical results in
2D and 3D rotating cylindrical tumblers, in order to compare
them precisely with previous 3D experimental results. This
will provide a validation of the numerical method and some
insights into the processes happening during flow.

The previous experiments used glass beads of different di-
ameters and of the same density [30,36]. In those experiments,
the rotating cylindrical tumbler (4.2 cm long and 4.85 cm in
diameter) was half-filled with small beads and a few large
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beads (typically 50) named tracers, initially placed so that they
barely interacted. The volume fraction of tracers was 3%. The
diameter of the tracers (dt = 3 mm) was kept constant while
the size of the small particles (diameter d) was decreased from
d = 2.5 mm to d = 90 μm to explore size ratios ranging
from dt/d = 1.2 to 33. The cylinder was rotated around its
horizontal axis at about 3.6 rpm, so that a continuous flow
with a flat free surface developed. After three revolutions, a
stationary state was reached, with tracers at nearly identical
radial positions, leading to a half-ring segregation pattern
[Fig. 1(a)]. Since each radial position Rti in the solid rotating
part corresponds to a depth hi during flow, we interpreted the
ring by the fact that all the tracers located themselves at the
same preferential depth within the flowing layer [Fig. 2(a)].
The radial segregated position Rt was defined as the mean of
all radial positions Rti .

It is important to choose the same experimental dimensions
for the simulations, so that experimental and numerical results
can be compared, because the link between the radial position
and the depth within the flowing layer is mainly a function
of the tumbler and particle diameters. For instance, equivalent
size or density ratios give different radial positions in different
tumbler diameters [36,49]. From a numerical point of view,
this experimental protocol is not easy to reproduce since the
number of small particles increases strongly with increasing
size ratio, already reaching 105 for 90 μm small particles in
2D. First, we will use dimensions as close as possible to those
used in the experiments. Then, the tracer size will be increased
carefully to reach larger size ratios.

A. 2D simulations of rotating tumbler

1. Direct comparison with experiments

The 2D numerical tumbler of inner diameter (D = 2R) 4.85
cm is half-filled with monodisperse small disks and one large
tracer (disk) of the same density. The diameter of the small
particles varies from 2.5 mm to 90 μm and that of the large
tracer is 3 mm. The tumbler rotates at 15 rpm to ensure a
continuous flow with a flat free “1D surface.”

Figure 2(b) shows the trajectory of a large tracer (dt/d =
16) passing successively through the flowing layer and the solid
rotating zone. After a few revolutions (4 to 5, not shown here),
the trajectory converges to and fluctuates around an equilibrium
radial position: a stationary state is reached. Each time i the
tracer passes through the vertical plane x = 0 in the static
rotating zone, the distance from the tracer center to the cylinder
center Rti is measured. A mean position Rt and a standard devi-
ation are computed. Small standard deviations indicate strong
localization at the same radial position from turn to turn. This
corresponds to stabilization at a constant depth h in the flowing
layer. This also corresponds to segregation rather than to
mixing since several noninteracting tracers would all stabilize
at these well-defined depth and radial position. Consequently,
they would regroup, i.e., segregate on this ring, exhibiting
this small deviation. We choose to call the equilibrium radial
position Rt a radius of segregation because it corresponds to the
experimental segregation half-ring radius obtained with 3% of
tracers (for a comparison between experiment and simulation,
see Fig. 1). Averaging and deviation calculation are done on
one tracer during several turns for numerical data, or on several

experiments
2D simulations
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FIG. 3. Relative tracer radial positions in the cylindrical tumbler
versus size ratio dt/d , for several tracers in 3D experiments (green
squares) [36] and several passages of one tracer in 2D simulations
(blue triangles). Error bars show the standard deviation.

tracers at a given moment for experimental data, thus including
trajectory fluctuations, but also potential tracer interactions and
experimental errors.

In the simulations, a tracer with a size ratio from 1.2 to 3 is at
the periphery, which corresponds to a surface position during
flow. Each larger tracer nearly remains at an intermediate radial
position Rt inside the drum [Fig. 2(b)], which corresponds to
an intermediate depth during flow. As Rt decreases toward
zero with increasing size ratio, we deduce that the tracer
position is progressively deeper in the flowing layer. Figure 3
represents the evolution of Rt with the diameter ratio dt/d

showing the reversal of the tracer position with increasing size
ratio. Each standard deviation value indicates whether there
is a well-defined position or a dispersed trajectory within the
tumbler. In the event that several tracers are used, a well-defined
position leads to segregation and the dispersed trajectory leads
to mixing. In the tumbler, the spatial organization passes from
a spread of the instantaneous positions (for size ratio near
1) to well-defined equilibrium mean positions: at the surface
(maximum of Rt is R − dt/2), then at intermediate depths
when Rt decreases, and toward reverse depths for the lowest
values of Rt .

We compare the successive numerical positions of one
tracer, and the experimental positions of several tracers, both
giving a value for Rt and a standard deviation. The agreement
between experiments and simulations is good, but only quali-
tative, with a similar evolution of the curve. Both simulations
and experiments show the reversal of either the equilibrium
position or the segregation location (Fig. 3). There are dif-
ferences between 3D experiments and 2D simulations: (1) In
3D experiments, the decrease of the curve Rt/R versus dt/d

is more rapid than in 2D simulations. (2) In 2D simulations,
the asymptotic value of the curve is close to 0.55, a larger
value than the asymptotic value in the 3D experiments, around
Rt/R = 0.35. This 2D asymptotic value will barely be reduced
for larger size ratios (Fig. 4). (3) Another difference is observed
regarding the maximum of the curve (surface segregation)
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FIG. 4. Relative tracer positions in the tumbler versus size ratio
dt/d , for 3D experiments with 3% of tracers [36] and 2D simulations
with 2 tracer sizes, 3 and 4.85 mm (no standard deviation here).

which occurs for dt/d = 1.5 or 1.8 in experiments, instead
of dt/d = 2.5 in the 2D simulations (Fig. 3). We will see that
these differences are due to the 2D nature of these simulations
rather than to an experiment-simulation discrepancy. A longer
discussion on that point is presented with the 3D simulations.

2. Higher size ratios

To explore the asymptotic value, we need to reach larger size
ratios, which would require the use of a high number of small
particles in the simulations. To overcome this disadvantage,
several larger tracer sizes are tested (dt = 3, 4.85, 6, and
9.7 mm) in the tumbler D = 48.5 mm, and their equilibrium
positions Rt are compared (for size ratios 25 and 40). Up to a
diameter of dt = 6 mm, Rt are almost identical. For the largest
tracer (dt = 9.7 mm, whose size is to be compared with the
drum diameter D = 5dt ), a small discrepancy (relative error
of 4%) is observed. We choose to keep the size of the tracer
under dt = D/10 to be sure that there would be no effect of
the tracer size. For the particles and tumbler studied here, the
thickness of the flowing layer is always larger than one tracer
diameter.

A tracer diameter dt = 4.85 mm is adopted to reach large
size ratios up to 60. Figure 4 shows the relative positions Rt/R

of the 3 and 4.85 mm tracers, compared to 3D experimental
results. When the two different tracers have the same size
ratio dt/d, the resulting positions coincide. For the largest
size ratios used in these 2D simulations, the radial position
slowly decreases but remains close to 0.5, and does not
reach the experimental value of 0.35. 2D simulation and 3D
experiment asymptotic Rt values are different. Even if there
is a qualitative agreement, 3D simulations are needed for an
accurate comparison.

B. 3D rotating tumblers

1. Comparison with experiments

To obtain a quantitative agreement, 3D simulations are
conducted (Fig. 5). The tumbler inner diameter is equal to
D = 48.5 mm and it rotates around the y axis at 15 rpm. In
a first series (size ratio up to 8), the tracer diameter is set to

FIG. 5. 3D simulation of a rotating cylinder (diameter 48.5 mm)
with a 3 mm tracer in 0.5 mm small beads.

dt = 3 mm as in experiments, then for larger size ratios (from
5 to 25) it is set to dt = 4.8 mm to reduce the number of small
simulated beads. For size ratios dt/d = 5 and 8, both tracer
sizes are tested. Larger tracers (dt = 6 and 9 mm) are also
used, respectively, from size ratios 5 to 25 and 12 to 25 to check
the sensitivity to the tracer size. As in 2D, no differences are
observed for the 6 mm tracer, and very small discrepancies are
observed for the 9 mm tracer.

The 3D numerical results show the evolution of the tracer
radial position Rt from the periphery to intermediate positions,
toward the reverse position when the size ratio is increased
(Fig. 6). The standard deviation is very small, indicating a
strong localization on the same radial position from turn to turn.
The 3D numerical radial position quantitatively matches the
3D experimental radial segregated position of several tracers.
Agreement is very good, even on precise points such as (1) the
slope of the curve, (2) the asymptotic value of Rt/R for large
size ratios, and (3) the diameter ratio which corresponds to the

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

R
t/

R

dt/d

experiments

3D simu. dt = 4.8 mm
3D simu. dt = 3 mm

FIG. 6. Relative radial positions of the tracers versus size ratio, in
3D experiments (3% of tracers) [36] and 3D simulations (one tracer,
3 or 4.8 mm). The numerical standard deviation is very small (error
bars). The dashed line is the position of a tracer touching the bottom
of the flow.
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FIG. 7. Trajectories of the tracer center (black curves) and small
bead streamlines (red curves) (D = 48.5 mm, dt = 3 mm). The
thick green curve is the free surface. The first rotations concern the
convergence, the following rotations concern the stationary phase. (a)
dt/d = 4, the tracer is at the limit between surface and intermediate
positions, its top touching the free surface, (b) dt/d = 8 either starting
from the periphery (dashed line) or from the tumbler center (solid
line), the tracer is at an intermediate position.

maximum of the curve. The agreement confirms our hypothesis
that a few tracers locate themselves on a ring which has the
same radius as the equilibrium radial position of one single
tracer. The segregation of several noninteracting tracers can
be seen as the regrouping at an identical position because the
equilibrium radial position of each tracer depends only on its
size ratio. The tracers do not interact much at this small fraction
(3%), nevertheless, their interaction leads to a slight increase in
the standard deviation, with no observable change in the mean
value. We can speak interchangeably of segregation radius or
of equilibrium radial position. Moreover, as the agreement is
really quantitative, we are confident in our simulation method
to be used to study other systems, such as flows on rough
inclines.

2. Trajectories in 3D tumbler

To gain a better understanding of the segregation phe-
nomenon, tracer trajectories are studied in details. Figure 7(a)
shows the trajectory of a large particle with a size ratio of 4
and the streamlines of small beads in a plane x-z. Two phases
are distinguished: first, the unsteady stage, second a stationary
trajectory when the equilibrium depth is reached.

The tracer initially falls after the tumbler has been filled
(vertical line), then the rotation starts with the tracer relatively
close to the stagnation point. During the first, second, third
passages, and the first part of the fourth passage in the flowing
layer, the tracer exhibits an upward motion when compared to
the small bead streamlines. It migrates towards its equilibrium
position. Accordingly, in the static zone, from one passage to
the next, the radial position Rti increases. Then, after these
four passages, the trajectory is stationary: the tracer flows
along the streamlines at each passage, and presents a nearly
constant radial position Rti with some fluctuations from turn
to turn. This confirms the experimental observation that after
3 rotations (� 6 passages through the flowing layer for a
half-filled drum) the whole segregation process is over [30].
The convergence to an equilibrium depth, and consequently the
segregation process, happens mainly during flow, and is not due
to processes happening during the entrance into and/or the exit

from the flowing layer. Here, the tracer starts from a central
position, and moves upwards to reach its equilibrium depth.
It could have been downwards if the tracer had been released
from the surface of the flow (or periphery in the static part). An
equivalent upward motion is observed for a tracer with a size
ratio 8 [Fig. 7(b)], but its amplitude is smaller, as the starting
position is closer to the equilibrium Rt/R corresponding to
this size ratio. A more rapid downward motion toward the
same equilibrium radial position is observed when the tracer
is released at the periphery, probably because of the longer
distance traveled in the flowing layer.

Once in the steady phase, the tracer trajectory and small
bead streamlines are parallel in the flowing zone. There is no
relative motion any longer, either up or down. Plotting a circle
3 mm on the trajectory shows that the tracer with size ratio 4 is
just below the surface, and that the tracer with size ratio 8 is on a
mid-height intermediate depth. Each depth in the flowing layer
corresponds to one radial position in the rotating part of the
tumbler. However, the tracer trajectory does not match exactly
the same small bead streamline in the rotating zone and in
the flowing zone. There are two small shifts between the tracer
trajectory and the small bead streamlines when going in and out
of the flowing layer. At the entrance [Fig. 7(b)], the tracer starts
to move after the small beads on the same streamline (despite
the shift occurring at the previous exit), probably because its
bottom is still surrounded with nonmoving small beads. At the
exit of the flow, the tracer stops before the small beads on its
corresponding streamline because its lower part is touching the
static curved bottom [note that these entrance and exit shifts
are enhanced in 2D (Fig. 2)]. In conclusion, these shifts are
not responsible for the segregation from turn to turn. But, they
exist, they probably vary with Rt and might be one cause of
the discrepancy between 2D and 3D. For that reason, it is not
possible to easily deduce the flowing depth positions from both
data of small particle streamlines and Rt/R. Nevertheless, the
shifts are very small and the Rt/R variation mainly reflects a
variation in depth within the flowing layer.

A more accurate examination of the trajectory reveals that
the entrance in the flow induces a starting point slightly above
the equilibrium depth that the tracer will reach [Fig. 7(a)]. Each
time it passes through the flowing layer, the tracer exhibits a
tiny descent towards its equilibrium depth, then remains at a
constant depth to the end of the flow, parallel to streamlines.
The length at which the constant depth is reached seems to
decrease with the tracer size ratio, approximately at mid-length
for ratio 4, almost immediately for ratio 8 (Fig. 7). Segregation
is so fast that slight destabilization can be rebalanced in less
than one passage in the flow.

In conclusion, the study of trajectory in the 3D cylindrical
tumbler shows that the process responsible for the segregated
radial positions of tracers is a vertical migration and stabiliza-
tion of the tracer at various depths, occurring during flow. We
then expect a similar phenomenon to happen during flow on
an incline.

3. Radial position and depth within the flowing layer

One may wonder how the different values of Rt/R should
be interpreted in terms of equilibrium depth within the flowing
layer of the tumbler, to anticipate conclusions across the
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tumbler study and the following incline study. In particular,
the question arises as to whether the asymptotic small values
of Rt/R do correspond or not to a reverse segregation within
the flow. A tracer touching the bottom of the flow undergoes a
small decrease in Rt/R with the size ratio because with our
protocol (d decreasing), the thickness of the flowing layer
slightly decreases [50]. Numerical thickness measurements,
added with a tracer radius to obtain the tracer center position,
are shown as a dashed line on Fig. 6: it would correspond
to reverse positions, turning around the stagnation point. We
deduce that size ratios 20 and 25 are in reverse position, and
that the small decrease between them is explained by the choice
of the protocol.

In addition, in some simulations, we measure the depth of
the tracer directly on its trajectory. For a ratio 8 [Fig. 7(b)],
the tracer is at an intermediate depth. For the largest size ratios
(for example, ratio 20), the tracer is just touching the bottom
of the flowing layer, i.e., the bottom of the tracer passes where
the streamlines are reduced to the stagnation point, which is
nowhere else than the middle point of the bottom. But, this
method is not precise: it is difficult to define the bottom of
a flowing layer near the tracer. The bottom of the flowing
layer is defined by an averaging of small bead streamlines. The
tracer passage has almost no effect on the averaging, although
it probably deforms locally and during a short time the granular
material below and around it when it passes “at the bottom.”
Consequently, the bottom of the averaged flowing layer may
not be the same as the local bottom of the flow around the
tracer. Nevertheless, we choose to call the positions of these
tracers with the largest ratios “reversed,” keeping in mind that
this is somehow arbitrary. In fact, denser tracers may be found
at lower Rt than the asymptotic value, probably because they
more strongly deform the bottom [36]. With that choice, all the
asymptotic Rt/R positions correspond to a tracer in a reverse
bottom position within the flow. In conclusion, reverse depth
is reached for tracers with a size ratio � 20 in 3D. The same
measurements on trajectories are made in 2D: tracers are found
at intermediate depth for size ratios 10, 16, and 20, and in
reverse position for size ratios above 40. The reverse position
can be reached both in 2D and 3D, but for greater size ratios
in 2D.

4. Differences between 2D and 3D tumblers

Compared with 3D results, 2D results are shifted, as if the
size ratio had a reduced effect: the maximum of the Rt/R curve
occurs for a higher size ratio, the dependency is smaller, and the
asymptotic value is higher (Figs. 6 and 4). We first check that
the difference between 2D and 3D is not due to a variation of
the thickness of the flowing zone. Indeed, the thicknesses have
been measured nearly identical for a given small bead size in
2D and 3D tumblers. Second, for a given size ratio (dt/d = 20)
we compare the depth of each tracer on its trajectory within
the flow: in 3D, the tracer is touching the bottom, while in 2D,
6 small beads are under the tracer (this flow thickness is 25d).
The shift between 2D and 3D Rt/R curves does correspond to
a real difference in depth positions within the flowing layer.

Nevertheless, a radial position difference in 2D and 3D can
also be seen for tracers at the same depth. For example, for
the asymptotic values, the largest tracers in 2D (size ratios

above 40) and in 3D (size ratios 20 and 25) are all measured
touching the bottom of the flowing layer. The size of the
tracer is fixed (dt = 4.8 mm or 4.85) and the thickness of
the flowing layer is almost unchanged for these small bead
sizes d (a slight decrease indicated by the dashed line in
Fig. 6). Nevertheless, there is a gap between the 2D and 3D
values of Rt/R corresponding to these identical reverse depths
(Fig. 4). Note that to take into account the slight variation in
the flowing layer thickness with the small bead size, one can
simply extrapolate Rt/R values in 3D up to 40 (Fig. 4), and
compare radial positions exactly at the same flowing thickness:
the conclusion is unchanged.

Considering tracers at a same depth, the Rt/R difference
is mainly due to the larger trajectory fluctuations in 2D which
shift Rt to larger values in 2D when approaching the bottom
(and to smaller values when nearing the surface). It is also due
to a difference in the entrance and exit of the flowing layer,
which gives smaller Rt values in 2D. This latter effect pushes
in the opposite direction, but is small compared to the former
one.

We have seen that there is a difference between the 2D
and 3D equilibrium depths within the flowing layer all along
their evolution with the size ratio. To understand the cause
of this difference, one should compare the effective densities
of the medium made up of small particles. If we note ρ the
density of the small (or large) particles, the effective density
of the granular medium made up of small particles is equal
to c ρ, where c is the compacity. A large tracer is denser than
a sphere or disk of the same diameter filled with a random
close packing of small particles. In 2D, such a packing gives
a compacity close to c2d � 0.8, while in 3D, c3d � 0.6. Thus,
the density ratio between the tracer and the medium is larger in
3D than in 2D, leading to deeper intermediate segregation and
advanced reverse segregation. This result was confirmed using
tracers of decreasing densities [36]. For tracers less dense than
a random packing of small particles, only surface segregation
of the tracer is observed.

Even if the names and limits of the equilibrium depths are
arguable, there are similarities but also discrepancies between
2D and 3D cases. In 3D, the evolution of the position shows
a shift of the curve maximum toward smaller size ratios and
a stronger dependency with size ratio. If the enhancement of
the effect of the size ratio is due to the compacity around 0.6
(in 3D) instead of 0.8 (in 2D), we expect that it will always be
present in all types of flow. Thus, care should be taken when
extrapolating these 2D studies to the 3D case.

IV. ROUGH INCLINE

The experimental study of granular segregation occurring
during flow down an incline is a difficult task to achieve in wide
and thick channels (3D). Indeed, in our previous experiments
[30] only the surface of the flow was visible. A fraction of 10%
of large particles was used. For large size ratios (dt/d � 6), no
tracers were visible at the surface during flow, although for
dt/d � 3, large particles were at the surface. The volume of
the deposit could be accessed after the flow had stopped due to
a slope change or a vertical end wall. But, the aggradation of
the deposit may have modified the particle depths. Size ratio
had been varied and the segregation pattern in the deposit
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changed according to the size ratio: for small size ratios,
the large particles covered the surface of the deposit, while
for larger size ratios, the large particles were found inside
the deposit. The individual positions were moderately spread
inside the deposit. Nevertheless, their mean position was at
an intermediate depth, which was deeper and deeper with
increasing size ratios. Because of this spread and because of
the aggradation, it was not possible to conclude on whether
these tracers were located at a well-defined intermediate depth
during flow (corresponding to an intermediate segregation).
Simulations will allow measurements during flow, in an estab-
lished steady-state regime, with a single tracer.

The main advantage of the incline geometry is that the
measurements of tracer depths within the flows are direct,
while measurements of radial positions in the tumbler involve
entrance in the flowing layer, acceleration, and exit from the
flowing layer. Moreover, for a solid rough incline, the bottom
depth can be accurately determined, which is not the case in
a partially filled tumbler where flow passes on loose granular
matter having a curved bottom shape. Another difference is
that the flow thickness in the tumbler is mainly imposed by
the dimensions (tumbler diameter and small particle size).
For the chosen protocol (decreasing small bead size), this layer
thickness decreases with the size ratio (around 8d for dt/d =
2; 21d for dt/d = 10; 34d for dt/d = 25, respectively: 4, 2.1,
and 1.4dt ), while for confined flows in an inclined channel
the thickness of the flow can be varied independently. In this
study, the smallest thickness chosen is comparable to those
encountered in nonconfined flows on an incline (around 10d)
[51], and, for this reason, the results on such thin flows are
not without interest. The thickness will be increased (37d),
to explore thickness effects, and will reach the values for
experimental channel flows, for comparison [30].

As experimental results were obtained without following
any protocol, we choose to keep the small bead size constant
(d = 6 mm), and vary the tracer size (dt ). Indeed, decreasing
the small bead size would have resulted in increased flow
velocity and increased calculation time for a constant flow
thickness. Nevertheless, we may expect some deviations be-
tween experimental and numerical results if the tracer becomes
too large compared with the flow thickness.

A. 2D simulations of flows on an incline

1. Intermediate segregation

Even though quantitative agreement cannot be taken for
granted, we first perform 2D simulations. The simulation
domains are 160d long, or 300d long for the larger tracers
(dt/d � 8). Figure 8 shows a 48 mm diameter tracer (disk) in
a granular flow made up of 6 mm small disks flowing down
an incline. The plane slope is 20◦ and the thickness of the
flow hmax is around 36 cm. The tracer with this size ratio
(dt/d = 8) is not far from the free “1D surface” but remains
below it, fluctuating around an intermediate depth. This does
not correspond to the behavior of a large particle during the
classical granular surface segregation of large particles, but
to that of a particle flowing inside the bed, at an equilibrium
intermediate depth: this would lead to intermediate segregation
if several noninteracting tracers of the same size were present.

FIG. 8. A 2D granular flow down a rough incline with 6 mm small
disks and a 48 mm large tracer, moving from left to right. The slope
angle is 20◦, the flow thickness is 36 cm.

Figure 9 shows the depth z(t) of each tracer center for
three different tracer sizes versus time t (each simulation
involving one single tracer). For each tracer size, several initial
positions at the bottom or at the surface are tested, but only
one is plotted here. The steady-state tracer depth h does not
depend on the initial location [h is the mean of z(t), the
initial convergence time being removed]. For the size ratio
dt/d = 8, the tracer almost never reaches the free “surface”
and stays at an intermediate depth. It is the noisiest trajectory.
At intermediate depths, the trajectory is not stabilized by the
existence of the free “surface” or the bottom nearby. For the
size ratio dt/d = 20, the tracer reaches an equilibrium depth
located near the center of the flow with a layer of around 22
small particles below it. The dt/d = 3 tracer, initially placed
at the bottom, reaches the surface, as in a surface segregation
phenomenon. Stationary positions are reached after horizontal
displacements of 10 000d, 25 000d, and 30 000d for tracers
of size ratio 20, 8, and 3, respectively. The distance is mainly
due to the gap between the initial vertical position of each
tracer and its corresponding stationary position. Large values
are explained by the use of a thick flow (60d), and by the poor
efficiency of the 2D segregation.

For a size ratio of 16, trajectories starting from the top and
from the bottom reach the same equilibrium depth in about
12–15 s (around 4000d−5000d) (Fig. 10). The initial gap to
stationary position is the main parameter which determines
the time or distance to travel along. It takes a longer time (and
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FIG. 9. Trajectories of the center of three tracers versus time. The
horizontal dashed line is the free 2D “surface.” Thick circles show
the sizes of the three tracers.
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FIG. 10. Trajectories of a tracer released at the top (solid lines)
and the bottom (dashed lines) of the flow. Both trajectories converge
to the same equilibrium depth (intermediate for dt/d = 16, at surface
for dt/d = 3). Circles show the tracer sizes. The horizontal black line
is the mean position of the free 2D “surface.”

distance), around 55 s (22 000d) to the tracer with size ratio 3
starting from the bottom to reach the surface: it has to move
across the whole flow thickness, on a trajectory showing larger
fluctuations.

In order to study where the tracer stabilizes, the mean depth
of one tracer in the stationary regime h is reported for several
size ratios dt/d (with d = 6 mm) and for several thicknesses
of the flow hmax (Fig. 11). h is calculated from the flow bottom
to the tracer center. Moderately large tracers (2 � dt/d � 6)
are found at or near the surface, and h is maximum for a size
ratio between 2 and 3. For these low size ratios, the values of h
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FIG. 11. Equilibrium depths of the tracer center in a flow down a
2D incline versus size ratio, for three flow thicknesses: (blue triangles)
0.12 m, (black circles) 0.24 m, (red squares) 0.36 m. Error bars show
the standard deviation. Horizontal lines show the free “surfaces.” The
oblique dashed line corresponds to the position of a tracer whose top
is at the surface of the thinnest flow.
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FIG. 12. Relative equilibrium depths of the tracer center in the
2D flow versus size ratio, for three flow thicknesses: (blue triangles)
0.12 m, (black circles) 0.24 m, (red squares) 0.36 m.

seem related to the distance to the free surface, independently
of the thickness of the flow, showing the same curve shape
relatively to the flow surface. For larger size ratios (dt/d � 7),
the tracer position gets deeper and with increasing size ratios.
It is compatible with the Rt/R vs dt/d decrease in the tumbler.
The h asymptotic value for very large size ratios is close to
hmax/2, and thus scales with the thickness of the flow (Fig. 12).

The interesting result is that there are some tracers which
stabilize at intermediate depths inside the flow. This shows
the occurrence of intermediate segregation in a 2D flow on
a rough incline, at least for noninteracting tracers. We can
assume that small fractions of large disks would undergo inter-
mediate segregation for these size ratios. The small standard
deviations represented as error bars indicate that each tracer
does not explore the whole thickness of the flow, but remains
at an intermediate well-defined depth, with little randomness
in its trajectory. These small fluctuations would correspond
to a small standard deviation in the segregation of several
noninteracting tracers.

Note that for thin flows, tracers with size ratios above 10 are
very large compared to the flow thickness and they are close to
appearing at the surface although they interact with the bottom
at the same time. The oblique dashed line shows the position
of a tracer such that its top is flush with the free surface of
the flow (Fig. 11). It defines a boundary between surface and
intermediate positions (for small size ratios, here around 5),
and also shows a reasonable size limit for a tracer in such thin
flow (here, dt/d = 12).

If the vertical position is renormalized by the thickness of
the flow (Fig. 12), the three previous curves collapse reasonably
well. Note also that for 1.5 � dt/d � 6, rescaling like hmax −
h is a better choice as curves match well in their upper part,
but they will no longer collapse for large size ratios. Thus, the
behavior in a 2D flow shows two regimes: a first one (tracer
near or at the surface) where the equilibrium position depends
on the distance to the surface, independently of hmax value, and
a second one where the equilibrium depth is intermediate and
tends towards hmax/2, and thus scales with the flow thickness.
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FIG. 13. Relative equilibrium depths of the tracers in a 2D flow
versus slope angle (θ = 17◦ to 23◦) for four size ratios: dt/d = 6, 8,
10, and 30. The flow thickness is hmax = 36 cm.

The positions h show that only surface and intermediate
depths are obtained in 2D granular flows on an incline. We
conclude that reverse segregation is not obtained in 2D, at
least in this parameter range. The large tracer does not reach
positions below mid-height of the flow, even for very large
size ratios. For the thinnest flow, the depths are compatible
both with a reverse and an intermediate pattern, considering the
small number of small particles below the tracer, but for thicker
flows both types of depths can be differentiated. Equilibrium
positions end up really at mid-flow for the largest ratios. There
are 14 small particles below the largest tracer in the thickest
flow, significantly above a reverse position.

Since in tumblers the dependency of the position Rt on
dt/d is stronger in 3D than in 2D, we expect different results
for a 3D incline flow. Another point worth noting is that the
dependency of the position (h or Rt/R) on dt/d is also greater
for a 2D incline than for a 2D tumbler and, consequently, the
asymptotic value is approached for smaller size ratios on an
incline than in a tumbler flow.

2. Slope angle

In a granular flow down an incline, the easiest way to
increase the shear rate, without changing the thickness of the
flow, is to increase the slope. Figure 13 shows the relative
position of four tracers, with size ratios dt/d = 6, 8, 10, and
30, for several angles of the plane. Even if small evolutions
are measurable, the relative vertical position of tracers
(dt/d � 10) is almost unchanged for a slope change from 17◦
to 23◦ although this change induces an increase in the mean
velocity of the flow, and thus in the shear rate, by a factor of 4.
In the case of a dt/d = 30 tracer, a slight monotonic increase
in the tracer depth with the slope is observed. For size ratio 10,
the same increase is obtained but only for slopes larger than
20◦.

B. 3D flows on an incline

A series of simulations are conducted on the 3D incline, first
in a thin flow, then in thicker flows. Even though very large size

FIG. 14. A 3D incline granular flow, with a tracer (dt/d = 6),
moving from left to right (slope is 23◦, hmax = 0.112 m). Side beads
have been removed to show the tracer.

ratios are not reachable with our computational facilities, this
captures most of the phenomena and allows a comparison with
the 2D case and with previous experiments in a 3D channel.

1. Equilibrium positions

Figure 14 shows a 3D flow, with a tracer having a size
ratio dt/d = 6 (small beads are d = 6 mm). The horizontal
dimensions of the simulation domain are 20d × 20d (0.12 m
× 0.12 m) or (40d × 40d) for the largest size ratios. Both
domain sizes are used for several size ratios to be sure that the
simulated domain is large enough (Fig. 15). The flow thickness
(hmax = 0.112 m � 18d) corresponds to a relatively thin flow,
comparable to the flows encountered in our 3D tumbler for size
ratios around 8. The tilt angle is 23◦.

For each size ratio (from 1.2 to 12), the large tracer depth
z(t) evolves rapidly during flow (see below Figs. 16 and 17)
to stabilize finally at a constant depth h. Some tracers have
been initially placed at the bottom of the flow, and some
at the surface without any final difference. Once in steady
state, trajectory fluctuations are small and give small standard
deviation associated with each h.

The equilibrium depth h depends on the size ratio between
tracer and small beads. Figure 15 plots the tracer depths (from
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FIG. 15. Equilibrium depths of the tracer center in the 3D flow
down an incline versus size ratio dt/d . Error bars show the standard
deviation. The horizontal line is the free surface (hmax = 0.112 m, the
slope is 23◦). Two numerical domain sizes are used: 20d × 20d (red
open square) and 40d × 40d (green circle).
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FIG. 16. Trajectories of tracers in the 3D incline flow (slope is
23◦) for three flow thicknesses hmax = 0.112, 0.167, and 0.223 m and
for two size ratios: (a) dt/d = 2 and (b) dt/d = 8, inset: trajectories
in x coordinate.

7.2 to 72 mm in size) for size ratios ranging from dt/d = 1.2
to 12. For moderately large size ratios (below 4), h is near or
at the surface, in accordance with the surface segregation of
large beads. As in the 3D rotating tumbler, the maximum of the
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FIG. 17. Trajectory of a tracer center (dt/d = 12), initially placed
at the surface, in a 3D flow, for four flow thicknesses (slope is 23◦).
The arrow indicates increasing thicknesses.

curve (i.e., tracer at the free surface) is obtained for size ratios
between 1.5 and 1.8 (Fig. 15). For size ratios approximately
between 4 and 6, the tracer reaches an equilibrium depth inside
the flow, suggesting the occurrence of intermediate segregation
in 3D flow down an incline, for noninteracting tracers. For
larger size ratios dt/d > 6, the equilibrium depths reach a
saturation value near the bottom, in a reverse position. We
note that the equilibrium positions are independent of the size
of the simulation domain. The slight increase of the curve
for the largest size ratios (10 and 12) is due to the increase
in the tracer size itself, showing that the tracer is in strong
interaction with the bottom. There are only about four small
beads below the tracer. The three types of equilibrium positions
(surface-intermediate-reverse) are thus found in this thin 3D
flow, suggesting that the three segregation patterns would exist
for a small fraction of noninteracting tracers.

Comparing 2D and 3D cases (Figs. 12 and 15, respectively),
the overall behavior is the same but some differences are
present. In the 3D case, the equilibrium depth decreases more
rapidly and reaches a smaller saturation value earlier, at a size
ratio close to dt/d = 6 in 3D, instead of dt/d = 10 or 15 in
2D. We also note that the standard deviations are much smaller
in 3D.

2. Thickness of the flow

Figure 16 shows the trajectories for the first 50 s of two
tracers dt/d = 2 and 8, immersed in granular flows having
three different thicknesses. The horizontal lines show the
positions of the free surfaces of the flows: hmax = 0.112, 0.167,
and 0.223 m. For the three thicknesses, the tracer with a size
ratio of 2 remains at or goes to the surface of the flow showing
the same final position as in a surface-segregation process (only
the case of the thinnest flow is shown for the ratio 2 tracer
placed at the bottom). When crossing the whole thickness,
the convergence is longer for this small size ratio (dt/d = 2)
than for a larger one (dt/d = 8), and the trajectory presents
more fluctuations. The large tracer (dt/d = 8) sinks to reach
a depth near the bottom of the flow. Its stationary depth is
close to 0.05 m, independently of the thickness of the flow. As
the tracer radius is rt = 0.024 m, it does not touch the rough
incline made up of small glued beads, but about four small
beads remain between the tracer and the plane. We consider
this position close enough to the bottom to be called “reverse.”

When using a t-z representation, parallel trajectories on
Fig. 16(b) show that the sinking velocity is constant (vsink =
−0.0105 m/s). For a given size ratio, the time of convergence
is mainly related to the thickness of material to travel through.
A constant sinking velocity is an interesting feature since it can
be used in theoretical models to describe granular segregation.
From an experimental point of view, an x-z representation
[Fig. 16(b) inset] is more interesting since it gives the incline
length required for an experiment. For a size ratio of dt/d = 8,
changing the thickness of the flow from hmax = 19d to 37d

decreases the slope of the trajectories (compared to the rough
incline) and increases the horizontal settling distance from
� 400d to � 2500d. This distance increase comes from the
flow thickness increase but also from the induced increase
of the mean velocity which is about a factor 3 here. In the
case of a larger tracer dt/d = 12 (Fig. 17), the sinking is more
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FIG. 18. Equilibrium depths of tracers versus size ratio in the
3D flow for 3 thicknesses: (blue triangles) 0.112 m, (black circles)
0.167 m, (red squares) 0.223 m. Error bars show the standard
deviation.

rapid (vsink = −0.021 m/s), and the slope of the trajectories
also decreases with the increase in thickness (not represented).
Consequently, the settling distance increases from � 200d to
� 1200d, for hmax = 0.112 and 0.233 m, respectively. For a
downward motion, convergence is more rapid for high size
ratios [comparing Figs. 16(b), 17, and 23]. Downward forces
acting on tracers are stronger when tracers are larger, and
consequently heavier.

Figure 18 shows the equilibrium depth h for a large tracer for
three different thicknesses hmax. For size ratios up to 4, the large
tracer remains at or near the surface, independently of hmax. For
size ratios larger than 5, the tracer sinks close to the bottom
of the flow, and h is independent of hmax [as in Figs. 16(b)
and 17]. The slight increase with the tracer size shows the
strong interaction with the bottom when in reverse position. For
the two thickest flows, a sharp transition between the surface
position range and the reverse position range appears for size
ratios dt/d between 4.2 and 4.5, while a relatively progressive
variation is observed for the thinnest flow. The tracer depth h

depends on the flow thickness only during the transition. Both
parts of the curves h − hmax for small (below 4) or h for large
size (above 5.5) ratios are independent of hmax.

Plotting h (Fig. 18) shows that the distance to the bot-
tom controls the equilibrium position for very large tracers,
independently of the thickness of the flow. In the same way,
plotting h − hmax (Fig. 19) shows that the distance to the
surface is independent of the flow thickness for moderately
large tracers (1.5 � dt/d � 4.2), when positions near surface
are reached. It seems that two independent phenomena, one
influenced by the presence of the surface and one by the bottom,
determine the equilibrium of the tracer in each case. For a thin
flow, the free surface and the bottom are close enough so that
the two phenomena interact, and the result is a progressive
transition between the two influences, creating a larger range
of intermediate segregation positions. In the case of a thick
flow, both influences are almost separated and could be studied
independently.

It could be tempting to associate the three zones coming
from these curves (Figs. 18 and 19) with the three types of
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FIG. 19. Equilibrium distances from the tracers to the surface h −
hmax, in the 3D flow on an inclined plane for three thicknesses: (blue
triangles) 0.112 m, (black circles) 0.167 m, (red squares) 0.223 m.

equilibrium positions: surface, intermediate, and reverse (or
the three segregation types). But, they do not exactly match.
For example, tracers just below the surface (as for a ratio 3.5)
are not visible at the surface, whatever the flow thickness
is: they should be considered in intermediate position. Sym-
metrically, the tracer with a size ratio 5 is floating above
the larger ones, and is in intermediate position. As for the
largest tracers (dt/d � 8), which show a slight increase in
their center depth due to the increase in their size, they are in
strong interaction with the bottom plane and are thus in reverse
position. The separation into three types of equilibrium depths
(surface-intermediate-reverse) is convenient but may not be
representative of the phenomena happening in the granular
matter. Only two mechanisms may be the cause for equilibrium
depths: one due to the influence of the surface and one due to the
influence of the bottom. Their potential combination appears
or does not appear at around mid-height of the flow, depending
on the flow thickness. Nevertheless, in this study we keep
the separation in the three types (surface-intermediate-reverse)
that correspond to particular positions of the tracers (and not
to mechanisms). In this view, we have to split the surface zone
of the h curve in two layers: one layer with surface positions
(visible tracers) and one layer with intermediate depths. In
the same way, we split the bottom zone of the h curve in
two layers: a second layer with intermediate depths and one
layer with reverse depths (Fig. 20). In this view, thick flows
have two intermediate depth layers which are separated by an
empty central zone where there is no equilibrium depth for
a tracer. Thin flows have their two intermediate depth layers
continuously connected, forming a “thick” central layer of
intermediate equilibrium depths.

3. Comparison between the 2D and 3D flows on an incline

The main difference between 2D and 3D is the equilibrium
depth of very large tracers (Figs. 11 and 18). The large tracers
sink near the bottom, exhibiting a reverse position in the 3D
case while they locate themselves at intermediate depths in
2D, near mid-height of the flow. For hmax = 0.112 in 3D,
the asymptotic equilibrium depth is also close to hmax/2
(Fig. 15), but this is just a coincidence: other flows with
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dt/d

h

surface positions

reverse depths

intermediate depths

intermediate depths

FIG. 20. The upper part of the h curve defines two layers, with
surface and intermediate equilibrium depths, and the lower part, two
layers, with intermediate and reverse equilibrium depths (red h curve
from Fig. 18). In a thick flow (drawn here), there are no equilibrium
depths in a layer around mid-height. The bottom is never reached,
partly due to the tracer size (h � dt/2) and partly due to the presence
of some small beads (around 4) under the tracer.

different thicknesses show the same constant asymptotic value.
The fact that the stabilization of a large tracer in 2D is hmax

dependent, while it is independent of hmax in 3D, shows that
2D and 3D segregations of a few noninteracting large tracers
may be different processes. Moreover, the transition between
the surface and the deepest positions is steeper in 3D than in
2D (see Figs. 12 and 18). The transition occurs between size
ratios dt/d = 4 and 6 in 3D, while in 2D the whole transition
occurs between dt/d = 5 and 15. This stronger dependency
in the 3D case is also observed in the tumbler. Moreover, the
maximum does not occur for exactly the same size ratio in
2D and 3D. Nevertheless, similar behaviors are also noticed:
for small size ratios in 2D and 3D the tracers positions are
both related to the distance to the surface, independently of
the hmax value. As for the tumbler system, the 2D incline case
should not be carelessly extrapolated in 3D: evolutions with the
size ratio are different, even though some strong similarities
are observed. These differences are probably linked to the
compacity difference between 2D and 3D.

4. Comparison between tumbler and incline

On an incline, granular matter flows on a solid rough
surface whereas in tumblers, it flows on loose curved granular
material. The comparison of the equilibrium position (h or
Rt/R) versus dt/d in both types of flows (incline or tumbler)
gives information on the influence of the structure of the flow.
Figure 21 shows normalized depth in the incline flow h∗ and
radial positions Rt/R in the tumbler at the same scale. We
choose to adjust the minimal and maximal positions of h to the
asymptotic and maximum values of Rt/R, which correspond
to bottom and surface tracer position, respectively, within
the tumbler flowing layer. The curves match relatively well
for dt/d � 3.5, indicating that for these small size ratios the
process is mainly controlled by surface phenomena, which are
quite insensitive to the substratum. For larger ratios dt/d � 4,
curves shift with a stronger dependency in the case of rough
inclines. The difference may come from the substratum. As the
conclusions drawn from Figs. 18 and 19, these data suggest that
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FIG. 21. Equilibrium positions of the tracer versus size ratio, in
the 3D tumbler (green inverted triangle) and equivalent rescaled (see
text) positions in the 3D incline flow, for three different thicknesses.

the equilibrium at a given depth comes from one phenomenon
influenced by the surface or/and one influenced by the bottom.

Note that for 3D inclines, the tracer vertical position
increases for size ratio starting from 1, reaches a maximum
for size ratios between 1.5 and 1.8, and decreases for larger
values. For 3D tumblers, the maximum is obtained for size
ratios between 1.5 and 1.8 in experiments and between 1.5 and
2 in simulations. These nonmonotonic variations are analogous
to those observed experimentally in an annular shear cell where
the segregation time and the segregation rate both present an
extremum for a size ratio of 1.6 [25]. This is also related to
the variation of the segregation Péclet number, defined as a
segregation rate on a diffusive remixing, which shows a slight
maximum at 1.7 [37], or the variation of the force acting on a
tracer in 2D, which shows a maximum at 2 [29].

5. Slope angle

Several simulations are done for different slope angles of
the plane. For thin flows, positions h for tracers with small and
large size ratios show no dependency on the slope, i.e., on the
velocity of the flow [Fig. 22(a)]. On the contrary, when getting
close to the transition between surface and reverse depths (size
ratio between 4 and 6), h depends on the slope. The greater the
angle, the deeper the tracer stabilizes. This can be interpreted
by the fact that the flow being more rapid, it loses cohesion and
is less able to carry large and consequently heavy tracer.

In the case of a thicker flow, the equilibrium depth of the
tracer shows almost no dependency on the slope [Fig. 22(b)].
But, no size ratios between dt/d = 4 and 5 are presented
here: they do not present the usual rapid convergence to an
equilibrium depth. Further investigations are needed (ongoing
study on [52]).

The time evolution of a tracer depth z plotted for different
angles (22◦ to 25◦) shows that the tracer sinks more rapidly
when the slope is larger (Fig. 23 inset). However, trajectories
(depth z versus displacement along the flow x) for different
angles all superimpose (Fig. 23). This shows that the sinking of
a large tracer is due to successive geometrical reorganizations
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FIG. 22. Equilibrium depths of tracers in a 3D flow versus slope
(size ratios dt/d from 2 to 10). Flow thickness hmax = (a) 0.112 m,
(b) 0.223 m. Error bars show the standard deviation.

between particles. At higher slope, flow velocity and shear rate
are increased and reorganizations are more frequent: the tracer
sinks more rapidly (z vs t). The trajectories considered (in a
z-x space) all coincide independently of the flow rate (Fig. 23):
only the number of reorganizations plays a role. The slope of
the trajectories (compared to the rough incline) are constant
with the incline angle. The horizontal settling distances are
� 1800d for a size ratio dt/d = 10 and � 10 000d for dt/d =
5.5. This implies that the sinking velocities increase with the
incline slope. Note that in 2D, the trajectory slope is also
found constant for rough incline slopes from 17◦ to 23◦ and for
dt/d = 30. By contrast, if the shear rate is increased due to an
increase in flow thickness [Figs. 16(b) and 17], the downward
tracer velocities are nearly identical (giving parallel trajectories
in a z-t space) and the spatial trajectories do not match in
a z-x space [Fig. 16(b) inset]. In this case, the increase of
the flow thickness induces an increase in the shear rate and
in the frequency of reorganizations, but also an increase in
the normal stress, which reduces the downward velocity of
the tracer. Both mechanisms compensate to induce a constant
downward velocity. Note that the constant downward velocity
is also found in 2D for hmax = 36 and 24d and size ratios 20 and
30, even though fluctuations are large. To conclude, an increase
in the flow velocity has a different effect on the downward
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FIG. 23. Tracer trajectories (x−z plane) measured in small bead
diameters. dt/d = 10, hmax = 0.223 m (37d) and slope angles 22◦ to
25◦. Dashed lines show the free surface. A set of noisier trajectories are
plotted for comparison (size ratio dt/d = 5.5). Inset: time evolution
of the tracer depth (z−t).

motion of the tracer if coming from a slope or from a thickness
increase. Note that neither the constant velocity nor this type
of dependence with the traveled distance has been observed
when the trajectory variation is due to a change in tracer size
ratio. Choosing x instead of t in Figs. 9 and 10 does not give
any additional information.

6. Multiple-tracer flows on a 3D incline

In previous experiments, 10% volume fraction of tracers
was used [30]. To compare simulations and experiments, the
tracer fraction is numerically varied. This will also allow com-
parison between the segregation process and the stabilization
of one single tracer. The segregated position (also labeled h)
is the mean of the tracer positions once the flow has reached
the stationary regime.

The mean flow velocity v is measured for dt/d = 8 and
hmax = 0.223 m: it decreases by a factor 2 while the fraction
increases from one tracer (� 0.8%) up to a 5% (or to 10%)
volume fraction. As pointed out (Figs. 11 and 23), tracer
trajectory depths z vs time t cannot be compared for flows
having nonequal velocities, only stationary depths h can
be compared. For a full comparison of trajectories, z vs x

displacements should be used.
Figure 24 compares the trajectories of a single tracer and

of several tracers (5% and 10%) in the case of a thick flow
(hmax = 0.223 m �37d). Tracers are initially randomly placed.
The tracer trajectories reveal a succession of displacements:
horizontal displacements (the tracers cannot move downwards
due to the steric exclusion effect) alternated with downward
displacements (with a slope less steep than the case of a single
tracer). In the case of multiple tracers, the overall downward
displacement is slower than that of a single tracer. The depth
equilibrium position of the lowest layer in the case of multiple
tracers is rapidly identical to the depth of one single tracer. For a
10% volume fraction, three, then two, layers of tracers form in
the lower part the flow [Fig. 24(a)]. Successive down cascading
from one layer to another corresponds to an increase in the
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FIG. 24. Tracer trajectories z−x (in color) measured in small bead
diameters (d) in a 3D flow [hmax = 0.223 m (37d)] with (a) 10%,
(b) 5% of tracers (dt/d = 8). Trajectory (thick black) of an identical
single tracer released at the surface.

local fraction of the lowest layers. Very rare up-motions of
tracers are observed. For 5% volume fraction [Fig. 24(b)], the
downward slopes of a single tracer trajectory and of multiple-
tracer trajectories can even be comparable. Only one layer of
tracers is present at the end, whose depth is identical to that of
a single tracer.

First, the tracer fraction has no influence on the depth
of the lowest layer. Consequently, it is possible to compare
experimental and numerical data using the lowest numerical
trajectories, and the lowest experimental tracer depths. The
main effect of the increased fraction (5% or 10%) is the persis-
tence of a second, possibly a third, layer above the basal layer
of tracers which is full and cannot include any more tracers. For
this reverse segregation, there is an asymmetric upwards spread
of the tracer positions, with a position distribution maximum
at the lowest layer depth.

Second, the convergence to the final state of segregation is
longer to establish for 5% or 10% of tracers than for one single
tracer. Even though some individual downward velocities are
locally the same, it takes time for tracers to move from one
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FIG. 25. Trajectories (z−x) of a few tracers (10%, dt/d = 8)
in a 3D very thick flow (hmax = 100d) measured in small bead
diameters (d).

layer to another. Even though the global segregation pattern
is rapidly obtained (around 2000d–4000d), the distance of
convergence is so long (around 10 000d) that it is not reachable
in usual laboratory conditions. These values are to be compared
with experiments in channel with thicknesses from 28d to 45d,
and a surface pattern obtained at 70 cm [22]. Nevertheless, in
our simulations, the depth of the lowest trajectory is rapidly
defined for thick flows (Fig. 24). In our previous experiments,
flows and deposits sometimes presented a thickness larger than
37d. To see how such a thickness could affect the previous
results, one simulation is performed with hmax = 100d, 10% of
tracers and dt/d = 8 corresponding to an equilibrium reverse
depth (Fig. 25). The number of basal layers increases because
for a constant volume fraction, the number of tracers increases
with the flow thickness. As several layers of tracers develop
(instead of 2 or 3) and as tracers cascade between layers, the
time and the distance needed for convergence strongly increase
(Fig. 25). For experiments done with d = 300–400 μm parti-
cles, a distance of convergence of 100 000d requires a plane
of 35 m. Nevertheless, the results for hmax = 100d are similar
to those for 37d (Fig. 24): reverse segregation is obtained, the
bottom layer depth at 9d (equal to the single tracer depth),
and the formation of several layers of tracers. For larger size
ratios, we may expect shorter convergence times and distances
since a single larger tracer reaches its equilibrium depth faster
[Figs. 16(b) and 17, or 23].

Measurement of the segregated positions is made for 5% of
tracers, in a thick flow hmax = 0.223 m and for several size
ratios in an interval around the value 4.3, i.e., the reversal
transition of a single tracer position from surface to bottom
(Fig. 26). The segregated position of several tracers at a given
moment also presents a reversal, evolving from the surface to
intermediate depths, and then to reverse depths. The standard
deviation is small enough to consider that segregation occurs:
tracers are not spread all through the bed, but regrouped near the
mean position, especially for surface and reverse segregations.
We then quantitatively compare the results for a single tracer (h
is the mean on the trajectory) and for several segregated tracers,
and further down with experimental results on several tracers.
Except minor differences, the two curves are very close. For
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FIG. 26. Equilibrium depths versus size ratio in a 3D flow (hmax =
0.223 m) for a single tracer (blue open square), 5% of tracers (red
circle). Error bars show the standard deviation, but are only partly
representative of the vertical spread of individual tracer positions
which can be asymmetric, never higher than the surface or lower
than the reverse position (see Fig. 24).

small size ratios (� 4), mean depths are the same, but there is an
increase in standard deviation for several tracers. The deviation
includes both the trajectory fluctuations and the interaction
between tracers. For size ratios 4.2 � dt/d � 4.7, larger
standard deviations and an upshift of mean depths are observed
for several tracers, giving a smoother transition. For larger size
ratios (� 5), the upshift disappears, and only larger standard
deviations are observed for several tracers (note that for ratios
above 8, all beads fit in the lowest layer, giving the same
standard deviations as a single tracer). As the mean depth of a
single tracer and those of several tracers are almost identical, it
confirms the hypothesis that the segregation process for this
low fraction is a regrouping of near noninteracting tracers
at the same equilibrium depth because this depth depends
only on the size ratio. Studying a single tracer is valuable for
understanding the segregation phenomena for a low fraction of
tracers. With this low fraction, we observe successively surface
segregation, intermediate segregation, and reverse segregation
when increasing the size ratio. The reversal from surface
to bottom happens for a size ratio (around 4.5) similar to
the reversal size ratio for a single tracer (around 4.3). One
consequence of the smoother transition than for a single tracer
is the disappearance of the empty central region where no
single tracer stabilizes in a thick flow (Fig. 20). For these frac-
tions, there is a thick central layer of intermediate segregation.
In the case of multiple tracers, the segregation pattern organizes
in three layers (surface, intermediate, and reverse), very much
like the equilibrium depths of a single tracer in a thin flow.

7. Comparison with experiments in channel

Experiments were performed by the sudden release of 1
kg of an initially homogeneous mixture of glass beads with
10% of large tracers, in a 6 cm wide, 1 m long rough channel
inclined with a slope about 26.5◦ (more details in [30]). Flows

were observed to be 1 to 2 cm thick, with deposits aggraded
over 2 to 5 cm thick after the flow had been stopped by a
perpendicular wall, or by the change of slope to horizontal.
On cross sections of the deposit, the segregation pattern could
be separated in three main cases, depending on the size ratio:
(1) the small size ratios (1.75, 2, 2.14, 3.5) (resp. for tracer
diameter 0.35, 0.7 or 3, 1.5, 0.7 mm) for which all tracers were
at the surface with a small standard deviation, (2) the 4.3 ratio
(for 3 mm tracers) for which tracers were rather everywhere
(surface and inside), and (3) the large ratios (5.9, 8.6, 10.4, 10.7,
15, 21.4, 44) (resp. for tracer diameter 3, 3, 0.7, 7.5, 3, 7.5, 3
mm) for which tracers were found inside, with a small layer
free of tracers near the surface. Decrease in the mean position
of tracers and in their standard deviation was observed when
increasing the size ratio (for these dt/d � 4.3).

The three patterns agree with the three types of tracer mean
depth found in the simulations for several or for a single
tracer (Fig. 26). The upper limit of the transition between
surface and reverse segregations is experimentally found for
4.3. As this transition numerically occurs between 4.2 and 4.3
for one tracer and between 4.2 to 4.7 for 5% of tracers, the
agreement is very good. But, experimental standard deviations
are large, not only for ratio 4.3, but for all larger size ratios,
which is not observed in simulations at high size ratios.
Nevertheless, standard deviations decrease with the size ratio
in both experiments and simulations.

Three experiments were done with a wall to stop the flow
at various distances from the start (30, 60, and 90 cm). Tracers
were 3 mm, and small beads were 300–400 μm (size ratio
8.6). Tracers were found inside the deposit, with no major
differences in the segregation pattern. But, the mean depth
of tracers in a cross section taken at the same distance from
the end wall (for example at 10 cm) showed a slight decrease
passing from the 30 cm to the 60 cm and to the 90 cm
long experiment. The convergence to a final mean position
was still developing at the time when the flow stopped. We
conclude that all our experimental data, established for a 90 cm
traveling distance, do not concern a perfect stationary state.
This convergence distance is compatible with the simulations,
where a stationary state is not reached at 2500d (equivalent
to 90 cm) for flows of 37d (equivalent to 1.3 cm) (Fig. 24)
or of 100d (equivalent to 3.5 cm) (Fig. 25). The fact that
experimental standard deviations are larger than numerical
ones can be explained by this non-fully converged state. It
can also be explained by the use of 10% of tracers instead
of 5%. The decreases in the experimental mean depth and
standard deviation with increasing size ratios are compatible
with a better convergence towards the reverse position. This
better convergence is compatible with the faster migration of
one single tracer when increasing the size ratio [comparing
Figs. 16(b) and 17, or Fig. 23]. This also explains why reverse
segregation is experimentally nearly reached for the ratio 44,
despite a quite short channel.

In the simulations [Figs. 24(a) and 25], for traveling lengths
corresponding to experiments (90 cm = 2500d), tracers above
the first layer do not organize in superimposed layers like
those obtained at the end of the simulations. For such a short
flowing distance, the first bottom layer is well defined and
the second layer is in formation. The other layers are still
emerging and have not reached their final depth yet. Indeed,
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FIG. 27. Cross section of the deposit in a 1 m long and 6 cm wide
chute flow experiment. The flow is composed of glass beads: 90% of
300–400 μm and 10% of 3 mm.

in experiments, most sections presented tracers organized in
one bottom layer (Fig. 27), and sometimes in a blurred second
layer. Experimental measurements of this bottom layer depth
were done at a distance between 15 and 30 cm from the end
wall. We tried to avoid perturbations due to the collision with
the end wall and the possible local variations of the tracer
fraction near the flow front. For size ratios from 4.3 to 8.6,
the bottom layer depth was experimentally measured between
10d and 11.5d with randomness (and 13d for size ratio 15,
above our simulation range). These values are close to the 9d

to 10.2d values numerically found for size ratios from 5 to 12
(Fig. 18).

Even though the stationary stage has not been reached in our
experiments, experimental data reproduce well the existence of
the bottom layer and its depth, the reversal between surface and
reverse segregations, the variation of the associated standard
deviations, and the exact size ratio (dt/d = 4.3) for which
the reversal occurs. Moreover, the numerical study has shown
that experimental tracers settled inside (d � 5.9) correspond to
nonconverged states of reverse segregation at different degrees
of convergence.

Simulation and experiment results both show that the size
ratio 4.3 induces intermediate segregation of the tracers, for
which the spread of the experimental positions is maximum
(in addition, it is experimentally obtained for a non-fully con-
verged system). The result is a nearly homogeneous mixture.
This experimental spread of tracers all through the deposit is
compatible with the numerical results obtained for a converged
state: a quite large standard deviation combined with a mean
position at mid- height. But, longer times of convergence, and
effects coming from the increase in the tracer fraction up to
10%, might also be involved in the experimental process for
explaining the tracer spread. For that reason, the range of size
ratios around 4.3 needs further investigations. Nevertheless,
combining an intermediate segregation and an appropriate
tracer fraction could be a means to prevent any segregation
during a flow.

V. CONCLUSION

In 3D granular flows, the selection of an equilibrium depth
of a large tracer depends mainly on the size ratio between the
tracer and the small beads, and to a lesser extent on the nature

of the flow. Comparison between depths of single tracers and
mean depths of several tracers (3% to 10%) shows that the
stabilization of one tracer and the segregation process select
identical equilibrium depths. In that case, the segregation is
the regrouping of noninteracting large tracers at the same
equilibrium depth.

In a tumbler, a precise study of trajectories has shown
that the depth is established during the flowing phase and is
recorded in the static rotating part. The flow substratum is
a loose granular material whose boundary with the flowing
layer is difficult to define, but trajectories of the largest
size ratios seem to place tracers at the bottom of the flow.
Thus, surface positions, intermediate positions with deeper and
deeper depths toward reverse positions, are observed when
increasing the size ratio between the tracer and the small
particles. The transition between surface and reverse depths
is progressive, and a large range of tracer size ratios is found
to be at intermediate depths.

For all 3D flows down a rough incline, the reversal also
happens when increasing the size ratio. Two cases are clear:
positions near the surface, which correspond to tracers at the
surface, or to nonvisible tracers, just under the surface (surface
and intermediate depths), and positions of tracers floating at or
very close to the bottom (intermediate and reverse depths). The
existence of intermediate positions near half-height depends on
the flow thickness. For thick flows, the reversal between surface
and bottom positions is sharp, with no tracers stabilized around
mid-height. For thin flows, the reversal is progressive and
tracers stabilize at every intermediate depth inside the flow. We
conclude that, in 3D, the tracer position is also determined by
the type of substratum (solid or loose) and the flow thickness.

For multiple-tracer flows on 3D incline (5%–10%), the
three segregation patterns (surface, intermediate, reverse) are
observed when increasing the size ratio, corresponding to
the three types of depth stabilization of a single tracer. The
transition is smoother and happens at the same size ratio
(around 4.3) for simulations and experiments, corresponding
to single tracer reversal. But, reverse segregation is long to
establish, and a large spread in the positions remains over a long
traveling distance. During this travel, the flows (with size ratio
above 5) can be considered as nearly homogeneous, except near
their surface where only small particles are present. The inter-
mediate case (size ratio 4.3) remains almost homogeneous.
The choice of reverse and especially intermediate positions
could be an opportunity to maintain a homogeneous mixture
for usual industrial transfers. Further studies are needed to set
the precise parameter range where these processes can be used.

The case of 2D flows has been studied in tumblers and in-
clines. For small size ratios, the position of tracers relative to the
free surface behaves similarly in 2D and 3D, although deeper
positions are found for large size ratios in 3D. The dependency
of the stabilized depth on the size ratio is similar but weaker in
2D both in tumbler and on incline. Moreover, for the largest size
ratio tracers on 2D inclines, the reverse positions do not exist.
Tracers stabilize at intermediate positions near mid-height and
their position scales with the flow thickness contrarily to the
3D case. In 2D tumblers, the equilibrium position evolution
with size ratio is also weaker, with a shifted maximum, and
leads to an intermediate radial position of equilibrium for the
largest tracers. However, the position of these largest tracers
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does correspond to a reverse depth comparable to that of the
3D case, but this depth is obtained for larger size ratios than
in 3D. The difference between 2D and 3D, probably due to
a granular packing compacity difference, does not emerge in
all processes in the same manner. The highest care should be
taken before extrapolating results of studies between 2D and
3D cases.
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