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Triple-line kinetics for solid films

Ashwani K. Tripathi and Olivier Pierre-Louis*

Institut Lumière Matière, UMR No. 5306 Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne, France

(Received 29 September 2017; published 12 February 2018)

We present a derivation of the triple-line kinetic boundary conditions for a solid film in contact with a solid
substrate for both nonconserved (evaporation-condensation) and conserved (surface diffusion) dynamics. The
result is obtained via a matched asymptotic expansion from a mesoscopic model with a thickness-dependent
wetting potential (or disjoining pressure) and mobility. In the nonconserved case, we obtain a single boundary
condition, which relates the triple-line velocity with the deviation of the contact angle from its equilibrium value.
In the conserved case, two kinetic boundary conditions are needed. They relate the velocity and mass flux at
the triple line to the contact angle deviation and discontinuity of the chemical potential. These linear relations
are described by three kinetic coefficients. The conditions under which the kinetic coefficients remain finite are
obtained. We find, for example, that some kinetic coefficients diverge within the conserved model in the presence
of van der Waals interaction.
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I. INTRODUCTION

Wetting concepts play a key role in the understanding of
the morphologies of thin solid films emerging from crystal
growth or from solid-state dewetting. One central result in
liquid wetting is the Young-Dupré equilibrium contact angle
condition at the triple line

γ̄ cos θeq = γSV − γSF, (1)

where γSV, γSF, and γ̄ are the surface energy densities of
substrate-vapor, substrate-film, and film-vapor interfaces, re-
spectively. The nonequilibrium deviation from this relation
has been a central issue in the study of liquid spreading and
dewetting [1,2]. Indeed, this question appears to be critical for
hydrodynamic theories due to the divergence of viscous dissi-
pation at the triple line [3], which leads to a large contribution to
dissipation localized at the triple line (this divergence must be
cured by some microscopic cutoff in order to allow for triple-
line motion). In order to account for this triple-line dissipation,
a deviation from the equilibrium Young-Dupré equation (1)
with a kinetic coefficient k has been proposed [1,2],

v = k(cos θeq − cos θ ), (2)

where v is the triple-line velocity and θ is the actual contact
angle. It is therefore natural to ask if similar deviations from
the equilibrium contact angle condition may be observed
for solid films. Indeed, experimental studies have reported
deviations from the equilibrium contact angle not only in
liquid films [1,4–7], but also at triple junctions between grains
in polycrystalline materials [8,9], a system which is closer
to thin solid films. Our goal in this paper is to derive kinetic
boundary conditions which describe the nonequilibrium
behavior of the triple line for solid-state thin films.

Several modeling approaches have already been developed
to study morphological changes in solid films, such as Mullins’
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continuum models for evaporation-condensation or surface
diffusion [10,11], a strongly anisotropic surface diffusion
model [12], phase field models [13], or kinetic Monte Carlo
models [14,15]. Continuum models usually assume a fixed
contact angle at the triple line, except for that in Ref. [16],
where a nonequilibrium relation similar to Eq. (2) was pro-
posed, allowing for the relaxation of the triple-line contact
angle. This condition improves the stability of numerical mod-
eling of solid-state dewetting. However, the physical relevance
or microscopic interpretation of the related mobility remains
an open question.

Our analysis is based on a mesoscopic model generalizing
Mullins’ model [17] with a thickness-dependent free-energy
density. The thickness-dependent part of the free energy is
called the wetting potential and its derivative with respect to the
thickness is the disjoining pressure. Similar models have also
been used in the case of liquid films [1,2,18–21]. The profile
of the wetting potential can be tuned so as to obtain complete
wetting or partial wetting [1,22]. For example, solid films
exhibiting complete wetting correspond to a monotonically
decreasing wetting potential. Such a wetting potential has been
used to enforce the presence of a continuous wetting layer in the
case of unstable films with a destabilization originating from
faceting instabilities [23] or heteroepitaxial elastic strain [24].
The case of partial wetting, where the wetting potential exhibits
a negative minimum, has also been studied in solid films to
describe the formation of holes [25] or Ostwald ripening of
solid nanoislands [26].

Our strategy is to start with a generalized mesoscopic model
including not only a thickness-dependent free energy, but also
a thickness-dependent mobility. Using this model, we perform
an asymptotic matched expansion assuming a separation of
scales between the scale of the triple-line region, where the
wetting potential and mobility vary, and a larger scale related
to the variations of film and substrate profiles. The expansion
procedure is similar to that used to obtain boundary conditions
in phase field models [27] and especially in the presence of
space-dependent kinetics in the interface region [28].
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We consider both nonconserved (evaporation-
condensation) and conserved (surface diffusion) dynamics.
In the nonconserved case, our results lead to a boundary
condition similar to Eq. (2) with one kinetic coefficient
describing the deviation of the contact angle. However, there
are two boundary conditions in the conserved case, involving
the departure of the contact angle from its equilibrium value
and the mass flux through the triple line. This leads to three
kinetic coefficients.

We obtain explicit expressions for the kinetic coefficients
both in the nonconserved and in the conserved cases. These
expressions provide strong conditions on the convergence of
the wetting potential and mobility to their asymptotic values for
large thicknesses in order to ensure the finiteness of the kinetic
coefficients. These conditions are not necessarily satisfied in
all physical systems. For example, in the conserved case, some
kinetic coefficients diverge when the dominant contribution to
the wetting potential is the usual van der Waals interaction.

We use the example of solid-state dewetting dynamics from
a straight film edge to check quantitatively our results. This
process occurs when a thin film is heated below melting to
a sufficiently high temperature where either evaporation or
surface diffusion is activated [10,29,30]. Surface-diffusion-
limited dewetting has been observed in many experiments such
as Si/SiO2 [31–36], Ni/MgO [12,29,37], Au on fused silica
[38], or Cu on sapphire [39].

The paper is organized as follows. In Sec. II, we discuss
the equilibrium morphology of the film and the corresponding
boundary condition at the triple line. In Sec. III, we present
the nonconserved model and derive the corresponding triple-
line kinetic boundary condition. In Sec. IV, we perform a
similar analysis starting from the conserved model (the details
of the derivation in this case are reported in Appendix A).
Section V discusses the physical implications of our results.
We summarize the results in Sec. VI.

II. SURFACE FREE ENERGY AND EQUILIBRIUM SHAPE

We consider a one-dimensional model with a surface free
energy which is isotropic but which depends upon the thickness
h of the film

F =
∫

ds γ (h), (3)

where γ (h) is the surface energy density of the film and ds =
[1 + (∂xh)2]1/2dx is the surface arc-length element. We rewrite
the surface free energy as

γ (h) = γ̄ + w(h), (4)

where γ̄ is the asymptotic surface energy of the film for
large h, so that w(h) → 0 as h → ∞. The deviation from
this asymptotic value, denoted by w(h) and called the wetting
potential, arises due to various physical effects such as breaking
of interatomic bonds extending farther than nearest neighbors,
structural effects, electrostatic effects, and van der Waals
interactions [22,40,41]. Here we consider that the substrate
corresponds to a well-defined stable state. This state can
correspond to a wetting film or to a bare substrate with an
adsorbate layer, as discussed, e.g., in Ref. [26]. The variation
of w(h) with film thickness is shown in Fig. 1.

FIG. 1. Wetting potential as a function of film thickness in the
case of partial wetting. By convention, the origin of heights (h = 0)
corresponds to the substrate equilibrium height at the minimum of w.

Under the constraint that the total number of particles N in
the film is conserved, with

N = 1

�

∫
dx h, (5)

the equilibrium shape of the film is obtained from the mini-
mization of the Gibbs free energy G = F − μeqN , where μeq

is the chemical potential of the film and � is the atomic volume.
This leads to the equilibrium equation μeq = μ, where μeq is
a constant and

μ

�
= γ (h)κ + γ ′(h)

[1 + (∂xh)2]1/2
, (6)

where γ ′(h) denotes the derivative of γ (h) with respect to h

and

κ = − ∂xxh

[1 + (∂xh)2]3/2
(7)

is the surface curvature.
On the substrate side far from the triple line, the height

is constant and equal to hsub. Thus, Eq. (6) leads to μeq =
�γ ′(hsub). In addition, far from the substrate on the side where
the film is thick, we have γ (h) ≈ γ̄ , so Eq. (6) reads μeq =
�γ̄ κ . Thus, the equilibrium profile far from the substrate is an
arc of a circle with a radius R = 1/κ = �γ̄ /μeq obeying

hisl(x) = hm + (R2 − x2)1/2 − R, (8)

where hm is the height at the apex of the island. Furthermore,
rewriting Eq. (6) as

∂x

(
γ (h)

[1 + (∂xh)2]1/2

)
= μeq

�
∂xh (9)

and integrating along x, we obtain the condition of balance of
the film tensions [1,22]

γ (hsub) − μeq

�
hsub = γ (h)

[1 + (∂xh)2]1/2
− μeq

�
h. (10)

Using this condition at the top of the island, we find an equation
that determines hm,

γ (hsub) − μeq

�
hsub = γ̄ − μeq

�
hm. (11)
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We now wish to write the boundary condition at the triple line.
We choose by convention to define the triple-line position as
xTL. The location of xTL is a priori arbitrary, but should be in the
triple-line region. We also define θTL as the extrapolation of the
orientation angle θ = arctan(∂xh) of the macroscopic equilib-
rium island profile at the triple line: θ

eq
TL = arctan[∂xhisl(xTL)].

Combining the relation cos θ = (R2 − x2)1/2/R in the island
profile with the previous expressions, we obtain

γ̄ cos θ
eq
TL − γ (hsub) = μeq

�
[h]TL, (12)

where [h]TL = hisl(xTL) − hsub is the possible discontinuity in
the film thickness when approaching the triple line from the
island and substrate sides with the macroscopic profiles.

If we prescribe a definition of the triple-line position such
that the discontinuity [h]TL vanishes, then from Eq. (12) we
obtain the contact angle relation

γ̄ cos θ
eq
TL = γ (hsub) = γ̄ + w(hsub). (13)

If in addition the radius R of the island is large, then the chem-
ical potential μeq = �γ̄ /R is small. Since μeq = �γ ′(hsub),
we also expect that γ ′(hsub) = 0, i.e., that the substrate height
is at the minimum of the wetting potential. By convention, this
minimum is at h = 0, as shown in Fig. 1, and we obtain the
Young-Dupré law for large islands

γ̄ cos θeq = γ (0) = γ̄ + w(0). (14)

Comparison with Eq. (1) therefore imposes that w(0) = γSV −
γSF − γ̄ , i.e., w(0) is equal to the usual spreading coefficient
[1]. When the wetting potential exhibits a minimum of moder-
ate depth 0 > w(0) > −2γ̄ , then Eq. (14) indicates that there
is a well-defined contact angle 0 < θ∞

eq < π . This situation,
called partial wetting, will be assumed in the following.

III. EVAPORATION-CONDENSATION DYNAMICS

A. Model equations

The first dynamical model describes evaporation or the
growth process of a solid film in contact with a three-
dimensional vapor phase. Following Mullins [17], the normal
velocity vn of the film profile is given by

vn = m
(μc

�
− μ

�

)
, (15)

where m is the transport coefficient or mobility, μc is the
chemical potential of the vapor phase, and μ is the space-
dependent local chemical potential of the film, given by Eq. (6).
The rate of change of film thickness ∂th is related to vn as

vn = ∂th

[1 + (∂xh)2]1/2
. (16)

For the sake of simplicity, we consider the small slope limit
∂xh � 1, or θ � 1. Then, as a consequence of Eq. (14), we
also have w(h) � γ̄ . Therefore, Eq. (15) now reads

∂th = m(h)
(μc

�
+ γ̄ ∂2

xh − w′(h)
)
, (17)

where m(h) indicates explicitly the dependence of the mobility
on the film thickness.

B. Kinetic boundary conditions

1. Matched asymptotic expansion

In this section, we obtain a kinetic boundary condition
starting from Eq. (17). In order to perform the asymptotic
expansion, we define a small length scale ε which is of the
order of the range of the wetting potential w(h) and the mobility
m(h) and small as compared to the typical thickness of the film
h̄. The dependence of w(h) and m(h) on ε is made explicit via

w(h) = W (h/ε), m(h) = M(h/ε), (18)

where W and M do not depend on ε. In the limit of large
thicknesses h � ε, we assume that W (h/ε) → W (∞) = 0
and M(h/ε) → M(∞), where M(∞) is a constant (we also
assume that all the derivatives of W and M vanish as h � ε

for definiteness, indicating that W and M are smooth regular
functions). Using Eq. (18), we rewrite Eq. (17) in a way which
makes the dependence on ε explicit:

∂th = M(h/ε)

(
μc

�
+ γ̄ ∂2

xh − 1

ε
W ′(h/ε)

)
. (19)

In order to obtain an effective boundary condition by means
of an asymptotic matched expansion, we divide the full film
surface into three regions.

(a) Island region. This corresponds to the region of film
where the effect of the wetting potential is negligible. We
expect that the length-scale of variation in this region is of
O(ε0), i.e.,

x ∼ O(ε0), h ∼ O(ε0). (20)

We also make the dependence of h on ε explicit by using the
notation h(x,t ; ε).

(b) Substrate region. This is the region far from the triple
line where there is no island. We define the following scaling
ansatz in this region:

x = χ, h(x,t ; ε) = εH(χ,t ; ε). (21)

(c) Triple-line (TL) region. This corresponds to the region
between the film and the substrate. The length scale of variation
in this region is set by ε, suggesting the following ansatz:

x = xTL + εX, h(x,t ; ε) = εH (X,t ; ε). (22)

As an important remark, we note that these definitions corre-
spond to a reference frame with a vanishing triple-line position
XTL = 0 in the TL region.

A schematic picture of these three regions is shown in Fig. 2.
In the three regions, Eq. (19) can be written as

∂th − v∂xh = M(∞)
[μc

�
+ γ̄ ∂2

xh(x,t)
]
, (23)

ε2∂tH − εv∂XH = M(H )
[
ε
μc

�
+ γ̄ ∂2

XH − W ′(H )
]
, (24)

ε2∂tH− ε2v∂χH = M(H)
[
ε
μc

�
+ γ̄ ε2∂2

χH−W ′(H)
]
, (25)

where equations are written in the coordinate system comoving
with the triple line with a velocity v = ẋTL. Furthermore, the
matching condition between the triple-line and island regions
is given by

h(xTL + εX,t ; ε) = εH (X,t ; ε) (26)
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FIG. 2. Schematic showing the division of the full film profile into
substrate, triple-line, and island regions. The dashed line indicates the
equilibrium substrate height.

as X → +∞ and ε → 0 with εX → 0+. Similarly, the match-
ing condition between the substrate and TL regions is given by

H (X,t ; ε) = H(χTL + εX,t ; ε) (27)

as x → −∞, ε → 0, and εX → 0−.
We expand the film profile in the three regions as follows:

h(x,t ; ε) = h0(x,t) + εh1(x,t) + ε2h2(x,t) + · · · , (28)

H (X,t ; ε) = H0(X,t) + εH1(X,t) + ε2H2(X,t) + · · · , (29)

H(χ,t ; ε) = H0(χ,t) + εH1(χ,t) + ε2H2(χ,t) + · · · . (30)

We also formally expand the triple-line velocity as

v = v0 + εv1 + ε2v2 + · · · . (31)

The matching condition between the TL and island regions
[Eq. (26)] is then expanded using Eqs. (28) and (29). Up to
third order, the expanded matching conditions are given by

h0(xTL) = 0, (32)

H0(X,t) = X∂xh0(xTL) + h1(xTL), (33)

H1(X,t) = X2

2
∂2
xh0(xTL)

+X∂xh1(xTL) + h2(xTL), (34)

H2(X,t) = X3

6
∂3
xh0(xTL) + X2

2
∂2
xh1(xTL)

+X∂xh2(xTL) + h3(xTL), (35)

H3(X,t) = X4

24
∂4
xh0(xTL) + X3

6
∂3
xh1(xTL)

+X2

2
∂2
xh2(xTL) + X∂xh3(xTL)

+h4(xTL). (36)

Similarly, the matching condition between the TL and substrate
regions [Eq. (27)] is expanded as

H0(X,t) = H0(χTL), (37)

H1(X,t) = X∂χH0(χTL) + H1(χTL), (38)

H2(X,t) = X2

2
∂2
χH0(χTL) + X∂χH1(χTL)

+H2(χTL), (39)

H3(X,t) = X3

6
∂3
χH0(χTL) + X2

2
∂2
χH1(χTL)

+X∂χH2(χTL) + H3(χTL). (40)

2. Far-field behavior

The evolution equation in the film region [Eq. (23)] does
not depend explicitly on ε. As a consequence, it is not affected
by the expansion. However, there is an explicit dependence on
ε for the far-field evolution equation in the substrate region
[Eq. (25)]. We therefore expand this equation using Eq. (30).
To zeroth order we obtain

M(H0)W ′(H0) = 0. (41)

Assuming that the mobility is nonzero, and since the minimum
of W is located at H = 0, this relation implies that H0 = 0.
Similarly to first order in ε, we find

M(H0)
[μc

�
− W ′′(H0)H1

]
= 0, (42)

which gives the first-order contribution to the substrate profile

H1 = μc

�W ′′(0)
. (43)

Note that the dynamics of the substrate profile appears only to
higher order in ε, as seen from the prefactor ε2 of the terms on
the left-hand side of Eq. (25).

3. The TL region: Preamble to the expansion

We now focus on the TL region. Before performing the order
by order expansion of the profile in the TL region, we write
down an additional relation that will be useful in the following.
For this purpose, we multiply Eq. (24) by ∂XH and integrate,
leading to

ε2
∫ X+

X−

∂tH∂XH

M(H )
dX − εv

∫ X+

X−

(∂XH )2

M(H )
dX

= ε
μc

�
[H (X+) − H (X−)] − [U (X+) − U (X−)], (44)

where X± are two points in the TL region. In addition, we have
defined the normalized quantity

U (X) = − γ̄

2
(∂XH )2 + W (H ), (45)

which corresponds in physical coordinates to

u(x) = − γ̄

2
(∂xh)2 + w(h). (46)

4. Zeroth order in the TL region

To zeroth order, Eq. (24) leads to

M(H0)
[
γ̄ ∂2

XH0 − W ′(H0)
] = 0. (47)

In the limit X → −∞, using the matching condition (37), we
obtain

W ′[H0(χTL)] = 0, (48)
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which implies that H0(χTL) = 0. This is consistent with the
far-field behavior on the substrate, as discussed above. To this
order, Eq. (44) reads

U0(X+) − U0(X−) = 0, (49)

with

U0(X) = − γ̄

2
(∂XH0)2 + W (H0). (50)

Taking the limits X+ → +∞ and X− → −∞ and using the
matching conditions (33) and (37), we obtain

γ̄

2
[h′

0(xTL)]2 = W (∞) − W (0), (51)

where W (∞) = 0, by definition, and h′
0(xTL) = ∂xh0(xTL)

defines the slope of the film profile at the triple line. We will
use similar notation for the other derivatives in the following,
such as h′′

0(xTL) = ∂2
xh0(xTL). Within the small slope limit,

1
2 [h′

0(xTL)]2 = 1
2 tan2 θeq ≈ 1

2θ2
eq ≈ 1 − cos θeq. (52)

Therefore, Eq. (51) is equivalent to the Young-Dupré equations
(1) and (14). As a summary to zeroth order, the contact line
is stationary and the contact angle is equal to its equilibrium
value.

5. First order in the TL region

The first-order contribution to Eq. (24) is

−v0∂XH0 = M(H0)
[
γ̄ ∂2

XH1 − W ′′(H0)H1 + μc

�

]
+M ′(H0)H1

[
γ̄ ∂2

XH0 − W ′(H0)
]
. (53)

From Eq. (47), the last term in Eq. (53) vanishes. In the limit
X → +∞, using the matching conditions (33) and (34) and
the relation W ′′(∞) = 0, we find

−v0h
′
0(xTL)

M(∞)
= −μ1(∞)

�
+ μc

�
. (54)

The first term on the right-hand side is the first-order contri-
bution to the chemical potential in the island region, μ1(∞) =
−�γ̄h′′

0(xTL). Similarly, the X → −∞ limit leads to

μc

�
− W ′′(0)[XH′

0(χTL) + H1(χTL)] = 0. (55)

Both the constant term and the diverging term must vanish. As
a consequence, H′

0(χTL) = 0 and we find μc = μ1(−∞) =
�W ′′(0)H1(χTL), which is consistent with Eq. (43).

The kinetic boundary condition arises from Eq. (44) to first
order

−v0

∫ X+

X−

(∂XH0)2

M(H0)
dX = μc

�
[H0(X+) − H0(X−)]

−[U1(X+) − U1(X−)], (56)

where U1(X) is given by

U1(X) = −γ̄ (∂XH0)(∂XH1) + W ′(H0)H1. (57)

In the limits X+ → +∞ and X− → −∞, we obtain

v0

∫ +∞

−∞

(∂XH0)2

M(H0)
dX = [U1]+∞

−∞ − μc

�
[H0]+∞

−∞, (58)

where [A]+∞
−∞ denotes the difference of A calculated in island

and substrate regions. At this stage, Eq. (58) involves diverging
contributions, both on the left-hand side and on the right-hand
side However, these diverging contributions cancel.

In order to see how these cancellations occur, we write
the diverging contributions explicitly. Using the matching
conditions in the island and substrate regions, we have

[U1]+∞
−∞ = −γ̄ X+h′

0(xTL)h′′
0(xTL) + [Ũ1]+∞

−∞, (59)

with X+ → +∞, where

[Ũ1]+∞
−∞ = −γ̄ h′

0(xTL)h′
1(xTL) (60)

represents the nondiverging part of [U1]. Similarly,
μc

�
[H0]+∞

−∞ = μc

�
X+h′

0(xTL) + μc

�
[H̃0]+∞

−∞. (61)

We also rewrite the left-hand side of Eq. (58) as

v0

∫ +∞

−∞

(∂XH0)2

M(H0)
dX

= v0

∫ +∞

−∞

[
(∂XH0)2

M(H0)
− 
(X)

[h′
0(xTL)]2

M(∞)

]
dX

+ v0X+[h′
0(xTL)]2

M(∞)
, (62)

where we have defined the Heaviside function 
(X) = 1 when
X > 0, and 
(X) = 0 otherwise. Using Eq. (54), we see that
the diverging term proportional to X+ in Eq. (62) cancels with
those coming from Eqs. (59) and (61), and finally Eq. (58)
leads to

v0Lv = [Ũ1]+∞
−∞ − μc

�
[H̃0]+∞

−∞, (63)

where the kinetic coefficient Lv is given by

Lv =
∫ +∞

−∞

[
(∂XH0)2

M(H0)
− 
(X)

[h′
0(xTL)]2

M(∞)

]
dX. (64)

6. The TL boundary condition

Combining the zeroth- and the first-order contributions, viz.,
Eqs. (49) and (63), we obtain the kinetic boundary condition
up to first order

vLv = [u]TL − μc[h]TL, (65)

where

Lv = εLv. (66)

In addition, the discontinuity of any quantity y at the triple line
extrapolated from the far-field profiles and in physical variables
is denoted by [y]TL. Here, for example,

[u]TL = [Ũ ]+∞
−∞ = [Ũ0]+∞

−∞ + ε[Ũ1]+∞
−∞ + O(ε2). (67)

The triple-line position is arbitrary in our expansion; it
can be placed anywhere in the TL region. Let us also recall
that, by convention, we have defined the location of the triple
line at X = 0 in the TL region. Since the contact angle is
fixed at equilibrium, it is tempting to use the surface slope as
an effective order parameter reaching asymptotically constant
values in the substrate and island regions at equilibrium. Using
this analogy, we define the triple-line position via a Gibbs
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dividing surfacelike criterion. Using ∂XH0 for the surface
slope, we obtain∫ +∞

−∞
[∂XH0 − 
(X)h′

0(xTL)]dX = 0. (68)

Integrating this equation by parts we find

[H̃0]+∞
−∞ = 0. (69)

An intuitive graphical representation of this criterion is shown
in Fig. 4(b). The triple-line position corresponds to the point
where the linear extrapolations of the far-field profiles in the
island and in the substrate regions meet. As a consequence of
Eq. (69), we have [h]TL = 0 to leading order and Eq. (65) reads

vLv = [u]TL. (70)

This is the form of the kinetic boundary condition that will be
used for further discussion and in the numerical analysis.

It is also useful to rewrite the kinetic coefficient Lv via a
change of variable to eliminate the variable X. Using Eq. (49),
we rewrite Eq. (64) as

Lv =
∫ H 0

TL

0

21/2[W (H0) − W (0)]1/2

γ̄ 1/2M(H0)
dH0

+
∫ +∞

H 0
TL

dH0 21/2

γ̄ 1/2[W (H0) − W (0)]1/2

×
[
W (H0) − W (0)

M(H0)
− W (+∞) − W (0)

M(+∞)

]
, (71)

where H 0
TL is the thickness of the film at the triple line to zeroth

order. Using the Gibbs criterion (68), we obtain

H 0
TL +

∫ +∞

H 0
TL

[
1 −

(
W (∞) − W (0)

W (H0) − W (0)

)1/2]
dH0 = 0. (72)

Using this equation, one can determine H 0
TL once the form of

the wetting potential is known.
The first integral in Eq. (71) always converges when the

substrate mobility is nonzero [42]. However, the finiteness of
the second integral of Eq. (71) depends on the convergence
of the wetting potential W (H ) and surface mobility M(H ) to
their asymptotic values at large H . Consider that W (H ) and
M(H ) converge to their corresponding far-field values as

W (H ) = W (∞) + δW (H ), (73)

M(H ) = M(∞) + δM(H ), (74)

where δW (H ) and δM(H ) → 0 as H → +∞. Substituting
these expressions in the second integral of Eq. (71), we find
that Lv is finite only when δW and δM decrease faster than
1/H . Note also that Eq. (72) implies that the triple-line position
is also only defined when δW decreases faster than 1/H .

For most of the physical systems, the long-range behavior
of the wetting potential is dominated by van der Waals
interactions [41] with W (H ) ∼ 1/H 2, leading to a finite
value of Lv . However, some debated works in metal films
have suggested the possibility that W ∼ 1/H due to electron
confinement [22,43–45]. A contribution W ∼ 1/H would also
be present for an isolating film within a charged capacitor [46].

FIG. 3. Surface mobility as a function of film thickness for the
four cases discussed in the text. The values of the parameters p1 and
p2 for cases 3 and 4 are reported in Table I.

Concerning the mobility M(H ), we found no prediction of its
possible dependence on the film thickness in the literature.

C. Numerical simulations

1. Nonconserved dewetting

In this section, we present numerical simulations of the
nonconserved model (17). Our main purpose is to check the
validity of the kinetic boundary condition (70). We use an
exponentially decaying wetting potential

w(h) = A1e
−h/h0 − A2e

−h/2h0 , (75)

where h0 determines the range of the potential. The parameters
A1 and A2 can be determined from two conditions. First,
the wetting potential is minimum at the substrate w′(0) = 0.
Second, the equilibrium contact angle is imposed, leading to
the condition γ (+∞) cos θeq = γ (0). We then have

A1 = γ̄ (1 − cos θeq), A2 = 2A1. (76)

We consider θeq = 10◦, which ensures that the assumption of
small slopes is satisfied, and h0 = 0.05.

For the purpose of our numerical computations, it is conve-
nient to define the mobility as a function of the wetting potential
w(h). We consider four different forms for the mobility m(h).
In the first case (case 1), the mobility is constant everywhere:
m(h) = 1. In the second case (case 2), the mobility is defined
so as to decrease strongly in the triple-line region

m(h) = 1 − w′(h)

β + w′(hTL)
, (77)

where β is a small positive number. In the last two cases,
we consider an asymmetric form of mobility, which has two
different constant values in the far-field regions

m(h) = p1 + p2
w(h) − w(0)

w(∞) − w(0)
. (78)

The parameters p1 and p2 can be chosen to obtain a higher
mobility in the film region (case 3) or in the substrate region
(case 4). The plots of mobility for these cases are shown in
Fig. 3 with the parameters specified in Table I.

We chose to study the dewetting process of a thin film
from a straight film edge. Assuming a constant contact angle,
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TABLE I. Kinetic coefficient Lv calculated using Eq. (71) for the
four cases discussed in the text.

Case Mobility Parameters Lth
v

1 M(h) = 1.0 −0.0174
2 Eq. (77) β = 0.001 0.218
3 Eq. (78) p1 = 0.1, p2 = 0.9 0.0128
4 Eq. (78) p1 = 1.0, p2 = −0.9 −0.535

Srolovitz and Safran [10] predicted a steady-state motion of
the triple line with a constant velocity. We consider μc = 0
and a stepped initial profile defined as

h(x,0) = h̄

[
1

e(−x+x1)/a + 1
+ 1

e(x−x2)/a + 1
− 1

]
, (79)

where h̄ is the initial thickness of the film, a is the initial width
of the steps, and x1 and x2 are the positions of the steps with
x2 > x1. In our simulation, we have used a = 1 and h̄ = 10 �
h0 ∼ ε to ensure a good separation of scales between the film
region and the triple line.

2. Numerical methods

We use periodic boundary conditions and a pseudospectral
method to solve Eq. (17) [47,48]. For this purpose, we rewrite
Eq. (17) as

∂th = L[h] + N [h], (80)

where L[h] and N [h] represent the linear and nonlinear parts
in h:

L[h] = γ̄ ∂2
xh,

(81)

N [h] = m(h)
{μc

�
+ γ̄ ∂2

xh − w′(h)
}

− γ̄ ∂2
xh.

We take the Fourier transform of Eq. (80), which gives the
following equation for a given mode q in Fourier space:

∂t h̃(q,t) = L̃(q)h̃(q,t) + Ñ [h̃(q,t)]. (82)

In the simulations, we work in Fourier space and we update
h̃(q,t) at each time step. To calculate the Fourier transform of
the first term in the nonlinear part N [h], we first calculate the
inverse Fourier transform of the term inside the curly brackets.
Then we multiply it by m(h) and take the Fourier transform of
the resulting term.

We use two different time stepping methods. The first
method is the implicit Euler method [49]. In this method,
the linear part is calculated at the advanced time step t + t ,
whereas the nonlinear part is calculated at time t . This method
corresponds to the following iterative scheme for Eq. (82):

h̃(q,t + t) = h̃(q,t) + tÑ[h̃(q,t)]

1 + L̃(q)t
. (83)

Simulations are performed on a lattice of grid size N =
217, with grid spacing x = π/128 and with the time step
t = 0.01. Fourier transforms are calculated via fast Fourier
transform technique using the FFTW3 package [50].

FIG. 4. Numerical simulation of the nonconserved model for μc = 0. (a) Time evolution of the film profile in the constant mobility case
(case 1). (b) Schematic of the fitting procedure to find the triple-line position. The black solid curve represents the film profile. Blue and red
curves are the functions in the island and substrate regions obtained by the fitting of the film profile in the fitting intervals FitS and FitF,
respectively. Also shown is the time evolution of (c) the triple-line position xTL, (d) the triple-line velocity v, and (e) the thermodynamic force
[u]TL. The four different cases correspond to four different forms of the mobility defined in the text. (f) Variation of the kinetic coefficients as
a function of the center of the fitting region on the film side. The kinetic coefficients are normalized with respect to the theoretical prediction.
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The second method is an exponential time differencing
method where time stepping is performed using a second-order
Runge-Kutta method (allowing for large values of t). The
iterative scheme for this method is discussed in Ref. [51]. The
comparison of these two different methods allows us to check
that the results are free from numerical artifacts.

3. Results

Figure 4(a) shows the evolution of film profile for a constant
mobility. The film profile evolves through the evaporation of
mass near the triple line. Due to the curvature of the film edge,
the triple line recedes. Similar evolutions have been observed in
the other three cases. However, the evolution becomes slower
in the case where the mobility is small in the island region
(case 4).

In order to calculate various quantities at the triple line, we
determine the triple-line position from a fit of the film profile in
the island and substrate regions using a quadratic function a +
bx + cx2. The point of intersection of the extrapolation of these
fits in the triple-line region gives the triple-line position [see
Fig. 4(b)]. Figure 4(c) shows the time evolution of the triple-
line position for the four above-mentioned cases of mobility.
The plot of xTL as a function of time is close to linear; in other
words, the triple-line velocity is varying slowly with time as
shown in Fig. 4(d).

To calculate the thermodynamic force [u]TL, we again fit the
numerical data for u in the island and substrate regions with
the quadratic function a + bx + cx2. The discontinuity of the
extrapolated values of u at the triple-line position provides
[u]TL. The time evolution of [u]TL is shown in Fig. 4(e). The
kinetic coefficient Lv is then calculated using Eq. (70) from
the ratio between [u]TL and v.

Our results are sensitive to the choice of fitting interval in
the island region. In order to make this dependence explicit, we
consider fitting intervals of the form hc − 0.1 < h < hc + 0.1,
for different value of hc, and calculate Lv in each case.
Figure 4(f) shows the variation of Lv/Lth

v with hc, where Lth
v is

calculated using the prediction of Eq. (71). For values of hc that
are too close to the triple line, the fitting interval encroaches
on the TL region, thereby making the fit less accurate. Indeed,
we observe the decrease of Lv in all cases for small hc. In
contrast, as hc moves away from the triple line, the macroscopic
curvature of the film leads to a deviation of the slope from its
expected value close to the triple line. Globally, the kinetic
coefficients obtained from simulations are in good agreement
with the theoretical prediction (71) when hc is roughly 5–10
times the potential width h0. The accuracy of Lv is then
between 5% and 20%.

IV. SURFACE DIFFUSION DYNAMICS

A. Model equations

We now focus on the case of surface diffusion. Following
the same strategy as in the nonconserved case, we use a
generalization of the Mullins surface diffusion model [17]
which accounts not only for a thickness-dependent interface
energy [26,40,41], but also for a thickness-dependent mobility.

In this model, mass conservation impose that the normal
velocity vn can be written as the divergence of a surface flux.

For the sake of simplicity, we write the model in one dimension

vn = −∂sj, (84)

where s is the arc length along the surface. The mass flux j

is proportional to gradients of chemical potential through the
constitutive relation

j = −b(h)∂s

μ

�
, (85)

where b(h) is the surface mobility. Substituting this expression
in Eq. (84), we obtain

1

[1 + (∂xh)2]1/2

∂h

∂t
= ∂s

[
b(h)∂s

μ

�

]
, (86)

where the local chemical potential is defined via Eq. (6).
This model exhibits the same equilibrium properties as the
nonconserved model characterized by a constant chemical
potential μ and discussed in Sec. II. Also, following the same
lines as in the nonconserved case, we use the small slope limit
∂xh � 1, leading to

∂h

∂t
= ∂x

{
b(h)∂x

[ − γ̄ ∂2
xh + γ ′(h)

]}
. (87)

B. Kinetic boundary condition

1. Matched asymptotic expansion

Assuming again that the mobility and the potential vary on
a scale h ∼ ε, we rewrite Eq. (87) using Eqs. (18) as

∂th = ∂x

[
B(h/ε)∂x

(
−γ̄ ∂xxh + 1

ε
W ′(h/ε)

)]
. (88)

The procedure of the matched asymptotic expansion is then
similar to that used in the nonconserved case. However, there
is an important difference. Indeed, we now assume

x = χ/ε, h(x,t) = ε2H(χ,t). (89)

As compared to the choice used in the nonconserved case,
such an expansion assumes smaller amplitudes and larger
wavelengths for the deviations of the substrate profile from
the minimum of the wetting potential. An inspection of the
asymptotic expansion with the same scaling ansatz as in the
nonconserved case (21) shows that the kinetic coefficients
would then depend not only of H0, but also on H1. Since H1

varies from one physical situation to the other, these kinetic
coefficients would not be constant. Therefore, this option is not
satisfactory. Instead, the scaling ansatz (89) provides kinetic
coefficients that depend only on H0, which is determined
completely and solely by the functions B(H ) and W (H ). In
addition, note that in the nonconserved case, the two choices
of scaling ansatz in the substrate region lead to the same result.
However, we prefer to use Eq. (21) because it provides a weaker
condition for the variations of the surface profile in the substrate
region.

The procedure of the asymptotic expansion is very similar
to that of the nonconserved case. However, the calculations
are lengthy and the details of the derivation are reported in
Appendix A. Collecting all contributions up to third order, we
finally obtain two linear kinetic boundary conditions, for the
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velocity and the flux at the triple line. These conditions can be
written in two equivalent ways. The first form is

vL2v + j−L1v = [u]TL − μ+[h]TL, (90)

vL1v + j−L1J = −[μ]TL (91)

and the second form reads

−v(L̄2v − [h]TLL2J ) − j+L2J = [u]TL − μ−[h]TL, (92)

−vL2J + j+L1J = −[μ]TL, (93)

where j− = j (x → x−
TL) and j+ = j (x → x+

TL) are, respec-
tively, the mass fluxes at the triple line extrapolated from
the far-field profile on the substrate and on the film side. In
addition, the discontinuity of the mass flux at the triple line is
related to the triple-line velocity v via mass conservation:

[j ]TL = j+ − j− = v[h]TL. (94)

The kinetic coefficients read

L1J = εL1J , (95)

L1v = ε2L1v, (96)

L2v = ε3L2v, (97)

where

L1J =
∫ +∞

−∞
dX

(
1

B(H0)
− 
(X)

B(∞)
− 
(−X)

B(0)

)
, (98)

L1v =
∫ +∞

−∞
dX

(
H0

B(H0)
− 
(X)

X∂xh0(xTL) + h1(xTL)

B(∞)

)
,

(99)

L2v =
∫ +∞

−∞
dX

[
H 2

0

B(H0)
− 
(X)

[X∂xh0(xTL) + h1(xTL)]2

B(∞)

]
,

(100)

and are related to the leading order by

L2J + L1v = L1J [h]TL, (101)

L̄2v + L2v = L1v[h]TL. (102)

The three relations (94), (101), and (102) allow one to pass
from one of the forms of the kinetic boundary condition to the
other.

Note that in both forms (90) and (91), or (92) and (93), the
nondiagonal coefficients are equal. This symmetry property is
a consequence of Onsager reciprocity relations. Due to these
relations, we only have three independent kinetic coefficients.

2. Definition of triple-line position

Following the same procedure as in the nonconserved case,
the triple-line position can be defined via a Gibbs dividing
surfacelike relation [h]TL = 0. Using Eqs. (101) and (102),
we find that L2J = −L1v and L̄2v = −L2v . In addition, mass
conservation (94) imposes the absence of discontinuity at the
triple line [j ]TL = 0. The notation [ ]TL is the same as the
notation [ ]+∞

−∞ defined in Appendix A. To leading order the
two kinetic relations also simplify considerably and read

vL2v + jL1v = [u]TL, (103)

vL1v + jL1J = −[μ]TL, (104)

where j = j+ = j−. This compact form of the kinetic bound-
ary conditions will be used in the following for the numerical
analysis. Also notice that h1(xTL) = [H̃0]+∞

−∞ = 0, leading to
simpler expressions for L1v and L2v .

3. Kinetic coefficients

We now rewrite Eqs. (98)–(100) without the variable X,
making the dependence of the kinetic coefficients on the
functions W (H ) and B(H ) explicit

L1J =
∫ H 0

TL

0

γ̄ 1/2dH0

21/2[W (H0) − W (0)]1/2

[
1

B(H0)
− 1

B(0)

]
+

∫ +∞

H 0
TL

γ̄ 1/2dH0

21/2[W (H0) − W (0)]1/2

[
1

B(H0)
− 1

B(∞)

]
, (105)

L1v =
∫ H 0

TL

0

γ̄ 1/2dH0

21/2[W (H0) − W (0)]1/2

H0

B(H0)
+

∫ +∞

H 0
TL

γ̄ 1/2dH0

21/2[W (H0) − W (0)]1/2

[
H0

B(H0)
− X(H0)∂xh0(xTL)

B(∞)

]
, (106)

L2v =
∫ H 0

TL

0

γ̄ 1/2dH0

21/2[W (H0) − W (0)]1/2

H 2
0

B(H0)
+

∫ +∞

H 0
TL

γ̄ 1/2dH0

21/2[W (H0) − W (0)]1/2

[
H 2

0

B(H0)
− [X(H0)∂xh0(xTL)]2

B(∞)

]
, (107)

where the zeroth-order thickness of the film at the triple line
H 0

TL is calculated from Eq. (72) and

X(H0)∂xh0(xTL) =
∫ H0

H 0
TL

dH

[
W (∞) − W (0)

W (H ) − W (0)

]1/2

. (108)

The first integral in the kinetic coefficients corresponds to the
contribution of the substrate side. These integrals converge and
are finite, except in the pathological case, where the mobility
vanishes at the substrate.

The convergence of the second integral corresponding to
the film side provides restrictive conditions on the thickness
dependence of W (H ) and B(H ) for large H . We assume
that W (H ) and B(H ) respectively tend to their corresponding
far-field values in the film as W (H ) = W (∞) + δW (H ) and
B(H ) = B(∞) + δB(H ), with δW (H ) and δB(H )→ 0 as
H → +∞. Substituting these expressions in the above expres-
sions of the kinetic coefficients, we find that the convergence
of L1J requires that δB(H ) should decrease faster than 1/H .
In addition, the convergence of L1v requires that δW (H )
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TABLE II. Predicted values of kinetic coefficients from
Eqs. (98)–(100).

Mobility L2v L1v L1J

case 1 0.014 0.094 0.0
case 2 0.21 2.25 29.13
case 3 0.037 0.29 0.0
case 4 0.047 0.223 0.0

and δB(H ) should decrease faster than 1/H 2. Finally, the
convergence of L2v requires that δW (H ) and δB(H ) should
decrease faster than 1/H 3. Thus, overall, the existence of
kinetic boundary conditions (103) and (104) require that W (H )
and B(H ) tend to their asymptotic values faster than 1/H 3.
As a consequence, the generic decay of the wetting potential
W (H ) ∼ 1/H 2 coming from van der Waals interactions should
lead to a divergence of the kinetic coefficients L1v and L2v .

C. Numerical simulations

In order to check the predictions of the kinetic boundary
conditions obtained from the asymptotic analysis, we perform
numerical simulation of Eq. (86) using again the example
of solid-state dewetting. The numerical scheme is the same
as that discussed in Sec. III C 2. However, in the conserved
model, the dynamics is much slower. Therefore, a larger time
step, which can be achieved by the second-order Runge-Kutta
method discussed earlier, is necessary.

In the symmetric cases, we use the same expression of the
wetting potential w(h) and of the surface mobility b(h) as in
nonconserved dynamics. In the asymmetric cases, we choose
a different form of the mobility which enforces a vanishing
L1J . This choice allows us to calculate the smaller kinetic
coefficients L2v and L1v more accurately. The predictions
are reported in Table II. In case 3, the mobility is defined
by Eq. (78), with p1 ≈ 0.28 and p2 ≈ 0.72. In case 4, the
mobility is defined by

bas(h) = 0.5

0.5 + 1
m(0) − 1

m(h)

, (109)

where m(h) is given by Eq. (78) with p1 ≈ 0.196 and
p2 ≈ 0.5. Such an expression ensures that L1J = 0.

Figure 5(a) shows the evolution of the film profile starting
from an initial step profile [Eq. (79)]. As the triple line moves,
there is an accumulation of mass near the triple line which leads
to the formation of a rim. As we go away from the rim, the film
profile exhibits spatial oscillations with decaying amplitude.
The amplitude of oscillation increases with time, as discussed
in details in Refs. [10,11].

Figure 5(b) describes the evolution of triple-line position
with time. To calculate the triple-line position, we use the
same procedure as that presented in the nonconserved case
[see Fig. 4(b)]. We fit the triple-line position with the function

xTL(t) = x0 + at2/5 + bt1/5. (110)

Such a time dependence for xTL is derived from the Mullins
model with a constant surface tension and a constant surface
mobility, using boundary conditions with a fixed contact angle

FIG. 5. Numerical results for the conserved model. (a) Evolution of the film profile starting from an step initial condition for constant
mobility (case 1). (b) Time evolution of triple-line position for four different cases of surface mobility. Here symbols show the numerical data
and corresponding black lines are the fit to the data according Eq. (110). Also shown is the temporal evolution of (c) the triple-line velocity v,
(d) the mass flux jTL approaching from the substrate side, (e) the thermodynamic force [u]TL, and (f) the difference in chemical potential [μ]TL.
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FIG. 6. Variation of [j ]TL/jTL with time.

and vanishing mass flux [11]. The velocity of the triple line is
then obtained by calculating the time derivative of xTL. This is
shown in Fig. 5(c).

To calculate the quantities involved in kinetic boundary
conditions (103) and (104), we again follow a procedure
similar to that in Sec. III C 3. We first fit the relevant quantities
in far-field regions with a quadratic function a + bx + cx2.
Then the discontinuity of these quantities is obtained by
the extrapolation of these far-field fits to the triple line. As
discussed in the case of the nonconserved model, the fitting
procedure in the island region is very sensitive to the distance
of the fitting region from the triple line. We therefore consider a
range of fitting intervals hc − 0.1 < h < hc + 0.1 for different
value of hc and perform the minimization procedure for each
hc. Figures 5(d), 5(e), and 5(f) show the time evolution of jTL,
[u]TL, and [μ]TL, respectively, at the triple line with hc = 0.5.

FIG. 7. Numerical verification of the kinetic boundary conditions. Here jTL is the value obtained from the extrapolation of the mass flux
from the substrate side. Closed and open symbols denote the data for the initial film thicknesses h̄ = 2 and h̄ = 5, respectively. In addition,
E1, E2, and E are the time-averaged errors defined in the text. Averages are performed in the intervals I1 with 2 × 104 < t < 2 × 106 and I2

with 2 × 105 < t < 2 × 106. The legend for each column is shown on top. The dashed black line in each plot corresponds to the analytical
prediction reported in Table II. As discussed in the text, the four panels in each column correspond to the four different mobility cases.
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FIG. 8. Convergence of the numerical procedure to extract L2v

for case 2. Fit of numerical data for L2v , using linear (solid red line)
and quadratic (dashed blue curve) functions described in the text. The
horizontal dashed line shows the predicted value. The vertical dashed
line shows the position of the triple line.

As evident from Fig. 5, there is an initial transient regime
with large variations in [u]TL, [μ]TL, and jTL. Also, the
difference [j ]TL/jTL is large at short times, violating the local
mass conservation relation (94), and becomes small only at
long times, as shown in Fig. 6. This observation suggests that
at short times there is a contribution from the time dependence
of the profile which could be too fast to be caught by our
asymptotic analysis.

Bearing this in mind, we have analyzed the kinetic boundary
conditions in two time intervals: The first interval is I1 = 2 ×
104 < t < 2 × 106, which includes the short-time regime, and
the second interval is I2 = 2 × 105 < t < 2 × 106, where we
have slow motion of the triple line. Within each time interval,
we evaluate the kinetic coefficients from the kinetic boundary
conditions (103) and (104). Since the convergence of a fit with
three parameters (L1v , L2v , and L1J ) is more delicate than
in the nonconserved case, we now use a systematic approach
based on the error estimates

E1(L2v,L1v) =
∫

(vL2v + jL1v − [u]TL)2dt,

E2(L1v,L1J ) =
∫

(vL1v + jL1J + [μ]TL)2dt,

E(L2v,L1v,L1J ) = E1(L2v,L1v) + E2(L1v,L1J ). (111)

The first two equations define the cumulative deviations from
the kinetic boundary conditions (103) and (104). We find nu-
merically the values of the kinetic coefficients which minimize
these errors.

The nonzero value of [j ]TL also leads to an ambiguity in
the choice of j in the kinetic relations, where the mass flux
is the same on both sides of the triple line. In order to probe
the consequences of this ambiguity, we consider both values
of j , viz., the values obtained by extrapolating the mass flux at
the triple line from the substrate and island regions. Figure 7
represents the kinetic coefficients calculated from the value of
j on the substrate side. These figures show the variation of
kinetic coefficients with hc for the four different mobilities.
For the first two cases, viz., for cases 1 and 2, we report the
result for two initial thicknesses of the film, h̄ = 2 and h̄ = 5.
In cases 3 and 4, results are reported for h̄ = 2.

Results for the two different film thicknesses indicate that
the kinetic coefficients are not sensitive to the film thickness as
long as h̄ � h0 (i.e., ε � 1). Similar results are obtained when
using the value of j from the film side (results are presented
in Appendix B, in Fig. 11).

Globally, we found fair agreement between the theoretical
and numerical results, especially at small and intermediate
values of hc for L1J and L1v . However, although it exhibits the
expected trends, the convergence of L2v is less quantitative.

The first column of Fig. 7 shows the variation of L2v with
hc. It is clear from the figures that L2v converges only for small
values of hc. Deviations are observed when we shift the fitting
region away from the triple line. However, as we approach
the triple line, the wetting potential starts to affect various
quantities, as can be seen clearly, e.g., in Fig. 7(a2). In Fig. 8,
we have fitted L2v as a function of hc with linear and quadratic
fits of the forms a + b(hc − hTL) and a + b(hc − hTL)2, where
hTL is the triple-line position to leading order. An extrapolation
of these fits towards the triple line indicates that L2v shows a
convergence consistent with the theoretical value. A similar
trend can also be seen for the kinetic coefficients L1v and L1J .
However, in these cases, a simple extraction of the values
obtained in the range 0.4 < hc < 0.5 provides reasonable
agreement with the asymptotic analysis in all cases.

Note also that the value of the kinetic cross term L1v

obtained by minimization of E2 shows a relatively better
convergence as compared to the value obtained with E1. This
is probably caused by the coupling to L2v in E1, which exhibits
a poorer convergence.

FIG. 9. Relative deviation of the contact angle and mass flux balance during dewetting. The relative deviation of the dynamic contact angle
from its equilibrium value is shown for (a) the nonconserved and (b) the conserved models. (c) Comparison of the mass flux through the triple
line to the mass flux corresponding to the increase of the volume of the rim resulting from its motion at velocity v.
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FIG. 10. Decomposition of [u]TL following Eq. (113) for the
nonconserved model. The simulation was performed with a vapor
chemical potential μc = 0.02.

V. DISCUSSION

We define the relative deviation of dynamic contact angle
θD from its equilibrium value

η = (θeq − θD)/θeq. (112)

This quantity can be measured during dewetting for noncon-
served and conserved models, as shown in Figs. 9(a) and 9(b),
respectively. In order to obtain η from simulations, we have ex-
tracted θD from [u]TL using Eq. (46). In the nonconserved case,
η could reach up to 10%. However, as expected in conserved
dewetting dynamics where the triple line slows down with
time after the initial transient phase, θD converges towards the
equilibrium contact angle. The deviation in our simulations is
small. We found η ∼ 10−3–10−4 in conserved dynamics. This
quantity has been measured in experiments in liquid polymer
films [4,5], but it has not been measured yet in the case of solids.

We have also measured the ratio jTL/vh, which quantifies
the relevance of the mass flux at the triple line jTL as
compared to the typical rate vh at which mass from the film
is incorporated in the dewetting rim. The result is shown in
Fig. 9(c). This ratio decreases with time. However, it exhibits
an early-time maximum around 1%. As discussed in Ref. [52],
the mass flux at the triple-line could be much more important
in situations where evaporation occurs mainly in the substrate
region. Indeed, in this case, mass diffuses from the film to the
substrate before evaporating from the substrate, leading to a
significant mass flux through the triple line.

As a final remark, one should note the difference between
[u]TL and the deviation of the contact angle from the Young
equilibrium angle. Assuming a triple-line definition with
[h]TL = 0 and combining the equilibrium equations (13) and
(14) and the definition of u [Eq. (46)] in the small slope limit
where ∂xh ∼ θ , one finds two contributions to the discontinuity
of u at the triple line

[u]TL ≈ γ̄ (cos θD − cos θeq) − w(hsub) + w(0)

≈ γ̄
(

cos θD − cos θ
eq
TL

)
. (113)

To obtain these contributions, we have also assumed that
the angle on the substrate side is vanishingly small. As a
consequence, [u]TL does not describe the deviation from the

equilibrium Young contact angle θeq, but the deviation from the
contact angle θ

eq
TL which accounts for the fact that the substrate

height might not be the equilibrium height, thereby leading
to a shift in the substrate free energy. This difference can be
significant, for example, in growth when μc 
= 0. To verify this,
we have simulated the nonconserved model with a nonzero
chemical potential in the vapor phase μc = 0.02. Figure 10
confirms that [u]TL exhibits both contributions, viz., the devia-
tion of the contact angle from the Young equilibrium value and
the departure from equilibrium height in the substrate region.

VI. CONCLUSION

As a summary, we have derived nonequilibrium kinetic
boundary conditions at the triple line for solid-state wetting,
considering both nonconserved (evaporation-condensation)
and conserved (surface diffusion) dynamics. This result was
obtain by means of a matched asymptotic expansion from
an isotropic mesoscopic continuum model with a wetting
potential and a thickness-dependent mobility.

In the nonconserved model, we obtained a single kinetic
boundary condition, which relates the triple-line velocity to the
deviation of the contact angle from its equilibrium value. For
the conserved model we found that not only does the contact
angle deviate from its equilibrium value, but there is also a
nonzero surface diffusion mass flux at the triple line. This gives
rise to two kinetic boundary conditions, which relate the two
fluxes, i.e., velocity and mass fluxes, to two driving forces,
i.e., contact angle deviation and discontinuity of the chemical
potential (with cross terms).

We have verified the validity of these kinetic boundary con-
ditions through numerical simulation of solid-state dewetting.
These simulations show reasonable agreement with kinetic
boundary conditions for both cases. However, quantitative
agreement is more difficult to reach in the conserved case.

The mesoscopic continuum model presented here is an
efficient tool to perform numerical simulations of solid-state
dewetting or of other processes involving the evolution of thin-
film morphologies such as growth, sublimation, spreading,
Ostwald ripening [26], or the Rayleigh-Plateau instability [53].
It has the advantage of including intrinsically the boundary
conditions at the triple line, leading to an interface capturing
method which avoids the delicate procedures required to track
the triple line and to extrapolate the interface profile at the triple
line in order to impose the boundary conditions. In addition,
this two-dimensional model exhibits a reduced dimension-
ality, as compared to three-dimensional phase field models,
which should lead to significant simulation-time reduction.
Furthermore, anisotropy can easily be included in mesoscopic
continuum models following a procedure similar to that in
phase field models [54]. To some extent, the anisotropy of the
surface free energy and of the mobility can be derived from
step models [55].

Finally, the kinetic coefficients are finite only for wetting
potentials and mobilities that converge fast enough to their
asymptotic values for thick films. When these converge too
slowly, the kinetic coefficients diverge. Such a divergence is
found, for example, for conserved dynamics with a van der
Waals wetting potential decaying as 1/h2. This divergence of
diffusive dissipation seems a priori to share similarities with
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the divergence of viscous dissipation at the triple line of thin
liquid films [3]. However, the situation is different because
the divergence occurs at small scales for liquid films, while
it occurs at large scales for solid films. Note that divergences
induced by long-range potentials have also been observed in
static thermodynamic liquid interface properties [56].

At this stage of our understanding, the question is the
following: In the cases where the kinetic coefficients are not
defined (diverge), is it possible to change the technical pro-
cedure of the expansion to obtain suitable effective boundary
conditions, or is this divergence a physical effect, indicating
that the boundary conditions involving contact angles and
nonequilibrium mass fluxes cannot be defined? Further inves-
tigations are needed to clarify this issue.
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APPENDIX A: DERIVATION OF THE KINETIC
BOUNDARY CONDITIONS FOR THE

CONSERVED MODEL

Using the scaling defined by Eq. (89) in the substrate region,
the matching condition between triple line and substrate reads

εH (x,t ; ε) = ε2H(χ,t ; ε). (A1)

Expanding the matching condition using Eqs. (29) and (30),
we obtain

H0(X,t) = 0, (A2)

H1(X,t) = H0(χTL), (A3)

H2(X,t) = H1(χTL), (A4)

H3(X,t) = X∂χH0(χTL) + H2(χTL), (A5)

H4(X,t) = X∂χH1(χTL) + H3(χTL). (A6)

Following the same procedure as for the nonconserved model,
we write Eq. (88) in the island, triple-line, and substrate regions
as, respectively,

∂th − v∂xh = −γ̄ B(∞)∂4
xh(x,t), (A7)

ε4∂tH − ε3v∂XH = ∂X

{
B(H )∂X

[ − γ̄ ∂2
XH + W ′(H )

]}
,

(A8)

∂tH − v∂χH = ∂χ

[
B(εH)∂χ

(
−γ̄ ε4∂2

χH + 1

ε
W ′(εH)

)]
.

(A9)

1. The TL region

We now study the film profile in the TL region. For this
purpose, we integrate Eq. (A8). This gives

ε4
∫ X

X−
dX′∂tH

′ − ε3v[H (X) − H (X−)]= − J (X) + J (X−),

(A10)

where J (X) = B(H )∂X[γ̄ ∂2
XH − W ′(H )] is the surface diffu-

sion mass flux. A second integration leads to

ε4
∫ X

X−

dX′

B(H ′)

∫ X′

X−
dX′′∂tH

′′ − ε3v

∫ X

X−
dX′ H

′ − H (X−)

B(H ′)

= ν(X) − ν(X−) + J (X−)
∫ X

X−

dX′

B(H ′)
, (A11)

where H ′ = H (X′) and

ν(X) = −γ̄ ∂2
XH + W ′(H ) (A12)

is the chemical potential in triple-line variables. Multiplying
Eq. (A11) by ∂XH and integrating, we find a third relation

ε4
∫ X

X−
dX′∂X′H ′

∫ X′

X−

dX′′

B(H ′′)

∫ X′′

X−
dX′′′∂tH

′′′

−ε3v

∫ X

X−
dX′∂X′H ′

∫ X′

X−
dX′′ H

′′ − H (X−)

B(H ′′)

= U (X) − U (X−) − ν(X−)
∫ X

X−
dX′∂X′H ′

+J (X−)
∫ X

X−
dX′∂X′H ′

∫ X′

X−

dX′′

B(H ′′)
. (A13)

Below, we expand Eqs. (A8) and (A13) and solve the resulting
equations to each order in ε.

a. Zeroth order

To leading order Eq. (A8) reads

∂X

{
B(H0)∂X

[ − γ̄ ∂2
XH0 + W ′(H0)

]} = 0. (A14)

Integrating this equation, we find

B(H0)∂X

[ − γ̄ ∂2
XH0 + W ′(H0)

] = J0. (A15)

From the derivatives of the matching condition (33) with
respect to X as X → +∞, we obtain

∂3
XH0 → 0,

(A16)
∂X[W ′(H0)] = W ′′(H0)∂XH0 → 0,

which implies J0 = 0. Here we have used the fact that W ′′
vanishes as X → +∞.

Similarly, as X → −∞, using the matching condition (A2),
we find

∂3
XH0 → 0,

(A17)
∂X[W ′(H0)] = W ′′(0)∂XH0 → 0,

which again implies J0 = 0. Thus we have

∂X

[ − γ̄ ∂2
XH0 + W ′(H0)

] = 0. (A18)

Integrating this equation once again, we find

−γ̄ ∂2
XH0 + W ′(H0) = ν0. (A19)

Using the matching condition, as X → +∞, we obtain

∂2
XH0 → 0

W ′(H0) = W ′(∞) → 0

}
⇒ ν0 = 0. (A20)
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Also, as X → −∞, we have

∂2
XH0 → 0

W ′(H0) = W ′(0) = 0

}
⇒ ν0 = 0. (A21)

Thus Eq. (A19) reads

−γ̄ ∂2
XH0 + W ′(H0) = 0. (A22)

We now consider Eq. (A13) to zeroth order, which may be
rewritten as

[U0]+∞
−∞ − ν0(−∞)[H0]+∞

−∞ = 0, (A23)

with U0 given by

U0(X) = − γ̄

2
(∂XH0)2 + W (H0). (A24)

Since ν0(−∞) = 0 from Eq. (A21), we obtain

[U0]+∞
−∞ = 0. (A25)

Following the same lines as in the nonconserved case, we
then obtain Young’s contact angle relation (1) using matching
conditions.

b. First order

To first order, Eq. (A8) leads to

∂X

{
B(H0)∂X

[ − γ̄ ∂2
XH1 + W ′′(H0)H1

]}
+∂X

{
B ′(H0)H1∂X

[ − γ̄ ∂2
XH0 + W ′(H0)

]} = 0. (A26)

Since the mass flux to zeroth order is zero, the last term in
Eq. (A26) vanishes. An integration of the resulting equation,
combined with the matching conditions in the far-field limits
(X → ±∞), shows that the mass flux to first order J1 = 0
vanishes. Further integration of the resulting equation leads to
an expression of the chemical potential to first order

−γ̄ ∂2
XH1 + W ′′(H0)H1 = ν1. (A27)

Again using matching conditions, we obtain

ν1 = −γ̄ ∂2
xh0(xTL) = W ′′(0)H0(χTL). (A28)

This relation implies that the deviation H0(χTL) of h around
the minimum of the wetting potential at the substrate is related
to the film curvature ∂2

xh0(xTL) at the triple line. This relation
was obtained in Sec. II at equilibrium. Hence, to this order
we obtain the equilibrium relations with zero mass flux and
constant chemical potential.

Moreover, Eq. (A13) to first order reads

[U1]+∞
−∞ − ν̃0(−∞)[H1]+∞

−∞ − ν̃1(−∞)[H0]+∞
−∞ = 0, (A29)

with U1(X) defined as

U1(X) = −γ̄ (∂XH0)(∂XH1) + W ′(H0)H1. (A30)

Using Eqs. (A21) and (A28) and matching conditions, we
find that diverging terms cancel and we obtain the first-order
correction to the equilibrium Young contact angle relation

[Ũ1]+∞
−∞ − ν̃0(−∞)[H̃1]+∞

−∞ − ν̃1(−∞)[H̃0]+∞
−∞ = 0. (A31)

c. Second order

To second order, from Eq. (A8) we obtain

∂X

[
B(H0)∂X

(
− γ̄ ∂2

XH2 + W ′′(H0)H2

+W ′′′(H0)
H 2

1

2

)]
= 0. (A32)

Here we have used the fact that the mass flux vanishes to zeroth
and first order, so the two other terms appearing in Eq. (A32)
vanish. Integrating this equation, we obtain

B(H0)∂X

(
γ̄ ∂2

XH2 − W ′′(H0)H2 − W ′′′(H0)
H 2

1

2

)
= J2.

(A33)

As X → −∞, using Eqs. (A2)–(A4), we have

J2 = 0. (A34)

Similarly matching the condition at X → +∞ gives

J2 = γ̄ B(∞)∂3
xh0(xTL) = 0. (A35)

Therefore, we have no flow of mass to this order. Integrating
Eq. (A33), we obtain

−γ̄ ∂2
XH2 + W ′′(H0)H2 + W ′′′(H0)

H 2
1

2
= ν2. (A36)

Taking the limit X → +∞, we find

ν2 = −γ̄ ∂2
xh1(xTL). (A37)

Similarly taking the X → −∞ limit, we obtain

ν2 = W ′′(0)H1(χTL) + W ′′′(0)
H2

0(χTL)

2
. (A38)

To this order, we again obtain the equilibrium relations of no
mass flux and equality of chemical potential on both sides of
the triple line.

Now, from Eq. (A13) to second order we have

[U2]+∞
−∞ − ν̃0(−∞)[H2]+∞

−∞ − ν̃1(−∞)[H1]+∞
−∞

−ν̃2(−∞)[H0]+∞
−∞ = 0. (A39)

Using the matching conditions, we find that the diverging terms
on both sides cancel. Thus, we obtain

[Ũ2]+∞
−∞ − ν̃0(−∞)[H̃2]+∞

−∞ − ν̃1(−∞)[H̃1]+∞
−∞

−ν̃2(−∞)[H̃0]+∞
−∞ = 0, (A40)

which is the second-order contribution to the Young contact
angle condition.

d. Third order

Consider Eq. (A8) to third order

−v0∂XH0 = ∂X

[
B(H0)∂X

(
− γ̄ ∂2

XH3 + W ′′(H0)H3

+W ′′′(H0)H1H2 + W ′′′′(H0)
H 3

1

6

)]
. (A41)
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Integrating this equation, we obtain

−v0H0 − J3 = B(H0)∂X

(
− γ̄ ∂2

XH3 + W ′′(H0)H3

+W ′′′(H0)H1H2 + W ′′′′(H0)
H 3

1

6

)
. (A42)

Now using the matching conditions in the limit X → −∞, we
have

J3 = −B(0)W ′′(0)∂χH0(χTL) = J0(χTL). (A43)

Similarly, in the limit of X → +∞, we obtain two equations

v0∂xh0(xTL) = γ̄ B(∞)∂4
xh0(xTL), (A44)

v0h1(xTL) + J0(χTL) = γ̄ B(∞)∂3
xh1(xTL) = J0(xTL),

(A45)

where the first equation arises from a constant contribution and
the second equation comes from a contribution linear in X.

Integrating Eq. (A42), we find

−v0

∫ X

0

H ′
0

B(H ′
0)

dX′ − J0(χTL)
∫ X

0

dX′

B(H ′
0)

+ ν3(0)

= −γ̄ ∂2
XH3 + W ′′(H0)H3 + W ′′′(H0)H1H2

+W ′′′′(H0)
H 3

1

6
. (A46)

Taking the X → +∞ limit and using Eqs. (A44) and (A45)
and matching conditions, we obtain

−v0

∫ +∞

0

(
H0

B(H0)
− X∂xh0(xTL) + h1(xTL)

B(∞)

)
dX

−J0(χTL)
∫ +∞

0
dX

(
1

B(H0)
− 1

B(∞)

)

= −γ̄ ∂2
xh2(xTL) − ν3(0). (A47)

Similarly, when X → −∞ and using Eq. (A43) and matching
conditions, we have

−v0

∫ −∞

0

H0

B(H0)
dX − J0(χTL)

∫ −∞

0
dX

(
1

B(H0)
− 1

B(0)

)
= W ′[εH(χTL)]|3 − ν3(0), (A48)

where

W ′[εH(χTL)]|3 = W ′′(0)H2(χTL)

+W ′′′(0)H0(χTL)H1(χTL)

+ W (4)(0)

6
H3

0(χTL). (A49)

Subtracting Eq. (A48) from Eq. (A47), we obtain a relation
between the velocity and mass flux at the triple line, and
the difference of chemical potential between the island and
substrate regions

−v0L1v − J0(χTL)L1J = −γ̄ ∂2
xh2(xTL) − W ′[εH(χTL)]|3,

(A50)

where

L1v =
∫ +∞

−∞
dX

(
H0

B(H0)
− 
(X)

X∂xh0(xTL) + h1(xTL)

B(∞)

)
,

(A51)

L1J =
∫ +∞

−∞
dX

(
1

B(H0)
− 
(X)

B(∞)
− 
(−X)

B(0)

)
. (A52)

Similarly, from Eq. (A13), at O(ε3), we have

−v0

∫ +∞

−∞
dX ∂XH0

∫ X

−∞
dX′ H ′

0

B(H ′
0)

−J0(χTL)
∫ +∞

−∞
dX ∂XH0

( ∫ X

−∞

dX′

B(H ′
0)

−
∫ 0

−∞

dX′

B(0)

)

= [U3]+∞
−∞ −

3∑
i=0

ν̃i(−∞)[H3−i]
+∞
−∞. (A53)

Again using the matching conditions and canceling the diverg-
ing terms, we obtain the relation to third order,

−v0L̄2v − J0(χTL)L2J = [Ũ3]+∞
−∞ −

3∑
i=0

ν̃i(−∞)[H̃3−i]
+∞
−∞,

(A54)

where L̄2v and L2J are given by

L̄2v =
∫ +∞

−∞
dX

[
∂XH0

∫ X

−∞
dX′ H ′

0

B(H ′
0)

− 
(X)

B(∞)

×
(

X2

2
(∂xh0)2(xTL) + Xh1(xTL)∂xh0(xTL)

)

−
(X)∂xh0(xTL)L1v

]
, (A55)

L2J =
∫ +∞

−∞
dX

[
∂XH0

(∫ X

−∞

dX′

B(H ′
0)

−
∫ 0

−∞

dX′

B(0)

)

− 
(X)X∂xh0(xTL)

B(∞)
− 
(X)∂xh0(xTL)L1J

]
.

(A56)

2. Kinetic boundary conditions

Now, since ν0, ν1, and ν2 are constants, Eq. (A50) leads to
the first kinetic boundary condition up to third order

−ε3v0L1v − ε3J0(χTL)L1J = [ν̃]+∞
−∞. (A57)

Similarly, combining Eqs. (A25), (A31), (A40), and (A54) up
to third order, we find

− ε3v0L̄2v − ε3J0(χTL)L2J = [Ũ ]+∞
−∞ − ν̃(−∞)[H̃ ]+∞

−∞.

(A58)

Finally, since the zeroth-, first-, and second-order contributions
to the mass flux are zero, combining these contributions with
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FIG. 11. Numerical verification of the kinetic boundary conditions. Here jTL is the value obtained from the extrapolation of the mass flux
from the island side. The notation and symbols are similar to those in Fig. 7.

Eq. (A45), we obtain the local mass conservation relation

[J̃ ]+∞
−∞ = ε3[J0(xTL) − J0(χTL)]+∞

−∞ = ε3v0[H̃0]+∞
−∞. (A59)

In order to obtain relations between kinetic coefficients, we rewrite Eq. (A56) as

L2J =
∫ +∞

−∞
dX

[
− ∂XH0

∫ +∞

X

dX′
(

1

B(H ′
0)

− 
(X′)
B(∞)

− 
(−X′)
B(0)

)
+ X∂XH0

(

(−X)

B(0)
+ 
(X)

B(∞)

)

− 
(X)X∂xh0(xTL)

B(∞)
+[∂XH0−
(X)∂xh0(xTL)]L1J

]
. (A60)

Now integrating the first term on right-hand side and making further simplifications, we obtain Eq. (101). A similar rewriting of
L̄2v leads to

L̄2v =
∫ +∞

−∞
dX

[
− ∂XH0

∫ +∞

X

dX′
(

H ′
0

B(H ′
0)

− 
(X′)
B(∞)

[X∂xh0(xTL) + h1(xTL)]

)
+ 
(X)

B(∞)
[∂XH0 − ∂xh0(xTL)]

×
(

X2

2
∂xh0(xTL) + Xh1(xTL)

)
− [∂XH0 − 
(X)∂xh0(xTL)]L1v

]
. (A61)

Again making some simplifications, we obtain Eq. (102).
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In order to write the kinetic boundary conditions in physical
variables, we first relate physical variables with the corre-
sponding variables in the triple-line region. These relations
are defined as

j = J

ε2
= J0 + εJ1 + ε2J2 + ε3J3 + · · ·

ε2
, (A62)

μ = ν

ε
= ν0 + εν1 + ε2ν2 + ε3ν3 + · · ·

ε
, (A63)

u = U = U0 + εU1 + ε2U2 + ε3U3 + · · · . (A64)

Using these relations, we may rewrite Eq. (A57) as

−ε3v0L1v − ε3J3L1J = [ν̃]+∞
−∞, (A65)

leading to

−ε3vL1v − ε2j−L1J = ε[μ]TL. (A66)

Then, simplifying by ε, we find

−v(ε2L1v) − j−(εL1J ) = [μ]TL, (A67)

which may be written as

−vL1v − j−L1J = [μ]TL, (A68)

with L1v = ε2L1v and L1J = εL1J . Following the same lines,
we rewrite Eq. (A58) as

−ε3v0L̄2v − ε3J3L2J = [Ũ ]+∞
−∞ − ν̃(−∞)[H̃ ]+∞

−∞, (A69)

leading to

−ε3vL̄2v − ε2j−L2J = [u]TL − εμ̃−
[h]TL

ε
, (A70)

which is rewritten as

−vL̄2v − j−L2J = [u]TL − μ̃−[h]TL, (A71)

with L̄2v = ε3L̄2v and L2J = ε2L2J . Finally, the relation
(A59) can be written

ε2[j ]TL = ε2v[h]TL. (A72)

Simplifying by ε2, we find

[j ]TL = v[h]TL. (A73)

Multiplying Eq. (A68) by [h]TL and subtracting from
Eq. (A71), we obtain the kinetic boundary conditions (90) and
(91) of the main text.

APPENDIX B: SIMULATION RESULTS FOR THE
CONSERVED CASE WITH FLUXES FROM THE FILM SIDE

Here we show Fig. 11, which summarizes the numerical
evaluation of the kinetic coefficients in the conserved case
using the mass flux calculated from the film side.
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