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Growing length scale accompanying vitrification:
A perspective based on nonsingular density fluctuations

Akira Furukawa*

Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan

(Received 10 February 2017; revised manuscript received 15 December 2017; published 26 February 2018)

A model for describing growing length scale accompanying the vitrification is introduced, in which we
assume that in a subsystem whose density is above a certain threshold value, ρc, due to steric constraints,
particle rearrangements are highly suppressed for a sufficiently long time period (∼structural relaxation time).
We regard such a subsystem as a glassy cluster. With this assumption and without introducing any complicated
thermodynamic arguments, we predict that with compression (increasing average density ρ) at a fixed temperature
T in supercooled states, the characteristic length of the clusters, ξ , diverges as ξ ∼ (ρc − ρ)−2/d , where d is the
spatial dimensionality. This ξ measures the average persistence length of the steric constraints in blocking the
rearrangement motions and is determined by the subsystem density. Additionally, with decreasing T at a fixed
ρ, the length scale diverges in the same manner as ξ ∼ (T − Tc)−2/d , for which ρ is identical to ρc at T = Tc.
The exponent describing the diverging length scale is the same as the one predicted by some theoretical models
and indeed has been observed in some simulations and experiments. However, the basic mechanism for this
divergence is different; that is, we do not invoke thermodynamic anomalies associated with the thermodynamic
phase transition as the origin of the growing length scale. We further present arguements for the cooperative
properties of the structural relaxation based on the clusters.
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I. INTRODUCTION

As a supercooled liquid approaches the glass transition
point, the structural relaxation slows dramatically, and the vis-
cosity increases steeply. The origin of this viscous slowdown
remains the central issue in glass physics [1–10]. The general
dynamic features of the glass transition process appear to be
as follows:

(1) In the normal liquid regime far above the glass transition
point, particle motions and the resultant structural relaxation
dynamics are spatially uncorrelated.

(2) By increasing the density ρ at a fixed temperature T

(decreasing T at a fixed ρ), a crossover from the normal to
supercooled state occurs gradually around a certain density
ρ0 (temperature T0). For ρ � ρ0 (T � T0), the motion of a
particle is hindered by its neighbors, which is the so-called
caging; ρ0 (T0) denotes the onset density (temperature) for
glassy dynamics. Then, in the supercooled liquid regime,
structural rearrangements occur cooperatively; the more glassy
the system is, the slower and more cooperative the dynamics,
and the larger the cooperative or correlation length [7–10].

(3) With further compression (cooling), the system is
vitrified at the glass transition density ρg (glass transition
temperature Tg), where the rearrangement motions are almost
frozen.

Following the seminal work of Adam and Gibbs [11],
many theoretical and numerical efforts have been attempted
to elucidate the underlying mechanism of the correlation
or cooperative structural rearrangements, particularly from
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thermodynamic perspectives (see reviews [7–10]). Although
such approaches are appealing, it is an open question whether
the glass transition and the associated correlation are intrinsi-
cally related to thermodynamic anomalies accompanying the
thermodynamic transition.

As described above, the density ρ is regarded as an im-
portant control variable in the glass transition. Note that the
two processes of decreasing T and increasing ρ are generally
related to each other [12–14]; intuitively, a decrease in the
temperature reduces the overlap between the particles, which
effectively increases the density. In (fragile) glass-forming
liquids, an increase in the density leads to strong steric hin-
drances for particle motions, based on which some theoretical
models, such as the free-volume theory [15,16] and the mode
coupling theory (MCT) [17], have been proposed thus far.
However, these models describe the slowing-down behavior
as particle-scale phenomena, namely without a strong concept
of cooperativity or growing length scales [18]. Certainly, the
two-body density correlator hardly shows any anomalous or
long-range features despite the vast changes in the dynamic
properties. This almost invariant property of the correlation
of density fluctuations during the vitrification is in contrast to
the increasing cooperativity, which may be one reason why,
in recent literature, still-unknown thermodynamic anomalies
and the associated growing static structures (if any) have been
invoked for the origin of the growing cooperative length scale.

However, some recent simulations have demonstrated an
intimate link between the local density and the local dynamic
properties. (i) The particle mobility is higher in lower-density
regions [21,22], indicating that small spatial variations of the
local density are related to the dynamic heterogeneity (see also
Appendix). (ii) The present author found that, in supercooled
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states, there is a hydrodynamic correlation length rh, which is
comparable to the dynamic heterogeneity size, and the density
fluctuations slowly relax via length-scale-dependent diffusion
[23–25]: The relaxation of larger scale (� rh) fluctuations
exhibits diffusive decay, where rh can be regarded as a unit
size. On the other hand, smaller scale (� rh) fluctuations are
subordinate to the collective dynamics for the duration of the
structural relaxation. These observations (i) and (ii) prompt us
to try a different approach based on nonsingular density fluctu-
ations. For this purpose, the following fact should be a key clue:
in a fragile glass-forming liquid near the glass transition point,
a small change in the macroscopic average density determines
the macroscopic glass transition. Concomitantly, the density
itself fluctuates in space. Based on this fact, one may imagine
that even a slightly higher local density should make the local
steric constraints more severe and thus determine the local
glassy nature. Based on this perspective, we propose a simple
model for describing the growing length scale accompanying
the glass transition with a concept of clusters and without
introducing any thermodynamic anomalies; namely the local
glassy nature may be simply controlled by the local density on
average, which eventually determines the glass transition and
the associated correlation [26]. Before proceeding, we note that
in this study, the considered system is supposed to be a fragile
glass-former. In strong glass-formers, the dynamics are less
cooperative [25,30–32], and the role of density fluctuations in
the relaxation mechanism appears to be different from that in
fragile glass-formers [25].

II. MODEL AND ANALYSIS

Some details of the key assumptions for our model are as
follows:

(1) Cluster formation induced by local densification: We
assume that in a higher-density subsystem, in which the
average density is above a certain threshold value, ρc, particle
rearrangements are strongly obstructed due to stronger steric
hindrances (or constraints); that is, the thermodynamic force
cannot promote relaxation, and independent particle-activation
is prohibited. Henceforth, such a subsystem is called a (glassy)
cluster. More specifically, the steric constraints are assumed to
be characterized by the subsystem density, and once a cluster is
formed, density fluctuations “inside” the cluster are transiently
frozen for a sufficiently long time period, with the exception
of small thermal vibrations.

(2) No thermodynamic anomaly in density fluctuations: It
is well known that even in deeply supercooled states, density
fluctuations hardly show thermodynamic anomalies. Here, it
is reasonable to assume that density fluctuations simply obey
Gaussian statistics.

Although other assumptions will be introduced in the
following analysis, only these two assumptions are essential
in constructing a model for the growing length scale.

Let us consider the situation in which the glass transition
point is approached by compression (increasing the macro-
scopic average density ρ to ρg) at a fixed temperature T . We
then consider a subsystem with linear dimension � and volume
V�(= �d ), where d is the spatial dimension. The density, ρ�,
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FIG. 1. Upper panels illustrate the probability distribution of ρ�

for different �. The lower panels are the corresponding real space
illustrations: In (a) [(c)], the subsystem (red dashed box) is too small
(large) to correctly identify the glassy cluster (gray region).

averaged over the subsystem is given by

ρ� = ρ + 1

V�

∫
V�

d rδρ(r), (1)

where δρ(r) is the (local) density fluctuation at position r
from the average ρ. Because we now assume that δρ(r) obeys
Gaussian statistics in thermal equilibrium, a fluctuation of ρ�

is described as follows:

K

〈(
ρ� − ρ

ρ

)2〉
�d ∼= T , (2)

where the temperature T is measured in units of the Boltzmann
constant and 〈· · · 〉 denotes the ensemble average. Here K is
the bulk modulus (inverse of the compressibility). In deeply
supercooled states, it should be appropriate to consider fluctu-
ations in inherent states, for which T/K should be replaced
by a smaller value (see also Appendix). However, for the
present qualitative study, this difference does not matter. In the
following argument, taking only the fluctuation contribution to
the leading order, we ignore the effect of density fluctuations
on K . From Eq. (2), we obtain〈(

ρ� − ρ

ρ

)2〉
∼=

(
a

�

)d

, (3)

where a = (T/K)1/d is the microscopic length scale. At
〈(ρ� − ρ)2〉 ∼= (ρc − ρ)2, we can find a significant population
of subsystems for which ρ� exceeds the threshold value ρc (see
Fig. 1 for schematic); then the size of such subsystems, ξ , is
given by

ξ = a

(
ρ

ρc − ρ

)2/d

. (4)

This ξ gives the characteristic size of the glassy clusters. For
example, in supercooled Lennard-Jones (or similar model)
liquids, a is estimaed to be several 0.1s of the unit of the particle
size. Thus, when ρ/(ρc − ρ) is 10–100, ξ is approximately
1–5, which appears to be reasonable. We emphasize again
that ξ is not the static correlation length of the density
fluctuations determined by the two-body correlator but instead
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measures how long the steric constraints persisit in blocking
the rearrangement motions [33].

For smaller ρ, from Eq. (4), ξ is smaller. There should be
a minimum size of ξ below which the concepts of density and
cooperativity (or coherence) are no longer relevant. We set this
lower bound value of ξ to ξ0, which may be comparable to the
size (or diameter) of a group of nearest-neighboring particles
that form a cage (∼several particle sizes). In this context, the
onset of cooperativity atρ ∼= ρ0 is identified as an emergence of
glassy clusters of the size ξ0 with a significant volume fraction.

Next, let us refine the estimate of ξ by considering the
cluster-size distribution. It is a convenient simplification, with-
out loss of generality, to consider a discrete sequence of sizes
(volumes) ξ(n) [ξd

(n)], n = 1,2,3, · · · , of the glassy clusters as
follows. In this discretization scheme, ξ(1) is defined as

ξ(1) = �ξ, (5)

where � is a constant of order unity and controls the fineness of
the discretization (finer for larger �). Although the clusters are
randomly generated, in the following analysis, we will identify
the clusters from larger ones. According to Eqs. (3) and (4),
for a subsystem with linear dimension ξ(1), we may define the
probability distribution of ρξ(1) as

P (ρξ(1) ) =
√

�d

2π (ρc − ρ)2
exp

[
− �d

2

(
δρξ(1)

ρc − ρ

)2]
, (6)

where δρξ(1) = ρξ(1) − ρ. The probability that a given subsystem
of size ξ(1) is a glassy cluster (ρξ(1) > ρc) is given by

φ(1) = φ =
∫ ∞

ρc−ρ

d(δρξ(1) )P (ρξ(1) )

= 1√
π

∫ ∞

x0

dx exp(−x2), (7)

where x0 =
√

�d/2. Therefore, we can find 1/(φξ 3
(1)) clusters

in a unit volume. The density averaged over the cluster regions,
ρ

(1)
+ , is

ρ
(1)
+ = ρ + 1

φ

∫ ∞

ρc−ρ

d(δρξ(1) )δρξ(1)P (ρξ(1) )

= ρ + λ(ρc − ρ), (8)

where λ = 1
2
√

πφx0
exp(−x2

0 ). On the other hand, in the remain-

ing space,V (1)
− [see Fig. 2(a) for schematic], the average density

is given by

ρ
(1)
− = 1

1 − φ
ρ − φ

1 − φ
ρ

(1)
+ = ρc − ν(ρc − ρ), (9)

where ν = (1 − φ + λφ)/(1 − φ). Note that although the val-
ues of φ, λ, and ν depend on the details of the discretization
scheme employed here (for example, φ ∼= 0.16, λ ∼= 1.53, and
ν ∼= 1.29 for � = 1), the final conclusion does not depend on
these values. For ρ ∼= ρ0, ρ

(1)
− is significantly smaller than ρ0;

thus, in V (1)
− , almost uncorrelated motions of particles should

occur as in normal liquid states. However, for sufficiently large
ρ, this ρ

(1)
− can be significantly larger than ρ0. In such a case,

in V (1)
− , we can find smaller clusters of size ξ(2)(< ξ(1)) with a

density larger than ρc. Similarly to Eq. (5), ξ(2) may be defined

(a) 

ξ

(b)

(2)

ξ(1)

VV-
(1)(1)

ρ-
(1)(1)

V-
(2)(2)

ρ-
(2)(2)

FIG. 2. Schematic of the cluster distribution: (a) Left panel:
Clusters of size of ξ(1) are shown by the dark-gray regions, where the
average density ρξ(1) is larger than ρc. Right panel: In the remaining

space, V (1)
− , the average density is ρ

(1)
− = ρc − ν(ρc − ρ). (b) Left

panel: For ρ
(1)
− > ρ0, we can find smaller clusters of the size ξ(2) =

ν−2/dξ(1)(> ξ0) inV (1)
− , which are represented by the dark-gray regions.

Right panel: V (2)
− is defined to be the space exterior to the clusters

of the first and second steps. In V (2)
− , the average density is given

by ρ
(2)
− ∼= ρc − ν2(ρc − ρ). If ρ

(2)
− > ρ0, in V (2)

− , then further smaller
clusters can be found.

as

ξ(2) = a�

(
ρ

(1)
−

ρc − ρ
(1)
−

)2/d

∼= ν−2/dξ(1). (10)

In Eq. (10) and subsequently, we keep only the leading-order
term in (ρc − ρ). In V (1)

− , a density averaged over a subsystem
with the linear size ξ(2), ρξ(2) , has the following distribution:

P (ρξ(2) ) =
√

�d

2π (ρc − ρ
(1)
− )2

exp

[
− �d

2

(
δρξ(2)

ρc − ρ
(1)
−

)2]
,

(11)

where δρξ(2) = ρξ(2) − ρ
(1)
− . Then, we can find 1/(φξ 3

(2)) clusters

of size ξ(2) per unit volume in V (1)
− . Similarly to Eq. (9), in the

space other than that occupied by the clusters of the first and
second steps, V (2)

− [see Fig. 2(b) for schematic], the average
density is given by

ρ
(2)
− ∼= ρc − ν(ρc − ρ

(1)
− ) = ρc − ν2(ρc − ρ), (12)

If ρ
(2)
− < ρ0, in V (2)

− , then the rearrangement dynamics proceed
by almost independent particle motions, as in normal liquid
states. However, if ρ

(2)
− is significantly larger than ρ0, then

further smaller clusters can be found. In this discretization
scheme, at the nth step, the size of the clusters, ξ(n), and
the average density in V (n)

− , which is defined to be the space
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exterior to the clusters from the first to the nth step, ρ
(n)
− , can

be described by [34]

ξ(n)
∼= ν−2(n−1)/dξ(1) (13)

and

ρ
(n)
− ∼= ρc − νn(ρc − ρ) in V (n)

− , (14)

respectively. When ρ
(n)
− ∼= ρ0 in V (n)

− , which leads to ξ(n) ∼ ξ0,
the particles move almost independently, as in normal liquid
states, for which we set n = N :

N = 1

ln ν
ln

(
ρc − ρ0

ρc − ρ

)
. (15)

The volume fraction of the nth step clusters is φ(1 − φ)n−1.
Thus, the volume fraction of the cluster region � is

� ∼=
N∑

n=1

φ(1 − φ)n−1 = 1 − (1 − φ)N ,

= 1 −
(

ρc − ρ

ρc − ρ0

)μ

, (16)

where μ = −[ln(1 − φ)/ ln ν]. The average cluster size is

ξ̄ ∼= 1

�

N∑
n=1

φ(1 − φ)n−1ξ(n). (17)

With increasing macroscopic average density ρ, N also be-
comes larger, and the contributions from the larger clusters are
dominant, resulting in ξ̄ ∼ ξ .

Our model shows that the length scale diverges as (ρc −
ρ)−2/d . The exponent describing this divergence is the same
as the one predicted by several theoretical models [9,35–37]
and indeed has been observed in some simulations [37–40]
and experiments [41,42]. However, the basic mechanism con-
sidered here is very different: Our premise is that the local
glassy nature is simply controlled by the local subsystem
density on average; via compression, the characteristic size
of the glassy clusters increases, whereas the static properties
of the density fluctuations remain almost unchanged (see Fig. 3
for schematic). We infer that strong thermodynamic anomalies
and their associated intrinsic long-range correlation found in
spin-glasses and critical phenomena are absent even in deeply
supercooled states.

Here, we briefly consider the situation in which the glass
transition point is approached by decreasing T at a fixed ρ. As
noted in Sec. I, the two processes, increasing ρ and decreasing
T , are generally related to each other [12–14]. Because
weakening the thermal fluctuations effectively increases the
density, the threshold density ρc is decreased as the temperature
decreases toward Tc; at T = Tc, the average density ρ is
identical to ρc. For T ∼= Tc, ρc(T ) can be expanded as

ρc(T ) ∼= ρ + ∂ρc

∂T

∣∣∣∣
T =Tc

(T − Tc) · · · , (18)

which is expected to hold generally near the glass transition
point. Therefore, Eq. (4) can be rewritten as

ξ ∼ a′
(

T

T − Tc

)−2/d

, (19)

ξ

ρρc

ξ

(a) 

(c) 

(b) 

Δρ=    -

ξ ξ

Δρ

Δρ

ρc

ρ
(r)ρ rrr

FIG. 3. Schematic of the growing length scale: The density ρ(r)
fluctuates around the average value ρ (shown as dashed lines). The
cluster regions, in which the average density exceeds the threshold
value ρc (shown as dotted lines), are represented by thick red lines.
With increasing ρ [from (a) to (c)], ξ increases, whereas the static
properties of the density fluctuations remain almost unchanged.

where a′ = a[(∂ ln ρc/∂ ln T )|T =Tc
]2/d should again be the

microscopic length scale. It is known that a large number of
molecular glass-formers show the isomorph scaling [43,44],
ρ
/T = const, where 
 is a material-dependent parameter.
Through this scaling relation, the state (ρc,T ) can be mapped
onto the state (ρ,Tc), and then the temperature dependence of
the threshold density ρc should be of the form

ρc = ρ

(
T

Tc

)1/


, (20)

which is reduced to Eq. (18) at T ∼= Tc with (∂ρ/∂T )|T =Tc
=

ρ/
Tc.

III. DISCUSSION ON THE DYNAMICS

Finally, we provide a sketch of the supercooled liquid
dynamics based on the clusters. At ρ ∼= ρ0, where the volume
fraction of the clusters is small, the structural relaxation
should mainly proceed in the “normal liquid” region, where
fast and almost independent particle motions are allowed to
occur. However, at a higher density, for which the volume
fraction of the clusters occupies a larger space, structural
relaxation involving the cluster dynamics should be more
dominant: Thus far, in this study, we have supposed that, in
deeply supercooled states, “inside” the cluster, independent
activation at the particle-scale is highly suppressed due to
steric hindrances (except for the thermal rattling motions of
the particles), which implicitly assumes that the structural
rearrangements should occur cooperatively and thus that the
cluster lifetime is comparable to or is longer than the structural
relaxation time τα [45].

Let us consider a deeply supercooled state with a high
volume fraction of clusters of typical size ξ . For smaller
clusters, the lifetime is shorter, but the volume fraction is lower.
Therefore, in deeply supercooled states, their dynamics do not
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contribute to the global relaxation; the long-term structural
relaxation is mainly determined by the dynamics of larger
clusters with sizes of approximately ξ̄ (∼ξ ), which occupy
most of the space. In the following we focus on the dynamics
of a cluster with size ξ . The average configuration of the
clusters may remain unchanged for small thermal activation,
whereas for sufficiently large thermal activation, the cluster
configuration may be unstable and then undergo rearrangement
as a cooperative event. Such a rearrangement may control the
structural relaxation. Supposing that a cluster is (transiently)
immersed in an effective elastic medium, the restoring force
acting on the cluster is approximately Gξγ , where γ is the
displacement amplitude and Gξ is a force constant with G

being the shear elastic modulus of the bulk system. Thus, the
elastic deformation energy of the medium (E(m)

el ) is estimated
to be E

(m)
el ∼ Gξγ 2. On the other hand, the elastic energy due

to the cluster deformation (E(c)
el ) is estimated to be E

(c)
el ∼

Gξ 3 × (γ /ξ )2 = Gξγ 2, where γ /ξ is the typical strain in
the deformed cluster. Thus, E

(m)
el and E

(c)
el share the same

order of magnitude. For the (tagged) cluster, the restoring
energy due to elastic deformation involving the surrounding
“medium” can be given as Eel ∼ Gξγ 2: The dynamics in one
stable cluster configuration with small deformation amplitudes
(small fluctuations in a basin of local energy equilibrium) are
described by linear elasticity. When the thermal activation is
sufficiently large so that γ is comparable to ξ (γ ∼= cξ with
c being a small factor), such a confuguration is mechanically
unstable, and then a transition to different configuration may
eventually occur. For this significant rearrangement event, the
activation energy is simply estimated as

�Eel ∼ Gξ 3 ∼ T

(
ξ

ξ0

)3

. (21)

This argument is similar to the one for the model describing
the activation energy of a particle jump [6,46,47]. However, we
emphasize again that the individual particle activation should
be suppressed in a deeply supercooled state due to the severe
topological restrictions. Combining Eq. (21) with Eq. (4), we
expect the relaxation time to diverge as

τα(ρ) ∼ e−κ[ρ/(ρc−ρ)]2
. (22)

Similarly, in the case in which the temperature is decreased at
fixed density, we also have

τα(T ) ∼ e−κ ′[T/(T −Tc)]2
. (23)

Here, κ and κ ′ are numerical constants. While Eqs. (22) and
(23) exhibit stronger divergences than the standard Vogel-
Fulcher-Tamman form, some experiments report that the form
of Eq. (22) is preferred [48]. According to Eq. (21), when ξ is
3–4 times larger than ξ0, the activation energy is 20–30 times
larger than that at the crossover state, resulting in an increase
in τα by more than 10 orders of magnitude.

We note that in the literature [6,49–52], it was argued
that the relaxation process in supercooled liquids consists of
the elasticity-driven consecutive transition between inherent
states and that the accumulation of many such transition events
will manifest as hydrodynamic relaxation, which inspired the
current argument [53].

IV. CONCLUDING REMARKS

In this paper, we have constructed a phenomenological
model for describing a growing length scale accompanying
the vitrification: We have assumed that in a subsystem whose
density is above a certain threshold value, ρc, the particle re-
arrangements are highly suppressed and the dynamical coher-
ence is maintained for a certain long time-period due to steric
hindrances (or restrictions). With this assumption and without
invoking thermodynamic anomalies, we have predicted that
upon compression (increasing the average density ρ) at a fixed
temperature T in supercooled states, the characteristic length
of the clusters, ξ , diverges as ξ ∼ (ρc − ρ)−2/d . Additionally,
with decreasing T at fixed ρ, the length scale diverges as
ξ ∼ (T − Tc)−2/d , for which, at T = Tc, ρ is identical to
ρc. The exponent describing the diverging length scale is
the same as the one predicted by certain previous theoretical
models [35–37], but the basic mechanism for the divergence
is different.

Several other theoretical models assume that thermody-
namic anomalies are not involved in the glass transition.
Here, we make some remarks regarding two such models,
namely kinetically constrained models (KCMs) [54,55] and
MCT [17].

KCMs are known to reproduce many aspects of
supercooled-liquid dynamics. Most notably, KCMs show that
heterogeneity and cooperativity in the dynamics can be of
a purely dynamical origin; in other words, thermodynamics
may not play a role in the main characteristics of supercooled-
liquid dynamics. At this stage, an exact relationship between
our model and KCMs is not clear. In this study, while
we have argued that singular dynamics observed in deeply
supercooled liquids are linked with nonsingular equilibrium
density fluctuations, the statistics of which are determined
by thermodynamics, we have not ascribed the origin of such
singular dynamics to a purely kinetic effect. Furthermore,
KCMs basically do not suggest any singularity of the relax-
ation time at finite temperature [56], whereas here the finite
temperature singularity is considered by the limiting density.
This difference is significant.

MCT [17] also supposes that singular dynamics of su-
percooled liquids are directly related to nonsingular density
fluctuations. However, the standard MCT does not include any
concept of growing length scale or heterogeneity. In MCT, the
mode corresponding to the length scale of the static density cor-
relation dominates the dynamics. For systems such as normal
simple liquids and critical fluids, where the static correlation
length is identified with the relevant length scale for the dy-
namics, the MCT scheme provides a very good approximation
for calculating transport coefficients and their length scale
dependencies. However, this is not the case for supercooled
liquids, where with the increasing degree of supercooling,
the static correlation length (∼the particle size) increasingly
deviates from the dynamic one. As argued in Sec. II, rather than
the correlation length of density fluctuations, the persistence
length of steric constrains, assumed to be determined by the
subsystem density, should be important for describing the local
vitrification. Such, so to speak, cooperative caging or jamming
cannot be described by the present MCT. In addition, we note
that it is still not known whether the generalized hydrodynamic
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equations employed to construct the present MCT are sufficient
for the description of the supercooled liquid dynamics.

Before closing, we note the following points.
(i) In the present study, we have argued that density

fluctuations play a key role in the cooperative glassy dynamics
in fragile glass formers, but this argument cannot be applied
to strong glass formers. The temperature dependence of the
structural relaxation time τα of strong glass formers is quite
different from that of fragile ones, which suggests a difference
in the relaxation mechanism between these two classes of glass
formers. In strong glass formers, the molecular motion is less
cooperative and controlled by the temperature-independent
activation energy, which causes the Arrhenius behavior of τα

[25,30–32]. In contrast, the super-Arrhenius behavior of τα in
fragile glass formers is thought to reflect growing cooperativity
of molecular motion. As demonstrated in Ref. [25], under-
lying this distinction appears to be a fundamental difference
in the relaxation process of density fluctuations. In strong
glass formers, the relaxation dynamics of density fluctuations
are nondiffusive (nonconservative), whereas in fragile glass
formers they exhibit diffusive (conservative) behavior in which
the density exchange process is increasingly cooperative and
nonlocal as the degree of supercooling is increased (see
Ref. [25] for details). Therefore, although density fluctuations
do indeed exist in both strong and fragile glass-formers, their
role in the relaxation mechanism should be essentially different
in the two dynamical classes; density fluctuations are expected
to be intimately involved in the collective properties of the
structural relaxation only in fragile glass formers.

(ii) In the very recent study by the present author, a simple
model for shear-thinning in a high-density glassy liquid was
proposed [57]: In a shear flow, due to the asymmetric shear
flow effect on particles, the effective density is reduced.
Because τα depends strongly on the density near the glass
transition point, even a very small reduction in the effective
density significantly accelerates the structural relaxation. In
the context of the present study, this shear-induced reduction
of the effective density would be accompanied with a decrease
in the cluster size and thus drive the system away from the glass
transition point. In some simulation studies of supercooled
liquids [58,59], it was found that the dynamic heterogeneity
sizes are decreased when shear-thinning occurs, which may
support our argument.

(iii) In this paper, each glassy cluster has been assumed
to be almost independent. However, it may be possible that
the clusters percolate to form a ramified network structure at
the threshold value of the cluster volume fraction, �p: For
� � �p, the clusters are not closely packed, and thus, the
formed network structure should not be rigid enough to prevent
macroscopic relaxation; that is, the clusters should still be
almost independent. However, for � � �p, before ρ reaches
ρc, the developing network structure may be sufficiently thick
to freeze the macroscopic dynamics; in such a situation, the
growing length scale is not given by ξ but may be characterized
by, for example, the stress correlation associated with the
cluster percolation.

(iv) Some authors have argued that locally favored struc-
tures observed in some kind of glass formers indicate a
thermodynamic competition between different states [60,61].
However, because such structures should be sensitive to the “lo-

cal” packing fraction, We infer that locally favored structures
may simply reflect the fluctuations of the subsystem density.

(v) It is often stated that, at the hypothetical Kauzmann
temperature (or the corresponding density), a liquid is sup-
posed to be at the ideal glass transition point characterized by a
single thermodynamic configuration, that is, a macroscopically
unique equilibrium state. However, as argued in this paper, our
interpretations of the vitrification and the associated singular
behavior are different from those based on thermodynamic
anomaly. In this paper, we have assumed that when the
subsystem density is above the threshold value, the thermal
activation and thermodynamic force cannot promote the re-
laxation; consequently, the subsystem is transiently trapped
in a frozen state [62]. In this context, the threshold density
ρc (or the corresponding temperature Tc) has been tacitly
assumed to be lower (higher) than that at the Kauzmann point.
Furthermore, regarding the macroscopic glass transition point,
to block the macroscopic relaxation, a space-spanning (not
space filling, which may be excessive) steric constraint should
be formed. If such a macroscopic constraint is realized as a
metastable state, then a significant number of configurations
can be considered even at the glass transition point. In this view,
the glass transition density (temperature) is also lower (higher)
than that at the Kauzmann point. However, at this stage, we
cannot comment on the precise physical meaning of ρc and
whether the local and global singular points coincide or are
close to each other; in this study, the existence of ρc is simply
presupposed. Further theoretical and numerical investigations
on these remaining fundamental and difficult problems are the
subject of another study.

We will examine these speculations in future work.
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APPENDIX: THE INTIMATE LINK BETWEEN LOCAL
DENSITY AND LOCAL (IM)MOBILITY

1. Model details

Several results have been reported on the link between local
particle (im)mobility and local density [21,22]. In this Ap-
pendix, we provide clearer evidence for such a link based on the
three-dimensional simulation results of a model glass-forming
liquid, namely, the Bernu-Hiwatari-Hansen (BHH) soft-sphere
model [63]. This model has been thoroughly studied by many
authors [58,63–67]. The BHH model is a binary mixture of
small (species 1) and large (species 2) particles interacting via
the following soft-core potentials Uab(r) = ε(sab/r)12, where
a,b = 1,2, sab = (sa + sb)/2, sa is the particle size, and r

is the distance between two particles. The mass and size
ratios are m2/m1 = 2 and s2/s1 = 1.2, respectively. The units
for the length and time are s1 and (m1s

2
1/ε)1/2, respectively.

The temperature T is measured in units of ε/kB , where kB

is the Boltzmann constant. The total number of particles is
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FIG. 4. The autocorrelation of the macroscopic shear stress,
H (t) = (1/V T )〈σxy(t)σxy(0)〉, for several temperatures. Here, σxy is
the microscopic expression of the shear stress [68]. The value of δt is
indicated by the arrow. In the present analysis, the α relaxation time
τα is defined as the relaxation time of H (t).

N = N1 + N2 and N1/N2 = 1, with Na being the number of
particles of species a. The fixed particle number density of
the system is n0 = N/V = 0.8. Here, we set N = 40 000 (or
320 000) and V 1/3 = 36.84 (or 73.86). In the preset binary
system, the effective one-component density at time t is given
by [68] ρ(r,t) = s3

1n1(r,t) + s3
2n2(r,t), where n1 and n2 are

the number densities of species 1 and 2, respectively. The
density in a subsystem V� = �3 with linear dimension � is
defined as

ρ�(t) = 1

V�

∫
V�

d rρ(r,t). (A1)

2. Immobility determined by overlapping

The immobility of the ith particle is defined as

qi(�t) = θ (w − |r i(t0 + �t) − r i(t0)|), (A2)

where θ is a step function and |r i(t0 + �t) − r i(t0)| is the
absolute value of the displacement of the ith particle over
time �t . We set w = 0.25, which is comparable to the plateau
value of the root of the mean-square displacement of the
constituent particles. Therefore, qi(t0; �t) = 1 indicates that
the ith particle at time t0 and t0 + �t are almost overlapped;
this particle is referred to as an immobile particle for the time
interval [t0,t0 + �t]. Note that in the literature, instead of the
immobility, the mobility, (1 − qi), is usually measured [7]; nev-
ertheless, there is no essential difference in the observations. In
Eq. (A2), to reduce the thermal vibration effects, the short-time
averaged particle position is introduced,

r̄ i(t0) = 1

δt

∫ t0+δt

t0

dt ′r i(t
′), (A3)

and then the immobility is redefined as

q̂i(�t) = θ (w − |r̄ i(t0 + �t) − r̄ i(t0)|). (A4)

In the following analysis, �t and δt are chosen to be com-
parable to the α relaxation and the initial decay times of the
autocorrelation of the macroscopic shear stress, respectively,

T=0.259
0.267
0.306

10-1 100
k

10-1

100

101

S
 (

k
, Δ

t)
Q<

FIG. 5. The structure factor of the immobility field, SQ̂(k,τα) =
(1/N )〈|Q̂k(t0; τα)|2〉 for three different temperatures, T = 0.259,
0.267, and 0.306. The dashed line represents the empirical fitting
function, S0/[1 + (kξQ)xQ ]. Here, ξQ̂ = 3.65, 3.41, and 2.64 for
T = 0.259, 0.267, and 0.306, respectively.

as shown in Fig. 4. Note here that in supercooled states longer-
term measurements of the displacements are less sensitive
to whether time averaging of particle position, Eq. (A3), is
performed.

The immobility field is defined as

Q̂(r; �t) =
∑

i

q̂i(t0; �t)δ[r − r̄ i(t0)]. (A5)

In Fig. 5, we plot the structure factor of the immobility
field, SQ̂(k,�t) = (1/N )〈|Q̂k(t0; �t)|2〉, at �t = τα for three
different temperatures, where Q̂k(�t) is the Fourier transform
of Q̂(r; �t). This SQ̂(k,τα) measures the spatial correlation of
the particle (im)mobility. The low-k behavior of SQ̂(k,τα) can
be fit to the following empirical function:

SQ̂(k,τα) = S0

1 + (kξQ̂)xQ̂
. (A6)

In the literature, the exponent xQ is usually set to 2 by assuming
the Ornstein-Zernike form of SQ̂(k,τα). In this study, xQ̂ varies
from 2.63 to 2.84 as the temperature is lowered from 0.306
to 0.259. Here, ξQ is identical to the correlation length of
the Q̂ field, which increases as the temperature is lowered;
ξQ̂ = 2.64, 3.41, and 3.65 for T = 0.306, 0.267, and 0.259,
respectively.

3. The link between local immobility and local density

Let us examine the link between local immobility and local
density. For this aim, we define the average immobility in a
subsystem V�(= �3) as

Q̂�(τα) = 1

V�

∫
V�

d rQ̂(r; τα). (A7)

In Fig. 6(a), we plot the subsystem immobility as a function of
the time-averaged subsystem density

ρ̂�(τα) = 1

τα

∫ t0+τα

t0

dt ′ρ�(t ′). (A8)
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FIG. 6. (a) ρ̂�(τα) vs. Q̂�(τα)/n0 for � = 3.35 at three differ-
ent temperatures. 〈Q̂�(τα)〉/n0 is shown by the black dashed line.
(b) The probability distribution of ρ̂�(τα), P (ρ̂�), for � = 3.35 at three
different temperatures. The distribution function can be described by
a Gaussian distribution represented by the purple solid line; they are
almost collapsed into a single curve. The probability distribution of
the spontaneous density ρ�, P (ρ�), for � = 3.35 at T = 0.267 is also
shown (filled circles and dashed line); this probability distribution
is also described by a Gaussian distribution, but the variance is
larger than the variance of the time-averaged density. In (a) and
(b), the bright gray region represents |δρ̂�(τα)| <

√〈δρ̂2
� (τα)〉, where

δρ̂�(τα) = ρ̂�(τα) − 〈ρ̂�(τα)〉.

where ρ�(t) is given in Eq. (A1). In Fig. 6, we set � =
3.35 (∼= ξQ̂ at T = 0.267). It is evident that the particles
are more immobile [Q̂�(τα) � 〈Q̂�(τα)〉] in denser regions

[δρ̂�(τα) �
√

〈δρ̂2
� (τα)〉], where δρ̂�(τα) = ρ̂�(τα) − 〈ρ̂�(τα)〉.

This tendency is weaker at T = 0.306 than at the lower two
temperatures; at T = 0.306 from Fig. 4, the stress autocorrela-
tion does not exhibit a clear plateau, and thus the system is not
sufficiently supercooled. In Fig. 6(b), we show the probability
distribution of ρ̂�(τα) for different temperatures at � = 3.35.
The distribution function can be described by a Gaussian
distribution and shows a very small temperature dependence.
Because ρ̂�(τα) is time averaged over τα , the thermal vibration
effects are excluded [69], and the variance of the distribution is
smaller than that for the spontaneous subsystem density ρ�(t),
as shown in Fig. 6(b).

Figures 7(a) and 7(b) show Q̂�(τα) as a function of ρ̂�(τα)

and δρ̂�(τα)/
√

〈δρ̂2
� (τα)〉, respectively, for different � at T =

0.267. For smaller � each subsystem can be distinguished
between mobile and immobile states, resulting in steeper
Q̂�(τα) in Fig. 7(b). Note that, over the range of � investigated
here, the probability distribution of ρ̂�(τα) can be described
by a Gaussian distribution. In Fig. 7(c), the variance χQ̂(�) =
V�[〈Q̂2

�(τα)〉 − 〈Q̂�(τα)〉2] is plotted. The � dependence of
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FIG. 7. (a) Q̂�(τα)/n0 vs. ρ̂�(τα) for various � at T = 0.267.
(b) Q̂�(τα) vs. δρ̂�(τα)/

√〈δρ̂2
� (τα)〉 for various � at T = 0.267. In (a)

and (b), 〈Q̂�(τα)〉/n0 is shown by the black dashed line. (c) χQ̂(�) =
V�[〈Q̂2

�(τα)〉 − 〈Q̂�(τα)〉2]/n2
0 at T = 0.267. The green dashed line

(3(�/ξQ̂)2) is a fit to χQ̂(�)/n2
0 for smaller �(� 2ξQ̂).

χQ̂(�) is similar to that obtained in finite-size studies [70,71]:
χQ̂ increases and then saturates for larger �; that is, for � � ξQ̂

the subsystem has regions with a wider range of degrees of
(im)mobility with similar statistical properties.

4. Short summary

We have shown preliminary results indicating an intimate
link between local density and local (im)mobility; the rela-
tionship between Q̂�(�t) and ρ̂�(�t) exhibits a tendency to
show that denser regions are less mobile for the time scale
of the structural relaxation. However, the present numerical
results do not directly support the argument developed in the
main text: The immobility Q̂�(�t) is determined by the total
displacement for a given time domain [t0,t0 + �t], and in
each subsystem, immobile and mobile states are interchanged
during the time period �t(∼τα) with some probability. There-
fore, the present measurement does not distinguish between
“glassy” and “nonglassy” regions for a given state at time t .
To examine the validity of our model, a different analysis using
a specifically designed simulation setup is desirable, which will
be the subject of a future study.
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