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Double-layer force suppression between charged microspheres
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In this paper we propose a protocol to suppress double-layer forces between two microspheres immersed in a
dielectric medium, being one microsphere metallic at a controlled potential ψM and the other a charged one either
metallic or dielectric. The approach is valid for a wide range of distances between them. We show that, for a given
distance between the two microspheres, the double-layer force can be totally suppressed by simply tuning ψM

up to values dictated by the linearized Poisson-Boltzmann equation. Our key finding is that such values can be
substantially different from the ones predicted by the commonly used proximity force approximation, also known
as the Derjaguin approximation, even in situations where the latter is expected to be accurate. The proposed
procedure can be used to suppress the double-layer interaction in force spectroscopy experiments, thus paving
the way for measurements of other surface interactions, such as Casimir dispersion forces.
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I. INTRODUCTION

Electrostatic double-layer forces are among the most im-
portant interactions between solid surfaces in liquids [1,2].
Being one of the pillars of the Derjaguin, Landau, Verwey, and
Overbeek (DLVO) theory [3–5], which was developed seven
decades ago to explain the aggregation of aqueous dispersions,
this interaction has been extensively studied over the past
century, from the pioneering works of Gouy, Chapman, and
Debye [6–8] to the recent force spectroscopy experiments us-
ing atomic force microscopes (AFM) [9–16], optical tweezers
(OT) [17–22], and total internal reflection microscopy (TIRM)
[23–25].

In some experiments, however, electrostatic double-layer
forces were actually suppressed in order to probe other inter-
actions such as the Casimir force [26]. In fact, electrostatic
double-layer force suppression is commonly achieved by salt
screening of the surface charges in polar media, [26], or
by using specific soluble charge control agents in apolar
environments [20]. When metallic surfaces are present, another
strategy consists in finding particular values of the electro-
static potentials at those surfaces that suppress the double-
layer force between them. These values, henceforth named
potentials of zero force (PZF) [27], are obtained by either
changing the solution’s pH or by electrostatic potential tuning
[11,27–29].

Double-layer forces are usually described by the (nonlinear)
Poisson-Boltzmann (PB) equation [9]. When the surfaces
are separated by very short distances (a few nanometers or
less), two important properties determine the nature of the
interaction: (i) the potentials involved are typically much
larger than kBT /e (where e is the elementary charge), so
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that nonlinearities are relevant, and (ii) the curvature of the
surfaces has a negligible effect, so one can use the proximity
force (Derjaguin) approximation (PFA) to calculate the force
by averaging the result for parallel planar surfaces over the
local distances. Additionally, since the PB equation is based
on a mean-field approximation, it does not take ionic specificity
[30,31] and correlations (ion-ion and ion-image interactions)
[32–35] into account. Such effects are relevant at short dis-
tances, particularly for multivalent ions. In this work, however,
we are interested in larger distances (tens of nanometers or
more). In such range, we are entitled to neglect beyond-PB
effects [36] and replace the full PB equation by its linearized
version, henceforth referred to as Debye-Hückel (DH) equation
[9]. On the other hand, curvature effects become more relevant,
and then it is indispensable to take the spherical geometry fully
into account.

Here we propose a theoretical protocol to suppress the
double-layer force between two charged microspheres im-
mersed in a dielectric medium for a wide distance range. One
of the microspheres is metallic and placed at an externally con-
trolled electrostatic potential ψM, while the other microsphere
could be either (i) a charge-regulated (CR) dielectric micro-
sphere, or (ii) an electrically isolated metallic microsphere with
total charge Q. Then, for a given distance L, the electrostatic
double-layer force between them can be totally suppressed by
simply tuning ψM up to a calculated PZF value.

Our most striking observation is that there are situations
where the PFA predictions for the PZFs are completely off the
mark, even when they are, in principle, expected to be accurate.
As we shall discuss, this is not exactly due to a failure of the
PFA, but rather to the fact that the PFA is not well defined in
such situations.

The paper is organized as follows. The results for dielec-
tric and metallic spheres are presented in Secs. II and III,
respectively. Section IV is dedicated to concluding remarks.
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FIG. 1. Dielectric and metallic microspheres. The potentiostat
controls the metallic microsphere electrical potential ψM.

Appendixes A and B contain details of the theoretical deriva-
tion, whereas Appendixes C and D discuss commonly em-
ployed approximations.

II. CHARGE-REGULATED DIELECTRIC MICROSPHERE

A. Debye-Hückel theory with two spherical surfaces

We consider a linear and isotropic dielectric microsphere of
radius R1, relative permittivity εp, and a metallic microsphere
of radius R2, with their centers separated by a distance L along
the z axis, as depicted in Fig. 1. The distance of closest ap-
proach is L = L − R1 − R2. The microspheres are embedded
in an isotropic Z : Z electrolyte, which is a substance that
separates into cations and anions of Z and −Z valence under
solvation, with relative permittivity εm, and the whole system is
in thermal equilibrium at a temperature T . We assume that the
metallic sphere is held at an externally controlled electrostatic
potentialψM, and that the dielectric microsphere may exchange
charge with the medium by ion adsorption or dissociation
processes [37]. We extend the theory developed in Ref. [38] to
the case of spheres with different radii and material properties,
and derive the double-layer force from the solution for the
electrostatic potential.

The electrostatic potential in the electrolyte outside the
microspheres (region III in Fig. 1) satisfies the DH equation
[1,2,8]

(∇2 − κ2)ψ(r) = 0 , (1)

where

λD = 1

κ
=

√
εmkBT

2(Ze)2n∞
(2)

is the Debye length, a measure of the diffuse double-layer
thickness [1]. n∞ is the ionic bulk concentration (assumed
to be much higher than the concentration of ions dissociated
from the surfaces). While the linear approximation leading
to the DH equation (1) is strictly valid when |ψ | � 25 mV
for T ∼ 300 K, it is commonly found that the results are
trustworthy for potentials up to 50–80 mV [1].

We assume that there is no free electric charge inside the
microspheres. Thus, the electrostatic potential in regions I

and II satisfies the Laplace’s equation

∇2ψ(r) = 0. (3)

1. General solution outside and inside the microspheres

Following [38–43], we write the general solution of Eq. (1)
with azimuthal symmetry as

ψIII (P ) =
∞∑

n=0

[ankn(κr1)Pn(cos θ1)

+ bnkn(κr2)Pn(cos θ2)], (4)

where r1 and θ1 are the spherical coordinates of a point P in
region III with respect to the center of sphere I, and likewise
for r2 and θ2 with respect to the center of sphere II, as illustrated
in Fig. 1. Pn is the nth-order Legendre polynomial and kn is the
modified spherical Bessel function of the third kind and order
n defined in Appendix A. The unknown coefficients an and bn

will be found by applying appropriate boundary conditions.
In region I , the azimuthal symmetrical solution to Eq. (3)

is given by [44]

ψI (r1,θ1) =
∞∑

n=0

cnr
n
1 Pn(cos θ1), (5)

with cn the corresponding unknown coefficients. In region II,

the electrostatic potential is fixed:

ψII (r2,θ2) = ψM. (6)

2. Boundary conditions

The boundary conditions for the electrostatic potential at
the surface of the dielectric microsphere are given by

ψI (r1,θ1)|r1=R−
1

= ψIII (r1,θ1)|r1=R+
1
, (7)

n̂ · [εp∇ψI (r1,θ1)|r1=R−
1

− εm∇ψIII (r1,θ1)|r1=R+
1

]

= σ1(θ1; L)

ε0
, (8)

where ε0 is the vacuum permittivity, n̂ is the outward normal
unit vector, and σ1(θ1; L) is the nonuniform surface charge den-
sity that in general depends on the separation L. We consider
a constant charge-regulation model (CR) [37,38,40,45–49]:

σ1(θ1; L) = σ01 − Csph
I [ψIII (R+

1 ,θ1; L) − ψ01
]
, (9)

where σ01 and ψ01 are, respectively, the surface charge density
and potential of the dielectric microsphere when isolated, i.e.,
when L � λD. They are related by the capacitance per unit
area Csph

D of the isolated dielectric microsphere:

ψ01 = σ01

Csph
D

(10)

Csph
D = ε0 εm(1 + κR1)

R1
. (11)

The constant Csph
I = −∂σ1/∂ψ � 0 is the regulation capaci-

tance per unit area. It quantifies the dielectric surface disso-
ciation rates and is assumed to be distance independent. In
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the DH regime, the Boltzmann factor is linearized, and then
the potential difference appearing in the right-hand side of (9)
represents the electrolyte charge density variation with distance
in the vicinity of the sphere surface. Thus, the CR model (9)
yields the local surface charge density σ1 as a linear response to
the modification of the ionic concentration in the vicinity of the
surface. The resulting distribution is invariant under rotations
around the z axis, hence leading to a potential with azimuthal
symmetry as given by Eqs. (4) and (5).

Two limiting cases are noteworthy: when Csph
I → 0, we

recover the constant charge (CC) model, in which the surface
charge density is assumed to be uniform, distance independent,
and prescribed. In the opposite limit Csph

I → ∞, we have the
constant potential (CP) model. It is convenient to define the
regulation parameter p [37,48,50]:

p = Csph
D

Csph
D + Csph

I

. (12)

The CP and CC limits correspond to p = 0 and p = 1,

respectively. Intermediate values correspond to a situation in
which both charge density and potential of the dielectric sphere
are perturbed as the metallic sphere approaches.

For the metallic microsphere, we have the boundary condi-
tions

ψIII (r2,θ2)|r2=R+
2

= ψM, (13)

−εmn̂ · ∇ψIII (r2,θ2)|r2=R+
2

= σ2(θ2; L)

ε0
, (14)

where again n̂ is the outward normal unit vector and σ2(θ2; L)
is the nonuniform metallic surface charge density.

3. Electrostatic potential in the electrolyte

We solve for the coefficients an and bn giving the potential
in the electrolyte [see Eq. (4)] in terms of the metallic sphere
prescribed potential ψM and the dielectric sphere unperturbed
surface charge density σ01 (i.e., the charge density for L �
λD). We first define

Xn ≡ Anan , Yn ≡ kn(κR2)bn, (15)

where

An ≡
[
n

εp

εm

+ R1Csph
I

ε0 εm

]
kn(κR1) − κR1k

′
n(κR1), (16)

with k′
n the derivative of the modified spherical Bessel function

of the third kind kn with respect to its argument. We now match
the expressions for the potential in the three regions, as given
by Eqs. (4), (5), and (6), taking the boundary conditions (7), (8),
and (13) into account. We use the addition theorem for Bessel
functions in order to express the potential in the electrolyte,
given by Eq. (4), in terms of a single coordinate system, as
detailed in Appendix A. We also replace the dielectric charge
density appearing in (8) by the CR model Eq. (9). The resulting
system of coupled linear equations is written as

X + B · Y = R1σ̄1

ε0 εm

e0,

Y + C · X = ψM e0, (17)

where e0i = δi0,

σ̄1 ≡ σ01 + Csph
I ψ01 = σ01

p
, (18)

Bjk ≡ (2j + 1)
Bjk(κL)

kk(κR2)

{[
j

εp

εm

+ R1Csph
I

ε0 εm

]
ij (κR1)

−κR1i
′
j (κR1)

}
, (19)

Cjk ≡ (2j + 1)
Bjk(κL)

Ak

ij (κR2). (20)

We have again used the prime to denote the derivative of the
modified spherical Bessel function of the first kind ij (defined
in Appendix A) with respect to its argument. Bjk(κL) is defined
by Eq. (A2) in Appendix A.

We solve the system (17) and find

Xn = R1σ̄1

ε0 εm

(E−1)n0 − ψMFn0, (21)

Yn = ψMGn0 − R1σ̄1

ε0 εm

Hn0, (22)

where

E ≡ 1 − B · C, (23)

F ≡ E−1 · B, (24)

G ≡ 1 + C · F, (25)

H ≡ C · E−1, (26)

and with 1 denoting the identity matrix.
Once the linear system Eq. (17) is solved, we obtain the

coefficients an and bn from Eq. (15). The potential in the
electrolyte is then known from Eq. (4), allowing us to calculate
the double-layer force between the microspheres as described
below.

B. DH double-layer force and potential of zero force (PZF)

The double-layer force on the dielectric microsphere is
given by [38,39,41,45]

F1 ≡
∮

∂R1

←→
� · n̂ dA, (27)

where ∂R1 is a surface enclosing the sphere and
←→
� ≡ ←→

T − 

←→
1 , (28)

is the tensor accounting for the pressures and stresses in the
electrolyte. The latter contains an electrical contribution given
by the Maxwell stress tensor

Tij = ε0 εm

(
EiEj − 1

2δijE
2) (29)

and the osmotic pressure contribution


 ≡ ε0 εmκ2ψ2

2
(30)

arising from the nonuniform ionic volume density.
Choosing ∂R1 to be a spherical surface of radius R1 +

δ with δ → 0+), using the obtained an and bn coefficients in
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(4) to calculate all the electric field components in Eqs. (29),
and remembering that azimuthal symmetry entails that the
force is along the z axis, the double-layer force is given by

FD(L) = AD(L)ψ2
M + BD(L)ψM + CD(L), (31)

which has a simple quadratic dependence on the metallic
sphere potential ψM. The coefficients AD(L),BD(L), and
CD(L) are fairly complicated functions of L, and explicit
expressions are given in Appendix B.

Equation (31) tells us how to produce a vanishing force for
a given distance L: one has to simply solve a second-order
polynomial equation, and then tune ψM up to one of the two
zeros of the quadratic function given by the right-hand side of
Eq. (31). The two roots are the potentials of zero force ψPZF.

In the remainder of this section, we analyze (31) in connec-
tion with two important limiting cases.

1. Isolation limit: Linear superposition approximation (LSA)

Let us consider the situation in which the two microspheres
are in near isolation: κL � 1. In this limit, the double layer
around each microsphere is not affected by the presence of
the neighboring one. Hence the potential is simply the sum
of the solutions for isolated spheres. Accordingly, our exact
results for the linear system (17) can be approximated to a
much simpler form and solved analytically, as discussed in
Appendix C. The resulting force has a simple analytical form,
and the coefficients appearing in (31) are approximated by

AD(L) ≈ CD(L) ≈ O(e−2κL) (κL � 1) ,

BD(L) ≈ 4πε0 εm

R1
R1CI

ε0 εm
+ 1 + κR1

(
σ̄1

ε0 εm

)

×(1 + κL)
R1R2

L2
e−κ(L−R1−R2), (32)

which in turn simplifies (31) to

FD(L) ≈ 4πε0 εmψMψ01(1 + κL)
R1R2

L2
e−κ(L−R1−R2), (33)

where ψ01 is given by Eqs. (10) and (11).
Expression (33) is the Bell and Levine double-layer force

in the LSA limit [51] and, as pointed out by Ref. [37], is
independent of the dielectric microsphere boundary condition
type (9), since ψ01 does not depend on the spherical regulation
capacitance per unit area Csph

I . From (33), force suppression
in the LSA limit is obtained by simply grounding the metallic
sphere:

ψ
(LSA)
PZF = 0, (34)

regardless of the dielectric electric potential value ψ01.

2. Proximity force approximation (PFA)

Another important limit corresponds to the range of validity
of the proximity force or Derjaguin approximation (PFA)
[1,2,52,53], in which the distance L and the Debye length λD

are both much smaller than the radii:

L � R1,R2, (35)

λD = 1

κ
� R1,R2. (36)

While (35) is a geometrical condition entailing that the sphere
curvature is small at the scale of the distance between the
surfaces, (36) in turn is a physical condition, which assures
that the interaction has a short range when compared to the
sphere diameter. Taken together, the two conditions allow one
to approximate the interaction between the microspheres by
the average of the interaction between two half-spaces (with
planar interfaces) over the local distances. The resulting force
is given by Ref. [52]

F(PFA)
D (L) = 2π

(
R1R2

R1 + R2

)
uplanes(L), (37)

where

uplanes(L) = −
∫ L

∞
P (a)da, (38)

is the potential energy per unit of area between two half-
spaces made of the same material as the corresponding
spheres, and P (a) is the pressure on the dielectric half-region
surface. Equation (37) leads to a quadratic function of ψM

as already discussed in connection with the exact solution
and Eq. (31). Analytical expressions for the corresponding
coefficients A(PFA)

D ,B(PFA)
D , and C(PFA)

D can be obtained from the
results of Ref. [40] valid in the general case of charge-regulated
surfaces. For the sake of completeness, we present a detailed
derivation in Appendix D, including also the case of an isolated
metallic surface, which is relevant for the discussion of Sec. III.

C. Examples

As our first example, let us consider a situation in which
a polystyrene microsphere (εp = 2.5) of radius R1 = 10 μm,
free surface charge densityσ10 = −0.05 mC/m2 [54], andp =
0.41 (CR model) [13] interacts with a metallic microsphere
of R2 = 15 μm at an externally controlled ψM. Both micro-
spheres are immersed in water (εm = 78.4), where proper salt
screening reduces the Debye length to λD = 10 nm. Figure 2
illustrates the PZF roots for the exact DH calculation, as well as
for the LSA and PFA. We take L varying from 10 nm–50 nm.

Each panel of Fig. 2 shows one of the two roots of
the right-hand side of (31). For instance, if L = 12 nm,
the double-layer force is canceled for either Fig. 2(a)
ψPZF = −0.11 mV or Fig. 2(b) ψPZF = −26.33 mV, as
indicated by the horizontal and vertical dashed lines. The
corresponding inset plots show the force FD(L) when ψM

is tuned up to each of these values. At such values, the
force changes from repulsion (positive sign) to attraction
(negative sign). The attraction results from the electric charge
redistribution (electrostatic induction) on the metallic surface
caused by the electric charges on the dielectric microsphere.

In Fig. 2(a), the PZFs satisfy the DH linearity condition
|ψPZF| � 25 mV for T ∼ 300 K for the entire distance range
shown in the plot. On the other hand, in Fig. 2(b), the
linear approximation is valid only in the region L < 20 nm.

Thus, only one of the roots is consistent with the linear DH
approximation leading to (31) for L > 20 nm. Additionally,
since we have L/R1 < 5 × 10−3 and λD < L in this example,
PFA conditions (35) and (36) are rather satisfied, and then the
exact DH and PFA predictions for the PZF are expected to

022611-4



DOUBLE-LAYER FORCE SUPPRESSION BETWEEN … PHYSICAL REVIEW E 97, 022611 (2018)

(a)

(b)

L (nm)

L (nm)

L (nm)

L (nm)

F
D

(f
N

)

F
D

(p
N

)

ψ
P

Z
F

(m
V

)
ψ

P
Z
F

(m
V

)
ψM = −0.11 mV

ψM = −26.33 mV

ψ
PZ
F

ψ
PZ
F

ψM

ψM

L

L

FIG. 2. Variation of the potentials of zero force (PZF) with
distance for the exact DH, LSA, and PFA models. We consider a
polystyrene microsphere (radius R1 = 10 μm and free charge density
σ10 = −0.05 mC/m2) interacting with a metallic sphere of radius
R2 = 15 μm. The Debye length is λD = 10 nm. DH and PFA results
for ψPZF are consistent within 1% for all the distance range considered
in (a), and within 2.5% in (b). Insets: double-layer force variation with
distance for ψM = −0.11 mV in (a) and ψM = −26.33 mV in (b).

agree. Indeed, we find a relative difference smaller than 1%
and 2.5% in Figs. 2(a) and 2(b), respectively.

As a second example, we consider a smaller dielectric
microsphere and a larger Debye length: R1 = 0.5 μm and
λD = 0.75 μm, and keep all other parameters as in Fig. 2.
In Fig. 3, we plot the PZF root of smaller magnitude as a
function of distance. Since the minimum distance L varies
from 0.1 μm up to 1.5 μm, PFA conditions (35) and (36)
are not met. For example, when L = 0.40 μm, the exact DH
and PFA models predict double-layer force suppression for
very different PZF values, given by ψPZF = −4.84 mV and

ψ
P

Z
F

(m
V

)

F
D

(p
N

)

ψM = −4.84 mV

L(μm)

L(μm)

ψ
PZ
F

L

ψM

FIG. 3. Same conventions as in Fig. 2, with a polystyrene micro-
sphere of radius R1 = 0.5 μm and an electrolyte with λD = 0.75 μm.

The exact DH and PFA predictions for ψPZF disagree even for
distances smaller than R1. Inset: double-layer force as a function of
distance for ψM = −4.84 mV.

ψ
(PFA)
PZF = −16.10 mV, respectively. As a consequence, when

setting ψM = ψ
(PFA)
PZF , the double-layer force is still significant,

FD(L = 0.40 μm) = 0.76 pN, which could lead to a system-
atic error when measuring additional surface interactions such
as the Casimir force.

The LSA curves shown in the insets of Figs. 2 and 3 fail
to account for the crossover between repulsion to attraction
as the distance decreases. Moreover, LSA significantly over-
estimates the repulsive force for distances L � 3λD for the
examples shown in Fig. 2. As a final remark, we note that the
assumption of a prescribed potential ψM becomes increasingly
less accurate as the distance becomes smaller than λD, which
corresponds to the left side of Fig. 3. In this case, charge-
regulation effects might be relevant for the metallic sphere as
well [29]. However, the qualitative features shown in Fig. 3
regarding the inadequacies of PFA and LSA should still hold.

III. ISOLATED METALLIC MICROSPHERE

A. Debye-Hückel theory with two metallic spherical surfaces

In this section, we replace the dielectric microsphere by a
metallic one, which is electrically isolated with total charge
Q. As in the previous section, we first solve the linear
Poisson-Boltzmann equation (1) giving the potential in the
electrolyte medium. For that purpose, we take into account the
appropriate boundary conditions. While the solutions outside
the microspheres and inside the metallic microsphere 2 are
still given by (4) and (6) respectively, the potential inside the
isolated metallic microsphere (sphere 1) is now given by

ψI(r1,θ1) = φM(L), (39)

where φM(L) varies with the distance L.
The boundary conditions at the surface of the isolated

metallic microsphere are given by

ψIII (r1,θ1)|r1=R+
1

= φM(L), (40)

−εmn̂ · ∇ψIII (r1,θ1)|r1=R+
1

= σ1(θ1,κL)

ε0
, (41)

where the nonuniform distance-dependent surface charge den-
sity σ1 is constrained by the condition that the total charge Q

is prescribed and distance independent. This type of boundary
condition has been recently considered for the simpler planar
geometry [44,55,56]. For the metallic microsphere surface held
at ψM, the boundary conditions are still given by (13) and (14).

Following the method discussed in the previous section, we
derive the linear system of equations

X + C(1) · Y = φM e0

Y + C(2) · X = ψM e0, (42)

where e0i = δi0,

Xj ≡ kj (κR1)aj , Yj ≡ kj (κR2)bj , (43)

and

C(1)
jk ≡ (2j + 1)Bjk(κL)

ij (κR1)

kk(κR2)

C(2)
jk ≡ (2j + 1)Bjk(κL)

ij (κR2)

kk(κR1)
. (44)
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Solving this system, we then have

Xn = φM(E−1)n0 − ψMF(1)
n0 , (45)

Yn = ψMGn0 − φMHn0, (46)

where

E ≡ 1 − C(1) · C(2), (47)

G ≡ 1 + C(2) · F(1), (48)

F(1) ≡ E−1 · C(1), (49)

H ≡ C(2) · E−1. (50)

Although (45) and (46) constitute the formal solution of
the linear system (42), we actually do not know the potential
φM(L), which varies as a function of L. Indeed, since the total
charge Q of the isolated metallic microsphere is fixed, we
should rewrite φM(L) in terms of Q. By integrating σ1(θ1,κL)
over the microsphere surface and using the orthogonality of
the Legendre polynomials, we find

X0 − κR1

1 + κR1

∞∑
k=0

C′(1)
0k Yk = Q

4πε0 εmR1(1 + κR1)
, (51)

where

C′(1)
jk ≡ (2j + 1)Bjk(κL)

i ′j (κR1)

kk(κR2)
. (52)

Combining this result with Eqs. (45) and (46), we obtain

φM(L) = 
(L)ψM + �(L), (53)

where


(L) = F(1)
00 + K00

E−1
00 + L00

, (54)

�(L) = Q

4πε0 εmR1(1 + κR1)

1

E−1
00 + L00

, (55)

and

K = κR1

1 + κR1
C′(1) · G, (56)

L = κR1

1 + κR1
C′(1) · H. (57)

Expression (53) relates the electrostatic potential φM(L) with
the known parameters ψM and Q.

B. DH double-layer force and potential of zero force (PZF)

Since a metallic microsphere surface at electrostatic equilib-
rium is an equipotential, the double-layer force calculation for
this case is considerably simplified. Indeed, choosing ∂R1 to be
a spherical surface of radius infinitesimally close to the surface
of the isolated metallic sphere, and using (28) combined with
(29) and (30), we obtain for the double-layer force component
along ẑ

FM = −πR2
1ε0 εm

∫ 1

−1
E2

r cos θ1 dcos θ1, (58)

and

Er = EIII
r (r1,θ1) = − ∂ψIII

∂r1
(r1,θ1)

∣∣∣∣
r1=R+

1

. (59)

Using (4), (45), and (46), together with (53), (54), and (55),
we can then show that (58) can be rewritten as

FM(L) = AM(L)ψ2
M + BM(L)ψM + CM(L), (60)

where the coefficients AM(L),BM(L), and CM(L) are given
in Appendix B. Not surprisingly, as in (31), (60) has again
a simple quadratic dependence on ψM. As in the previous
section, the PZF values are then given by the two roots of
the right-hand side of Eq. (60).

1. LSA and PFA Limits

The LSA expression for the double-layer force in the current
case can be obtained by using the same ideas discussed in Sec.
II B 1, leading to

FM(L) ≈ 4πε0 εmψMφ
(0)
M (1 + κL)

R1R2

L2
e−κ(L−R1−R2), (61)

where

φ
(0)
M ≡ Q

4πε0 εmR1(1 + κR1)
(62)

is the screened monopole contribution for the potential (53).
Regardless of its value, it is clear that the LSA double-layer
force vanishes for all distances if ψ

(LSA)
PZF = 0 as in (33). Finally,

let us also note that, in this isolation LSA limit, the surface
charge density (14) of both metallic microspheres are uniform
and given by

σ01 ≈ Q

4πR2
1

= ε0 εm

1 + κR1

R1
φ

(0)
M , (63)

σ02 ≈ ε0 εm

1 + κR2

R2
ψM. (64)

In order to calculate the force on the isolated metallic
microsphere within the PFA, we need the potential energy per
unit area between two half-regions: one held at an external
electrostatic potential ψM and the other constrained to have a
total charge Q. However, the latter condition combined with
the planar symmetry lead to the stronger statement of a uniform
(and distance-independent) surface charge density σ1 = Q/A.
The resulting force is derived in Appendix D:

F(PFA)
M (L) = 2π

(
R1R2

R1 + R2

)

×
⎛
⎝κε0 εme−κLψ2

M + 2σ1ψM − σ 2
1

κε0 εm
e−κL

eκL + e−κL

⎞
⎠.

(65)

The PZF values are then simply given by

ψ
(PFA)
PZF = σ1e

κL

κε0 εm

(
−1 ±

√
1 + e−2κL

)
. (66)
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FIG. 4. Same conventions as in Fig. 2, with an isolated metallic
microsphere of radius R1 = 10 μm interacting with a metallic sphere
of radius R2 = 15 μm (at an externally controlled potential ψM )
across an electrolyte with λD = 10 nm. Plots (a) and (b) show the two
different roots of Eq. (60). The PFA result is calculated for the value at
isolation σ1 = −0.05 mC/m2. While the DH and the PFA predictions
for the PZF are in good agreement in plot (a), they are quite different
in plot (b). Insets show the double-layer forces as function of distance
for (a) ψM = −48.73 μV and (b) ψM = −10.60 mV.

C. Examples

Let us consider the situation in which an isolated metallic
microsphere of radius R1 = 10 μm and total charge Q =
−6.28 × 10−14C interacts with another metallic microsphere
of radius R2 = 15 μm at an externally controlled potential ψM.
They are both immersed in water, where proper salt screening
reduces the Debye length to λD = 10 nm. The two PZF roots
of (60) are shown separately in Figs. 4(a) and 4(b) for L

varying from 10 nm to 50 nm, together with the LSA and
PFA predictions. The PFA is evaluated for the fixed surface
charge density σ1 = −0.05 mC/m2. For instance, the root
shown in Fig. 4(a) values ψPZF = −48.73 μV at L = 20 nm,

as indicated by the horizontal and vertical dashed lines. The
inset shows that the double-layer force for ψM = −48.73 μV
is indeed suppressed and changes sign at such distance.

Figure 4(a) shows an overall good agreement between
the DH and PFA values of the PZF, as expected since PFA
conditions (35) and (36) are satisfied for the parameters corre-
sponding to this figure. On the other hand, for the second PZF
root, shown in Fig. 4(b), DH and PFA predictions completely
disagree, although the parameters are the same as in Fig. 4(a).

In order to understand such behavior, we plot in Fig. 5 the
variation of the isolated sphere electrostatic potential φM with

FIG. 5. In (a), (b) and (c), we show, respectively and as a function
of the distance L, the potential ϕM of the isolated microsphere, the
surface charge density σ1 of the isolated microsphere, and the surface
charge density σ2 of the microsphere held at ψM = −48.73 μV,
which is the PZF root shown in the inset of Fig. 4(a). In (d)–(f),
we respectively show the same quantities for the PZF root ψM =
−10.60 mV shown in the inset of Fig. 4(b). In (a), ϕM is much larger
than ψM. σ1 in (b) remains almost constant and equal to its PFA value,
whileσ2 in (c) changes sign as a consequence of electrostatic induction
occurring mainly on microsphere held at a prescribed potential. This
situation inverts in (d), (e) and (f), where, in contrast, ϕM is now much
smaller than ψM, σ1 changes significantly as electrostatic induction
primarily happens in the isolated microsphere, whereas σ2 remains
almost equal to its isolation value.

distance, together with the surface charge densities σ1 and σ2 of
both spheres evaluated at the points of closest separation θ1 =
θ2 = 0. Figures 5(a)–5(c) correspond to the PZF root shown
in the inset of Fig. 4(a), whereas Figs. 5(d)–5(f) correspond to
the PZF root shown in the inset of Fig. 4(b).

According to Fig. 5(a), ϕM is much larger than ψM =
−48.73 μV. As a consequence, electrostatic induction occurs
mainly on the sphere at the controlled potential ψPZF, making
its surface charge density σ2 strongly distance dependent and
nonuniform, as one can see in Fig. 5(c). On the other hand,
the isolated sphere surface charge density σ1 is approximately
uniform and distance independent, as shown in Fig. 5(b), thus
explaining why the PFA result is very close to the DH one
in Fig. 4(a). However, some surface charge variation starts to
build up on the isolated sphere for distances below 20 nm,
making PFA slightly less accurate in this range, in agreement
with the short-distance behavior displayed in Fig. 4(a).

The roles of the two spheres are essentially interchanged
when considering the PZF root shown in Fig. 4(b). In this
case, ϕM is much smaller than ψM = −10.60 mV. Electro-
static induction now occurs mainly on the isolated sphere, as
indicated by the variations of σ1 and σ2 with distance shown
in Figs. 4(e) and 4(f), respectively. The strong variation of the
isolated sphere charge density σ1 is in striking contradiction
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with the assumptions underlying the PFA, thus explaining
why this approximation is unable to capture the qualitative
features of the double-layer interaction in this case. Indeed,
for this situation, the PFA force is always repulsive and in
complete disagreement with the DH force, which displays a
crossover from repulsion to attraction as the distance decreases,
as illustrated in the corresponding inset of Fig. 4(b). Thus, we
conclude that conditions (35) and (36) are not sufficient for the
validity of PFA when considering isolated metallic spheres.

As a final remark, we note that the linearity condition
is satisfied throughout most of the distance range (10 nm �
L � 40 nm) shown in Fig. 4(b). The nonlinear corrections
for 40 nm � L < 50 nm should not affect the qualitative
conclusions discussed here.

IV. CONCLUSION

We propose a protocol based on electrostatic potential
control to suppress the electrostatic double-layer forces be-
tween a metallic microsphere and a dielectric or another
metallic microsphere. The method works in a wide range
of distances L � 10 nm beyond the PFA, and even in cases
where the PFA is not well defined. It requires the possibility
of externally controlling the potential of a metallic sphere,
which should be feasible for distances comparable to or larger
than the Debye screening length. Although our method relies
on Poisson-Boltzmann linearization, it is still accurate in
several typical experimental conditions, as illustrated by a
number of examples corresponding to realistic experimental
parameters involving aqueous solutions. Furthermore, it can
be implemented using current experimental techniques, for
instance AFM [11] and OT [22]. The protocol might also be
suited to suppress the double-layer force in apolar media [1,57],
for which salt screening is usually not possible [20,58]. Finally,
this method would be useful in force spectroscopy experiments
probing additional interactions such as the Casimir force,
particularly in situations where the double-layer force is not
totally suppressed by screening.
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APPENDIX A: ADDITION THEOREM FOR
BESSEL FUNCTIONS

With the help of the addition theorem for Bessel functions
[38,39,59], it is possible to rewrite expression (1), the electric
potential ψIII (P ) in the region outside the microspheres, in

terms of variables related to a single coordinate system, that
could be centered in either microsphere 1 (then the variables
are r1,θ1) or microsphere 2 (and then we have r2,θ2):

ψIII (P ) =
∞∑

n=0

[
ankn(κr1)Pn(cos θ1)

+bn

∞∑
m=0

(2m + 1)Bmn(κL)im(κr1)Pm(cos θ1)

]
,

=
∞∑

n=0

[
an

∞∑
m=0

(2m + 1)Bmn(κL)im(κr2)Pm(cos θ2)

+bnkn(κr2)Pn(cos θ2)

]
, (A1)

where

Bmn(κL) =
∞∑

ν=0

Aν
mnkm+n−2ν(κL), (A2)

with

Aν
mn = �

(
m − ν + 1

2

)
�
(
n − ν + 1

2

)
�
(
ν + 1

2

)
π�

(
m + n − ν + 3

2

)
× (m + n − ν)!

(m − ν)!(n − ν)!ν!

(
m + n − 2ν + 1

2

)
.

(A3)

In these expressions, � is the Gamma function, and in and kn

are the modified spherical Bessel function of the first and third
kind, respectively. They are defined as

in(x) = (π/2x)1/2In+ 1
2
(x) (A4)

kn(x) = (π/2x)1/2Kn+ 1
2
(x), (A5)

where In(x) and Kn(x) are the modified cylindrical Bessel
functions [60].

APPENDIX B: DOUBLE-LAYER FORCE COEFFICIENTS

In the expression (31) for the double-layer force between
a metallic microsphere at electrostatic potential ψM and
a charge-regulated dielectric microsphere, the coefficients
AD(L), BD(L), and CD(L) are given by

AD(L) ≡ πε0 εm � · Γ · �,

BD(L) ≡ πε0 εm (� · Γ · � + � · Γ · �)

+ 4π

3
R1σ̄1

(
R1Csph

I

ε0 εm

+ εp

εm

+ 2

)
eT

1 · �,

CD(L) ≡ πε0 εm � · Γ · �

+ 4π

3
R1σ̄1

(
R1Csph

I

ε0 εm

+ εp

εm

+ 2

)
eT

1 · �, (B1)
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where eT
1i = δ1i ,

�k ≡ −kk(κR1)

Ak

Fk0 +
∞∑
l=0

B′
klGl0, (B2)

�k ≡ R1σ̄1

ε0 εm

[
kk(κR1)

Ak

(
E−1)

k0 −
∞∑
l=0

B′
klHl0

]
, (B3)

being

B′
kl ≡ (2k + 1)

Bkl(κL)

kl(κR2)
ik(κR1). (B4)

Furthermore, Γ is a matrix which its elements are independent
of the distance L and are given by

Γij ≡
{

(κR1)2

−
[
i

(
εp

εm

)
+ R1Csph

I

ε0 εm

][
j

(
εp

εm

)
+ R1Csph

I

ε0 εm

]}
P(1)

ij

− 2

[
i

(
εp

εm

)
+ R1Csph

I

ε0 εm

]
P(2)

ij + P(3)
ij , (B5)

where

P(1)
ij =

∫ 1

−1
μPi(μ)Pj (μ)dμ

=

⎧⎪⎨
⎪⎩

2(j+1)
(2j+3)(2j+1) , i = j + 1

2j

(2j+1)(2j−1) , i = j − 1

0, i �= j ± 1

(B6)

P(2)
ij =

∫ 1

−1

(
1 − μ2

)
Pi(μ)P ′

j (μ)dμ

=

⎧⎪⎨
⎪⎩

− 2j (j+1)
(2j+3)(2j+1) , i = j + 1
2j (j+1)

(2j+1)(2j−1) , i = j − 1

0, i �= j ± 1

(B7)

P(3)
ij =

∫ 1

−1
μ
(
1 − μ2

)
P ′

i (μ)P ′
j (μ)dμ

=

⎧⎪⎨
⎪⎩

2j (j+1)(j+2)
(2j+3)(2j+1) , i = j + 1
2j (j−1)(j+1)
(2j+1)(2j−1) , i = j − 1

0, i �= j ± 1

. (B8)

For the case of a metallic microsphere at electrostatic
potential ψM and an isolated metallic microsphere with total
charge Q, the coefficients AM(L), BM(L), and CM(L) in (60)
are given by

AM(L) ≡ EM(L) + 
(L)FM(L) + 
2(L)GM(L),

BM(L) ≡ �(L)FM(L) + 2 
(L)�(L)GM(L),

CM(L) ≡ �2(L)GM(L), (B9)

where

EM(L) ≡ −πε0 εm(κR1)2eT
0 · [F̃

(1)T · M(1) · F̃(1)

− 2 G̃
T · B̃ · M(2) · F̃(1) + G̃

T · B̃ · M(3) · B̃ · G̃] · e0,

(B10)

FM(L) ≡ −πε0 εm(κR1)2eT
0 · [−Ẽ

−1T · M(1) · F̃(1)

− F̃
(1)T · M(1) · Ẽ−1 + 2 G̃

T · B̃ · M(2) · Ẽ−1

+ 2 H̃
T · B̃ · M(2) · F̃(1) − G̃

T · B̃ · M(3)B̃ · H̃
− H̃

T · B̃ · M(3) · B̃ · G̃] · e0, (B11)

GM(L) ≡ −πε0 εm(κR1)2eT
0 · [Ẽ

−1T · M(1) · Ẽ−1

− 2 H̃
T · B̃ · M(2) · Ẽ−1

+ H̃
T · B̃ · M(3) · B̃ · H̃] · e0, (B12)

where

M(1)
ij ≡ k′

i(κR1)k′
j (κR1)P(1)

ij , (B13)

M(2)
ij ≡ i ′i(κR1)k′

j (κR1)P(1)
ij , (B14)

M(3)
ij ≡ i ′i(κR1)i ′j (κR1)P(1)

ij , (B15)

and

B̃ij ≡ (2j + 1)Bij , (B16)

Ẽij ≡ Eij

ki(κR1)
, (B17)

G̃ij ≡ Gij

ki(κR2)
, (B18)

F̃
(1)
ij ≡ F(1)

ij

ki(κR1)
, (B19)

H̃ij ≡ Hij

ki(κR2)
. (B20)

APPENDIX C: LINEAR SUPERPOSITION
APPROXIMATION (LSA)

To solve the linear system of equations (17) in the LSA
limit, let us first note that (A2) can be written as

Bnm(κL) = π

2κLe−κL
∞∑

ν=0

Aν
nmR

(
n + m − 2ν + 1

2
,κL

)
,

(C1)

where we have used the expansion for the third-order modified
spherical Bessel function [60], being

R

(
n + 1

2
,z

)
=

n∑
k=0

(
n + 1

2
,k

)
(2z)−k ,

with (
n + 1

2 ,k
) ≡ (n + k)!

k!�(n − k + 1)
.

Retaining only the k = 0,1 terms, it is possible to show that

B00(κL) ≈ π

2κLe−κL, (C2)

B01(κL) ≈ π (1 + κL)

2(κL)2
e−κL. (C3)

(C1), together with (19) and (20), shows that the second term in
(23) has order O(e−2κL), and therefore can be neglected when
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compare to terms of order O(e−κL). As a result, (23) reduces
to

Eij ≈ E−1
ij ≈ δij , (C4)

allowing us to write (24), (25), and (26) as

Fij ≈ Bij ,

Gij ≈ δij ,

Hij ≈ Cij . (C5)

Using these results in (B2) and (B3), we then find

Δk(L) ≡ −kk(κR1)

Ak

Bk0 + B′
k0, (C6)

�k(L) ≡ R1σ̄1

ε0 εm

kk(κR1)

Ak

δk0. (C7)

Substituting this expressions into (B1), using (B4) and (B5),
and making lengthy but straightforward calculations, we are
lead to (32).

APPENDIX D: PROXIMITY FORCE
APPROXIMATION (PFA)

Consider two half-regions, region I and II , as illustrated in
Fig. 6, being the first dielectric with relative permittivity εp and
the second metallic at an externally controlled potential ψM.
The dielectric plane may exchange charge with the medium
by ion adsorption or dissociation processes [1,37,61], being
σ1 its surface free charge density. Again, Z : Z electrolytes
are dissolved in region III between them and are in thermal
equilibrium with the bath. The half-regions are separated by
the distance a.

To calculate the interaction potential energy per unit area
uplanes(L) for this configuration, we must solve the boundary
value problem defined by the equations

d2ψIII

dz2
(z) = κ2ψIII (z), 0 � z � a,

ψII (z) = ψM, z < 0,

d2ψI

dz2
(z) = 0, z > a, (D1)

subject to the boundary conditions at z = 0 and z = a

ψII (z)
∣∣
z=0− = ψIII (z)

∣∣
z=0+ , (D2)

−εm

dψIII

dz
(z)

∣∣∣∣
z=0+

= σ2(κa)

ε0
, (D3)

a

p

ψM σ1σ2

z

m

∂R1

FIG. 6. Dielectric half-region 1 and metallic half-region 2 at ψM.

ψIII (z)
∣∣
z=a− = ψI (z)

∣∣
z=a+ , (D4)

εm

dψIII

dz
(z)

∣∣∣∣
z=a−

− εp

dψI

dz
(z)

∣∣∣∣
z=a+

= σ1(κa)

ε0
, (D5)

where

σ1(κa) = σ01 − Cplane
I [ψIII (κa) − C(∞)],

= σ̄1 − Cplane
I ψIII (κa), (D6)

being

σ̄1 = σ01 + Cplane
I C(∞). (D7)

Similarly to (9), σ01 and C(∞) are, respectively, the surface
charge density and electrostatic potential of the dielectric
half-region I in near isolation, and the constant Cplane

I =
−∂σ1/∂ψ � 0, named plane regulation capacitance per unit
area (or plane inner layer capacitance per unit area), quantifies
the dielectric plane surface dissociation rates and it is assumed
to be distance independent. Again, we may define a parameter
p, such that

p = Cplane
D

Cplane
D + Cplane

I

, (D8)

where

Cplane
D = κε0 εm (D9)

is the diffuse layer capacitance per unit area of the isolated
plane 1. Note that for a correct comparison between a CR
dielectric microsphere and a CR dielectric half-region, (D7)
and (D8) above, must be, respectively, equal to (18) and (12).

The general solutions for the potential in the three regions
are, respectively, given by

ψIII (z) = Aeκz + Be−κz, 0 � z � a,

ψII (z) = ψM, z < 0,

ψI (z) = C, z > a. (D10)

Using the boundary conditions (D2) and (D5), we then get

A =
σ̄1

κε0 εm
+ (

1 − Cplane
I

κε0 εm

)
βψM(

1 + Cplane
I

κε0 εm

)
α + (

1 − Cplane
I

κε0 εm

)
β

, (D11)

B =
− σ̄1

κε0 εm
+ (

1 + Cplane
I

κε0 εm

)
αψM(

1 + Cplane
I

κε0 εm

)
α + (

1 − Cplane
I

κε0 εm

)
β

, (D12)

where α ≡ eκa, β ≡ e−κa. For consistence, substituting (D11)
and (D12) in (D4), we find

C(a) = αA + βB

=
(α − β) σ̄1

κε0 εm
+ 2ψM(

1 + Cplane
I

κε0 εm

)
α + (

1 − Cplane
I

κε0 εm

)
β

. (D13)

Taking the limit a → ∞, we then find

C(∞) → σ̄1

κε0 εm

(
1 + Cplane

I

κε0 εm

) . (D14)
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Using (D7) in the above expression and solving for C(∞), we
finally get

C(∞) = σ01

κε0 εm

, (D15)

which is the electrostatic potential for the dielectric half-region
in isolation [1].

The above results enable us to calculate the pressure on
the surface ∂R1 due to the adsorbed electrical charges in

plane z = 0 and the medium electrolytes. In fact, according
to (27),

P |z=a− = ẑ · ←→
� · (− ẑ),

= ε0 εmκ2

2
ψ2 − ε0 εm

2

(
dψ

dz

)2

, (D16)

where we have omitted the index III for simplicity and we
used the fact that electrostatic potential ψ depends only upon
z. Combining (D11) and (D12) with (D10) and (D16), we find

P (a) = 2ε0 εmκ2AB

= 2

ε0 εm

⎧⎪⎪⎨
⎪⎪⎩

(κε0 εm)2

[
1 −

(
Cplane

I

κε0 εm

)2
]
ψ2

M + κε0 εmσ̄1

[(
1 + Cplane

I

κε0 εm

)
eκa −

(
1 − Cplane

I

κε0 εm

)
e−κa

]
ψM − σ̄ 2

1[(
1 + Cplane

I

κε0 εm

)
eκa +

(
1 − Cplane

I

κε0 εm

)
e−κa

]2

⎫⎪⎪⎬
⎪⎪⎭. (D17)

Finally, plugging (D17) into (38) and then using (37), we derive the force as a quadratic function of ψM as in Eq. (31), where
now the corresponding coefficients are given by

A(PFA)
D (L) = 2π

(
R1R2

R1 + R2

)
κε0 εm

(
1 − δ

1 + δ

)
e−κL

eκL + (
1−δ
1+δ

)
e−κL

,

B(PFA)
D (L) = 2π

(
R1R2

R1 + R2

)
2σ01

1

eκL + (
1−δ
1+δ

)
e−κL

,

C(PFA)
D (L) = −2π

(
R1R2

R1 + R2

)
σ 2

01

κε0 εm

e−κL

eκL + (
1−δ
1+δ

)
e−κL

, (D18)

with δ ≡ Cplane
I

κε0 εm
. Taken together, Eqs. (D18) agree with the results found in Ref. [40] and allow us to compute the PFA results for

the PZF shown as dashed lines in Figs. 2 and 3.
We now calculate the proximity force approximation for the force between one metallic microsphere held at a fixed electrostatic

potential ψM and an isolated metallic microsphere with fixed charge Q. As before, we assume that both spheres are immersed in
an isotropic Z : Z electrolyte with relative permittivity εm and in thermal equilibrium at a temperature T . We have to consider
the boundary value problem of two half-regions I and II , being one held at ψM with boundary at z = 0 and the other electrically
isolated with a constant surface charge density σ1 = Q/A at z = a. The corresponding differential equations are still given by
(D1), but now the boundary conditions read

ψII (z)
∣∣
z=0− = ψIII (z)

∣∣
z=0+ , (D19)

−εm

dψIII

dz
(z)

∣∣∣∣
z=0+

= σ2(κa)

ε0
, (D20)

ψIII (z)
∣∣
z=a− = ψI (z)

∣∣
z=a+ , (D21)

εm

dψIII

dz
(z)

∣∣∣∣
z=a−

= σ1

ε0
. (D22)

We expand the potential as in Eq. (D10), with new coefficients A and B obtained from (D19) and (D22):

A =
σ1

κε0 εm
+ e−κaψM

eκa + e−κa
, (D23)

B =
− σ1

κε0 εm
+ eκaψM

eκa + e−κa
. (D24)

The pressure is then obtained from (D16):

P (a) = 2

ε0 εm

[
(κε0 εm)2ψ2

M + κε0 εmσ1(eκa − e−κa)ψM − σ 2
1

(eκa + e−κa)2

]
, (D25)

allowing us to derive the force expression (65) by using Eqs. (37) and (38).
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