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We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona
system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential
which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region
in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for
the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density,
and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities
is due the competition between the two length scales in the potential at higher densities, the anomalous region is
related to the reentrance of the melting line.
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I. INTRODUCTION

Anomalous materials show characteristics that differ from
those observed in most substances. For instance, it is expected
that liquids contract upon cooling at constant pressure and
diffuse slower upon compression. However, anomalous fluids
expand as the temperature is decreased and move faster as
the pressure grows. The most well known anomalous system
is water, with more than 70 known anomalies [1], but there
are another anomalous fluids. The maximum in the diffusion
coefficient at constant temperature was observed not only for
water [2] but also for silicon [3] and silica [4]. The maximum
in the density well known in water [5] is also seen in silicon
[4], silica [6], Te [7], Bi [8], Si [9], Ge15Te85 [10], liquid metals
[11], graphite [12] and BeF2 [13].

Since the seminal work by Jagla [14–16], core-softened
potentials have been widely used in the literature to study
the behavior of anomalous fluids [17–24]. The waterlike
anomalies were observed in potentials with two characteristic
length scales [25,26], as well as softened repulsive potentials
[27–29]. In both cases the competition between distinct fluid
conformations can be directly related to the anomalies [29,30].
In addition, these models have been employed to understand
the transition between a high density liquid (HDL) and a
low density liquid (LDL): the liquid-liquid phase transition
(LLPT) [31–35]. Theoretically, the existence of these two
liquid phases was evidenced in the ST4 model of water by
Poole and co-authors [36] and in models for phosphorus [37],
silica [38,39], silicon [40], carbon [41], hydrogen [42], and
colloidal systems [43].

Core-softened potentials have also been applied to study
colloidal systems. Experimental works have shown that the
effective interaction between colloids can be modeled by
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core-softened potentials [44,45]. The origin of the two length
scales in these macromolecules goes as follows. The colloids
are usually made of molecular subunits which form a central
packed agglomeration and a less dense and more entropic
peripheral area. This core-corona structure can be described
by a hard core and a soft corona. Then it becomes natural
to model the system by a two-length-scales potential, which
leads to the self-assembled patterns observed in these colloidal
systems [46–56].

Interesting aspects of two-dimensional (2D) colloidal sus-
pensions include the self-assembly and the distinct patterns
observed in these systems [50–55,57,58]. Also, the anomalous
melting scenario, the existence of a hexatic phase [59–61],
and dynamics of the fluid phase [47,56,62–64] of these two-
dimensional macromolecule systems have attracted a lot of
attention. Given the wide spectrum of the properties observed
in the 2D core-softened systems, in this paper we focus only
on the fluid phase. We propose to clarify how the waterlike
anomalies in these 2D core-corona systems behave for different
pressures and temperatures and particularly what is the effect
of exposing these macromolecules to a solvent.

In order to address this question, we study a system in which
the interparticle colloid-colloid interaction has a repulsive core
with a smooth shoulder. The core-softened molecular systems
in the 3D bulk [20,65] and in the confined quasi-2D structure
[66–68] show waterlike anomalies. In the particular case of
the quasi-2D structure, in addition to the waterlike anomalous
region in the pressure versus temperature phase diagram, a
new region of structural anomaly was observed [69]. Here we
show that for the 2D systems the molecular system presents a
second region of anomalies in the pressure versus temperature
phase diagram. A mechanism for the appearance of this second
anomalous region is proposed.

Our paper is organized as follows. In Sec. II the model
and the details about the simulation method are presented. In
Sec. III results are discussed. The conclusions are given in
Sec. IV.
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FIG. 1. Core-softened interaction potential U between two core-
corona particles. Inset: schematic depiction of the particles, with the
core (first length scale at rij ≡ r1 ≈ 1.2σ ) and the soft corona (second
length scale at rij ≡ r1 ≈ 2.0σ ).

II. THE MODEL AND THE SIMULATION DETAILS

For simplicity, in this paper all the physical quantities are
computed and displayed in the standard Lennard-Jones (LJ)
reduced units [70]. The system consists of N = 2000 disks
with diameter σ and mass m with a potential interaction
composed of a short-range attractive Lennard-Jones potential
and a Gaussian term centered in r0, with depth u0 and width
c0:

U (rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

+u0 exp

[
− 1

c2
0

(
rij − r0

σ

)2
]
, (1)

where rij = |�ri − �rj | is the distance between two disks i and j .
This potential can be parametrized to have a ramplike shape,
and was extensively applied to study systems with waterlike
anomalies [20,65]. The parameters used in this work are u0 =
5.0, c = 1.0, and r0/σ = 0.7. The interaction potential, shown
in Fig. 1, has two length scales. The first scale is at rij ≡ r1 ≈
1.2σ , where the force has a local minimum, and the other scale
os at rij ≡ r2 ≈ 2σ , where the fraction of imaginary modes of
the instantaneous normal modes spectra has a local minimum
[71]. The cutoff radius for the interaction is rc = 3.5. The two
length scales in the potential allow for using this potential to
represent the interaction between hard core-soft shell colloids
[51,57].

In this work we use the Langevin thermostat [70] to
mimic the solvent effects. Hydrodynamics interactions were
neglected. Since the system is in equilibrium we do not expect
that this will change the long-time behavior. The temperature
was simulated in the interval between T = 0.01 and T = 0.40.
The number density is defined as ρ = N/A, where A = L2 is
the area and L the size of the simulation box in the x and y

directions. ρ was varied from ρ = 0.05 up to ρ = 0.60, and the
size of the simulation box was obtained via L = (N/ρ)1/2. For
clarity, in the p × T phase diagram the higher isochore shown

is ρ = 0.525 since no anomalous behavior was observed above
this density.

The time step used in the simulations was δt = 0.001,
and periodic boundary conditions were applied in the two
directions. We performed 3 × 107 steps to equilibrate the
system. These steps were then followed by 5 × 107 steps
for the results production stage. To ensure that the system
was equilibrated, the pressure, kinetic, and potential energy
were analyzed as functions of time. Snapshots of the system
were also used to verify the equilibration. Also, two distinct
initial configurations were used for each point: a random
fluidlike configuration and a solidlike configuration in a square
lattice. The results obtained were independent of the initial
configuration.

To study the dynamic anomaly, the relation between the
mean square displacement (MSD) with time was computed,
namely

〈[�r(t) − �r(t0)]2〉 = 〈��r(t)2〉, (2)

where �r(t0) = [x(t0)2 + y(t0)2]1/2 and �r(t) = [x(t)2 +
y(t)2]1/2 denote the coordinate of the particle at a time
t0 and at a later time t , respectively. The MSD is related to the
diffusion coefficient D by

D = lim
t→∞

〈��r(t)2〉
4t

. (3)

The structure of the fluid was analyzed using the radial dis-
tribution function (RDF) g(rij ), and the pressure was evaluated
using the virial expression. Directly related to the g(rij ), the
structural anomaly was characterized using the translational
order parameter τ , defined as [72]

τ ≡
∫ ξc

0
|g(ξ ) − 1|dξ, (4)

where ξ = rρ1/2 is the interparticle distance r divided by the
mean separation between pairs of particles ρ1/2. ξc is a cutoff
distance, defined as ξc = Lρ1/2/2. For an ideal gas (completely
uncorrelated fluid), g(ξ ) = 1 and τ vanish. For the crystal or
the ordered fluids, a translational long order [g(ξ ) 	= 1] persists
over long distances, increasing the value of τ . Therefore, for
normal liquids τ increases with the increase of the density.

In order to check if the system exhibits the density anomaly,
the temperature of maximum density (TMD) was computed
for different isochores as follows. Using thermodynamical
relations, the TMD was characterized by the minimum in the
pressure versus temperature diagram along isochores,(

∂p

∂T

)
ρ

= 0. (5)

The separation between the fluid and the amorphous solid
phases was defined by the analysis of the total energy, RDF,
MSD, and system snapshots. When the particles showed a
well defined structure and had a very low or zero mobility,
the phase was defined as solid. When the system exhibited
nonzero mobility, it was considered to be in the fluid phase.
These phase boundaries were confirmed by the evaluation of
the heat capacity [70]. The results were supported by larger
simulations, using using N = 5000 disks and 5 × 109 steps.
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FIG. 2. (a) Diffusion constant D and (b) translational order parameter τ as function of the system density. In both figures the maxima
and minima that characterize the anomalies are represented by a dashed red line. For the diffusion anomaly, the anomalous region at lower
densities ranges from the isotherm T = 0.07 to T = 0.24, while the second anomalous region goes from T = 0.07 to T = 0.15. In the case of
the structural anomaly, the first anomalous regions goes from the isotherm T = 0.07 to T = 0.40, and the anomalous region at higher densities
is located between the temperatures T = 0.07 and T = 0.24. The errors bars in D and τ are smaller than the data point.

III. RESULTS AND DISCUSSION

For most fluids, the diffusion constant, D, decreases with
the density, ρ. The reason for this behavior is that the particles
become more structured as the density increases. Then the
translational order parameter τ , defined by Eq. (4), grows
with ρ as follows. At low densities, g(r) ≈ 1 and then τ ≈ 0.
As the density increases, g(r) 	= 1 for many values of r and
then τ grows. Anomalous fluids show the opposite behavior.
For these materials in a certain range of temperature and
pressures—the anomalous region—the diffusion coefficient
increases with density and τ decreases with ρ. Figure 2(a)
shows the dependence of the diffusion coefficient, D, with
the density, ρ. As the density is increased from the gas
phase, the diffusion coefficient decreases, reaches the first
minimum in the density and then increases, reaching a the first
maximum which characterizes the first anomalous region from
the isotherm T = 0.07 to the isotherm T = 0.24. Then, as the
density is increased even further, for the isotherms between
T = 0.07 and T = 0.15, a second minimum and a second
maximum are observed.

The translational order parameter versus density shown in
Fig. 2(b) also indicates the existence of two anomalous regions
in the pressure versus temperature phase diagram. The first is
located between the isotherms T = 0.07 and T = 0.40 for low
values of density, while the second occurs for higher densities
and for the isotherm from T = 0.07 to T = 0.24.

Figure 3 shows the pressure versus temperature phase
diagram, with the maximum and minimum of diffusion and
translational order parameter shown as dotted-dashed and
dashed lines respectively. The isochores are the gray lines. The
temperature of maximum density is also shown in green.

For the 3D system the TMD region in the pressure versus
temperature phase diagram is located inside the diffusion
maxima and minima regions, which are inside the maxima and
minima of the translational order parameter [20,65] region.

This sequence is the same as that observed in water: the
so-called waterlike hierarchy. Here, unlike the 3D molecular
system, in the 2D Brownian system the hierarchy in the
anomalies is distinct from the water case. This change in
the hierarchy was already observed in others works, and it is
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FIG. 3. p × T phase diagram of the colloidal system. The gray
lines are the isochores. The dashed blue line delimits the structural
anomaly regions, with the maximum and minimum values of τ . The
dotted-dashed red line delimits the diffusion anomalous regions, with
the minimum and maximum values of D. The green line defines
the density anomaly region and corresponds to the temperature of
maximum density (TMD) line. The black stars are located over
the isotherm T = 0.12 and correspond to the densities ρ = 0.15,
ρ = 0.225, ρ = 0.325, ρ = 0.35, ρ = 0.425, and ρ = 0.525. The
dotted black line delimits the fluid and amorphous solid regions. The
errors obtained for the mean value of p and T were smaller than 10−4

for all cases, and the errors bars were omitted for simplicity.
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FIG. 4. Analysis of the isotherm T = 0.12 for the colloidal system. (a) Radial distribution function (RDF) g(rij ) for densities inside
the first anomalous region indicates that these anomalies originate by the competition between the two length scales. Curves for densities
0.15 � ρ < 0.225 are represented by black lines, for 0.225 � ρ < 0.325 by red lines, and for ρ = 0.325 by the green line. The arrows shows
how the peaks in g(rij ) move. The black arrow shows the grow of the second peak for densities below ρ = 0.225, the red arrow the decrease
in the second peak, and the green arrow the increase in the first peak for densities between ρ = 0.225 and ρ = 0.325. (b) Radial distribution
function (RDF) g(rij ) for densities inside the second anomalous region indicates that there is not a competition between the scales. Curves
for densities 0.35 � ρ < 0.425 are represented by black lines, for 0.425 � ρ < 0.525 by red lines, and for ρ = 0.525 by the green line. Both
peaks increase from ρ = 0.35 to ρ = 0.425, while the valley between them decreases. This is indicated by the red arrows. The green arrows
show that from ρ = 0.425 to ρ = 0.525 the peaks decrease and the valley increases. Therefore, the system becomes more structured and then
more disordered, which explains the second structural anomaly. Related to this transition from disordered to ordered to disordered structure, the
slope of the MSD curve decreases and then increases, as shown in (c). The snapshots in (d) show the disks’ conformation, including a kagome
lattice at ρ = 0.60.

attributed to the changes in the competition between the scales
[21,64,73], to the formation of an ordering structure [74], or
to the dimensional change from 3D to 2D [75].

In our system, the change in the hierarchy is due to
the presence of solidlike (or pinning-like) structures and
to the change in the dimensionality, as shown next. In addition
to the hierarchy, another question is also relevant: Why there
are two anomalous regions in this system?

In order to understand the mechanism which generates the
two anomalous regions, the behavior of the system at the
isotherm T = 0.12, shown as stars in the phase diagram of
Fig. 3, is analyzed. In the case of the 3D system, the mechanism
which explains the existence of the waterlike anomalies is
the competition between the two length scales [25]. This

is observed in the radial distribution function of molecular
systems as follows.

In the anomalous region the first peak of the RDF increases
with the density while the second peak decreases [30]. This
behavior is also observed in Fig. 4(a), which corresponds to
the low density and low pressure region of Fig. 3. In this region,
as ρ increases, particles move from the second length scale at
≈2.0 to the first length scale at ≈1.2. Therefore, the system
has competition between the scales and, as a consequence,
waterlike anomalies.

Figure 4(b) shows the RDF for densities bellow, inside,
and above the second anomalous region. As the density is
increased, the peaks of g(rij ) related to the first and second
length scales increase, reach a maximum, and then decrease.
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Therefore, no competition between the two length scales is
observed. However, the system shows density, diffusion, and
structural anomalies. In order to reveal the origin of these
anomalies, instead of looking to the two peaks it is necessary
to examine the valley between them. As the density increases
from ρ = 0.35 to ρ = 0.425 this valley goes down, becoming
zero. These zeroes for the RDF suggests that as the density
ρ = 0.425 is approached from lower densities, the system is
becoming solid, or well structured. The MSD, illustrated in
Fig. 4(c), supports this result. The slope of the MSD decreases
from ρ = 0.35 to ρ = 0.425, which indicates a decrease in
the diffusion. This is reinforced by the snapshots shown in
Fig. 4(d) as a stripe pattern. However, increasing the density
even further to ρ = 0.525, the disks becomes disordered.
Despite the absence of competition, this behavior can also be
understood based on the two-length-scales characteristics.

When the system is in the stripe structure, the interparticle
distance between disks in the same stripe is the first length
scale, and the stripes are separated by the second length scale—
this is why both peaks increase from ρ = 0.35 to ρ = 0.425.
At ρ = 0.425 the particles have the minimum in the diffusion.
Increasing the density, there is no more space for the stripes to
remain at the distance ≈2.0, and they break into the disordered
fluid. Essentially, the enthalpic contribution to the free energy
(second length scale) is overcome by the entropic contribution
(the first length scale) [76]. Then the system goes from a
disordered fluid to an ordered fluid (similar to a liquid crystal)
with lower diffusion, and then gets disordered again, diffusing
faster. In this reentrant melting region we observe that D

increases with the density while τ decreases, leading to the
second anomalous regions. As the density increases even more,
the system goes to a solid phase with a kagome lattice, as the
snapshot in Fig. 4(d) shows.

Previous studies have shown that the existence of multiples
competitive scales leads to multiples anomalous regions. In the
work by Barbosa and co-workers [26,77], they used a soft-core
potential with three characteristic length scales and found two
TMD lines and transitions between three fluids phases. Also,
we have observed two structural anomalous regions in quasi-
2D systems, were the new anomalous regions can be related to
the melting of the central layer between two walls [69]. This is
similar to what we observed for the 2D system, were a reentrant
melting region leads to the appearance of anomalies.

IV. CONCLUSION

Langevin dynamics simulations of 2D core-softened disks
were performed to analyze the system fluid phase for structural,
thermodynamic, and dynamic anomalous behavior.

The core-corona colloidal system shows the presence of two
anomalous regions in the pressure versus temperature phase
diagram. Also, a change in the waterlike hierarchy of anomalies
was observed, which can be associated with the change in the
dimensionality.

The two distinct regions with anomalous behavior observed
for the colloidal system arise due to two distinct mechanisms.
The first region, at low densities, is associated with the
competition between the two length scales in the interaction
potential. This is the same mechanism observed in previous
works and in the molecular system. We have shown that the
second anomalous region is not related to the competition
observed in the RDF, but to a reentrant fluid phase. This leads
the fluid to suffer a transition from a disordered structure to
an ordered structure and then back to a disordered structure,
resulting in an increase in the diffusion as the density increases
and a decrease of τ as ρ increases—the anomalous behavior.

Nevertheless, this was not the first time that weobserved two
anomalous regions for core-softened fluids. In a previous work,
core-softened potentials with three scales led to two regions
of density anomaly [26]. As well, we have shown that fluids
modeled by potential equation (1) confined between two flat
walls have a second structural anomaly. This new anomaly was
not related to the competition between the potential scales, but
to changes in the number of fluid layers between the walls [69].
The change in the number of layers is a additional competition
induced by the confinement. In this work, the competition was
induced by the resulting fluid reentrant phase. Therefore, our
main finding is that other mechanisms, despite the competition
between the scales, can generate competitions in the system
that lead to waterlike anomalies.
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