
PHYSICAL REVIEW E 97, 022415 (2018)

Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data
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Long-range memory in time series is often quantified by the Hurst exponent H , a measure of the signal’s
variance across several time scales. We analyze neurophysiological time series from electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI) resting state experiments with two standard Hurst
exponent estimators and with the time-lagged mutual information function applied to discretized versions of
the signals. A confidence interval for the mutual information function is obtained from surrogate Markov
processes with equilibrium distribution and transition matrix identical to the underlying signal. For EEG signals,
we construct an additional mutual information confidence interval from a short-range correlated, tenth-order
autoregressive model. We reproduce the previously described Hurst phenomenon (H > 0.5) in the analytical
amplitude of alpha frequency band oscillations, in EEG microstate sequences, and in fMRI signals, but we show
that the Hurst phenomenon occurs without long-range memory in the information-theoretical sense. We find
that the mutual information function of neurophysiological data behaves differently from fractional Gaussian
noise (fGn), for which the Hurst phenomenon is a sufficient condition to prove long-range memory. Two other
well-characterized, short-range correlated stochastic processes (Ornstein-Uhlenbeck, Cox-Ingersoll-Ross) also
yield H > 0.5, whereas their mutual information functions lie within the Markovian confidence intervals, similar
to neural signals. In these processes, which do not have long-range memory by construction, a spurious Hurst
phenomenon occurs due to slow relaxation times and heteroscedasticity (time-varying conditional variance). In
summary, we find that mutual information correctly distinguishes long-range from short-range dependence in
the theoretical and experimental cases discussed. Our results also suggest that the stationary fGn process is not
sufficient to describe neural data, which seem to belong to a more general class of stochastic processes, in which
multiscale variance effects produce Hurst phenomena without long-range dependence. In our experimental data,
the Hurst phenomenon and long-range memory appear as different system properties that should be estimated
and interpreted independently.
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I. INTRODUCTION

Complex physical and biological systems display a multi-
tude of interesting features that are markedly different from
standard equilibrium mechanics [1,2]. Long-range memory in
physical and biological systems has been studied extensively.
There is a close connection between physical systems at a crit-
ical point and long-range correlations, whose properties have
been reviewed in detail [3]. A range of mechanisms leading
to long-range correlated fluctuations in condensed matter, and
conducting materials in particular, has been summarized in
Ref. [1]. Mechanisms discussed there include transport effects,
“smeared” or fractional kinetics, and the superposition of
non-Gaussian processes. Around the same time, the concept of
self-organized criticality has been introduced [4], establishing
an important connection to living systems. This mechanism
has been repeatedly applied to explain long-range dependence
(LRD) in neural systems [5]. In neural systems we can find,
for instance, non-Gaussian and self-similar distributions of
certain quantities [6], long-range correlated time series [5],
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fractal dimensions of function graphs in the plane [7,8],
and the Hurst phenomenon, i.e., a scaling law for the local
variance across different time scales. For each of these features,
there is a clear mathematical definition and several numerical
methods for estimation in empirical data are readily available
[8–11]. Historically, the aim to find a parsimonious model that
explains the Hurst phenomenon observed in river Nile levels
gave rise to the notions of fractional Brownian motion (fBm)
and its first-order differenced process, fractional Gaussian
noise (fGn) [12,13]. This approach reduces model complexity
drastically, summarizing all multi-scale features in a single
parameter H , the Hurst exponent. Interestingly, for fBm and
fGn, several of the above-mentioned properties coincide and
can be parametrized by H . Thus, fBm is a nonstationary Gaus-
sian process described by a self-similar probability density
with scaling exponent H and fractal dimension d = 2 − H

[14]. Long-range correlations are an attribute of the fGn
process, given by the increments of fBm. fGn is a stationary
Gaussian long-range correlated process whose autocovariance
function decays as a power law, parametrized by the Hurst
exponent H .

For experimental data, the relations between the aforemen-
tioned features are more complicated. In the general case,
where time-stationarity may not hold, a Hurst exponent of
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H > 0.5 does not strictly imply long-range dependence or
scaling laws [11,15–18]. Both features, the Hurst phenomenon
on one side and long-range correlations on the other, should
therefore be considered separately [10,11]. A highly interdisci-
plinary and critical exposition of true and spurious long-range
memory mechanisms, ranging from elementary physics to the
social sciences, is given in Ref. [19].

We here aim to analyze temporal dependencies in neuro-
physiological signals, namely electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI) data
recorded during resting state experiments of healthy subjects.
The goal is to assess memory effects in these experimental
signals using well-known Hurst exponent estimators, as well
as using information theoretical measures. To this end, the
state space of continuous, real-valued time series is partitioned
into a set of discretized states, and the time-lagged mutual
information function of the discretized process is compared to
a Markovian null hypothesis. Comparing our results with well-
characterized stochastic processes whose correlation prop-
erties are known analytically, we aim to distinguish Hurst
phenomena due to long-range memory from spurious Hurst
phenomena induced by slow exponential relaxation and non-
stationarity.

The paper is structured as follows. First, we present three
model systems whose correlation properties are well known.
The models are the stationary, long-range correlated fractional
Gaussian noise process (fGn, [12]), the stationary, exponen-
tially correlated Ornstein-Uhlenbeck process (OU, [20]), and
the heteroscedastic, short-range correlated Cox-Ingersoll-Ross
process (CIR, [21]). We show that all three processes create the
Hurst phenomenon even though two models (OU, CIR) are
actually short-range correlated. We then analyze the shape of
the mutual information function for the three model processes
and contrast it with a first-order Markovian null hypothesis.
We apply the same technique to resting state electroencephalo-
graphic (EEG) and to functional magnetic resonance imaging
(fMRI) data, for which the Hurst phenomenon and long-range
correlations have been postulated [5,22–27]. For the EEG alpha
rhythm, we also compute a mutual information confidence
interval from a more flexible tenth-order autoregressive model,
also termed AR(10), fitted to the experimental data set [28,29].

II. MODELS AND DATA

To illustrate different paths leading to the Hurst phe-
nomenon, we consider three well defined stochastic processes,
prior to investigating EEG and fMRI data for which the Hurst
phenomenon and long-range dependence (LRD) have been
previously reported.

A. Fractional Gaussian noise

Fractional Gaussian noise is a stationary, long-range
(power-law) correlated Gaussian process, its integral rep-
resenting the famous fractional Brownian motion [12]. An
excellent review of the developments that led to the concepts
of long-range dependence, fractals, and self-similarity can be
found in Ref. [13]. Long-range correlations are quantified
by the parameter H ∈ [0.5,1), where H = 0.5 yields an
uncorrelated process and 0.5 < H < 1.0 produces long-range

FIG. 1. Sample paths of the fractional Gaussian noise process. (a)
Sample path for the uncorrelated, white noise-like case, H = 0.5. (b)
Sample path showing long-range correlations,H = 0.9. Both samples
are of length 50 000 and were synthesized using the covariance matrix
method.

correlations. Fractional Gaussian noise can be defined via its
integral (fractional Brownian motion, fBm) [12]:

BH (t) = BH (0) + 1

C

∫ ∞

−∞

[
(t − s)

H− 1
2+ − (−s)

H− 1
2+
]
dWs,

(1)

where dWs is a standard Brownian motion and C = �(H + 1
2 )

is the normalization constant. Alternatively, fBm is defined via
its autocorrelation function γ (k) for k > 0 [11]:

γ (k) = 1
2 (| k + 1 |2H −2 | k |2H + | k − 1 |2H ). (2)

Sample paths were obtained numerically using circulant
embedding of the covariance matrix [30]. We simulated fGn
samples for Hurst exponents ranging from H = 0.5 to H =
0.95 using a step size of �H = 0.05. Figure 1 shows fGn
sample paths for H = 0.5 (a) and H = 0.9 (b). For H = 0.5,
fGn is equivalent to uncorrelated Gaussian noise, whereas for
H = 0.9, long-range correlations are generated by multi-scale
fluctuations extending up to the signal length.

B. Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process is the minimal
representation of a stationary, Gaussian stochastic process
with exponential, i.e., short-range autocorrelations. The auto-
correlations decay exponentially with a time constant τ , the
relaxation time of the process [31]. The process is mean-
reverting with respect to the average value E(X) = μ. The
OU process is integrated with respect to a standard Brownian
motion dWt and can be defined as

dXt = − 1

τ
(Xt − μ) + σdWt . (3)

As the autocorrelation coefficients of the process decay
exponentially as γ (k) = τ

2 exp(− k
τ

), the sequence of coeffi-
cients is integrable and the process is therefore short-range
correlated. Sample paths were synthesized with Gillespie’s
method [31], using a time step ofdt = 0.01. We used relaxation
times τ = 0.1,0.5,1.0,5.0,10.0 and constant variance σ 2 = 1.
As the process is short-range correlated, the expected Hurst
exponent for large samples is H = 0.5.
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FIG. 2. Sample paths of stationary, exponentially correlated
Gaussian noise, the Ornstein-Uhlenbeck process. (a) Sample path
for the shortest relaxation time τ = 0.1 resembling white noise. (b)
A sample for the largest relaxation time τ = 10.0 shows significant
intermediate and low-frequency content, leading to variance contri-
butions across many time scales in Hurst analyses.

Figure 2 shows two sample paths for different relaxation
times τ . Figure 2(a) shows a sample with a short correlation
time τ = 0.1, similar to Gaussian white noise. The OU process
sample shown in Fig. 2(b) has relaxation time τ = 10.0
and shows large amplitude, slow fluctuations, increasing the
autocorrelation time. For any parameter τ in the OU process,
however, the autocorrelation function decays exponentially,
and thus the process is short-range correlated by definition.

C. Cox-Ingersoll-Ross process

The Cox-Ingersoll-Ross (CIR) process generalizes the
Ornstein-Uhlenbeck process by introducing heteroscedastic-
ity, i.e., a time-varying conditional variance term. In the special
case of the CIR process, the conditional variance term is pro-
portional to

√
Xt . In contrast to OU sample paths, CIR samples

show irregular bursts of large-amplitude activity separated by
episodes of low amplitude. Figure 3(a) shows a sequence of
short bursts, induced by a short relaxation time τ = 0.1. In
Fig. 3(b), using τ = 10.0, we observe longer lasting bursts,

FIG. 3. Sample paths of the heteroscedastic, short-range corre-
lated Cox-Ingersoll-Ross process. (a) Sample path with short relax-
ation time τ = 0.1 showing a sequence of short lasting bursts. (b)
For the largest relaxation time τ = 10.0, the strictly positive bursts
of activity show a longer duration and thus contribute to the global
variance across many time scales in Hurst analysis.

leading to significant variance contributions at longer time
scales in subsequent Hurst exponent analyses. The temporal
autocorrelations of the CIR process, as for the OU process,
also decay exponentially, i.e., the CIR process is short-range
correlated [21].

We here include the CIR process as a simple heteroscedastic
process that is short-range correlated on the one hand, but
exhibits the Hurst phenomenon (H > 0.5) for finite samples
on the other. While the CIR process does not capture the
characteristic oscillations of EEG data, its amplitude dynamics
are similar to the bursty nature of the EEG alpha oscillation
envelope. Further below, we fit the more flexible AR(10)
model to empirical EEG data. The CIR process is used as
an example of intermediate complexity, showing that simple
heteroscedastic models can produce variance dynamics leading
to H > 0.5.

The Cox-Ingersoll-Ross process is defined as

dXt = − 1

τ
(Xt − μ) + σ

√
XtdWt . (4)

Using a slightly different parametrization, dXt = (a −
kXt )dt + σ

√
XtdW (t), sample paths Xt are assured to be

nonnegative when the constraint 2a > σ 2 holds [32]. We
simulated sample paths for the same range of τ values as for
the Ornstein-Uhlenbeck process and for σ 2 = 1 [32].

D. Resting state EEG and fMRI

We analyzed EEG and fMRI recordings from ten healthy
subjects (age range, 19–27; mean age, 23 years) recorded
during an eyes-closed wakeful rest condition. Each pair of
EEG and fMRI data sets was acquired on the same day. We
selected EEG data segments with optimum data quality, i.e.,
free of electrode artifacts, eye blinks or signs of drowsiness.
EEG signals were recorded with a sampling rate of 5 kHz
using the standard 10-10 electrode configuration. All channels
were band-pass filtered to the alpha frequency range (8–12 Hz)
using a zero-phase Butterworth filter with a slope of 24
dB/octave, down-sampled to 250 Hz and rereferenced to an
average reference. EEG segments have a duration ranging from
100–303 s, corresponding to lengths of 25 000–75 750 samples.
The amplitude modulation of two exemplary recordings is
shown in Fig. 4. The traces show the analytical amplitude of
the left occipital (O1) electrode’s signal as computed from the
Hilbert transform. In the two recordings shown in Fig. 4, as well
as in the other subjects not shown, we observed irregular bursts
of alpha activity, separated by low amplitude alpha intervals
of variable duration. These dynamics suggest variance contri-
butions across many time scales in Hurst exponent analysis.

We also analyzed EEG data using the so-called microstate
segmentation algorithm [33]. The method applies a modified
K-means clustering algorithm to the set of spatial EEG patterns
selected at time points where the spatial standard deviation
of the scalp potential has local maxima. Clustering is com-
monly performed to obtain a set of four representative EEG
topographies, called microstates and labeled {A, B, C, D},
which maximize the global explained variance with respect
to the original EEG time series [34]. The original EEG time
series can then be represented by a symbolic time series of
microstate labels, e.g., . . . ,B,B,A,C,C,C,D,A, . . ., where
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FIG. 4. Amplitude dynamics for two different resting state EEG
recordings. (a) Subject 1, (b) Subject 6, as indexed in Table I. The
respective left occipital EEG channel signals (O1, light gray) and
their analytical amplitudes (black lines) are shown. The analytical
amplitude shows irregular bursts of large amplitude activity, interlaced
with periods of low-amplitude oscillations. In both subjects, we
observe similar bursty dynamics, anticipating variance contributions
across many time scales in subsequent Hurst analyses.

at each time point, the label indicates the microstate that
has the maximum spatial correlation with the actual EEG
topography. The algorithm modifies the classical K-means
distance measure using the squared correlation coefficient
as the metric between the microstate and the current EEG
topography, i.e., the polarity of the potential is ignored. The
microstate algorithm takes into account the temporal dynamics
of the whole scalp surface potential, and not just of a single
channel. For methodological details, we refer the reader to
classical publications [34,35].

Functional MRI data were recorded in a 3 Tesla MR
scanner (Siemens Trio, Erlangen, Germany) and consist of
1505 volumes of T2*-weighted echo planar images (TR/TE =
2080 ms/30 ms, matrix size 64 in x and y directions, voxel size
3 mm inx andy directions, and 2 mm in the z direction, distance
factor 50%). All volumes were realigned, normalized to MNI
space, and spatially smoothed with a Gaussian kernel (8 mm3

full width at half maximum). Data were spatially downsampled
to 43 mm3 resolution for further processing. To allow for
steady-state magnetization, the first five scans were ignored
and time series of length 1500 were used for further compu-
tations. Cardiac-, respiration-, and motion-induced noise was
regressed out as described in Ref. [36]. Finally, fMRI time
series were band-pass filtered to the 0.01–0.10 Hz range using
a sixth-order Butterworth filter. The preprocessing pipeline is
equivalent to the procedures described in the literature on fMRI
and LRD [36,37].

Written informed consent was obtained from all subjects,
and the study was approved by the ethics committee of the
Goethe University, Frankfurt, Germany.

E. Autoregressive AR(p) processes

Oscillations with burstlike amplitude dynamics are the most
prominent pattern in resting state EEG signals. During the
wakeful resting state, the main frequency component lies in
the alpha frequency band (8–12 Hz). The analytical amplitude
(the envelope) of alpha oscillations has been reported to exhibit
the Hurst phenomenon, fGn-like dynamics, and long-range
correlations [5,22,23]. As a first-order Markov process cannot
capture the complex dynamics shown in Fig. 4, we add to
our analyses a flexible short-range correlated EEG model that
should be able to produce alpha oscillations with bursty, time-
varying amplitude dynamics. The standard approach to model
EEG oscillations stochastically is given by autoregressive (AR)
models [28,29,38] whose general expression is given by

Xt =
p∑

k=1

φkXt−k + εt . (5)

Equation (5) can be rewritten in operator form as(
1 −

p∑
k=1

φkL
(k)

)
Xt = εt , (6)

where L(k) is the kth order lag operator defined by L(k)Xt =
Xt−k . The roots of the complex polynomial f (z) = 1 −∑p

k=1 φkz
k define the dynamics of the stochastic process Xt .

In Eqs. (5) and (6), the variable Xt represents the modeled
EEG data, p denotes the AR model order and φi are the AR
coefficients. The AR process is driven by the Gaussian white
noise term εt . To model the full spectral content of EEG data,
AR model orders of p = 5–15 are often used [29]. Here, we
use AR(10) models which were fitted using Burg’s method
[29]. All fits converged and all roots of the autoregressive
polynomials f (z) were located outside the unit circle, assuring
stable solutions. The fitted AR parameters φk are given in
Table I.

Exemplary results of AR(10) fits are shown in Fig. 5.
Figures 5(a) and 5(b) show resting state EEG data (alpha
frequency band, O1 electrode) and Figs. 5(c) and 5(d) show
a sample of the corresponding AR(10) fit, on two different
time scales. Figure 5(a) illustrates the burstlike activity of
alpha oscillations on a time scale of 100 s, and Fig. 5(b)
on a shorter 8 s time scale. The analytical amplitude [black
curve in Figs. 5(a), 5(c), dark gray curve in Figs. 5(b), 5(d)] is
obtained as the modulus of the Hilbert transform. Figures 5(c)
and 5(d) show the results of the corresponding AR(10) fit.
It is observed that the model correctly reproduces burstlike
alpha band activity, visually highly similar to the experimental
data set. The quantitative properties (Hurst exponents, mutual
information) of experimental and surrogate data are analyzed
in the Results section.

III. METHODS

A. Estimation of the Hurst exponent

Hurst exponents were estimated using a method based on
the discrete wavelet transform (DWT) [39]. We used a fifth-
order Daubechies mother wavelet and fitted Hurst exponents
to the scalogram across the wavelet scales j = 6 − 12 [40,41].
For two subjects, the sample size only allowed the computation
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TABLE I. AR(10) coefficients for resting state EEG in ten healthy subjects S1–S10.

Subject no. φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

1 5.06 −11.87 16.38 −13.34 4.03 4.47 −7.00 4.71 −1.73 0.29
2 5.27 −12.94 18.93 −16.90 7.06 3.19 −7.26 5.40 −2.13 0.38
3 5.26 −13.03 19.52 −18.23 8.61 2.27 −7.20 5.70 −2.33 0.42
4 4.86 −11.57 17.28 −17.16 10.70 −2.59 −2.16 2.63 −1.26 0.25
5 5.03 −11.73 16.16 −13.01 3.37 5.53 −8.06 5.32 −1.92 0.31
6 4.89 −11.06 14.64 −11.05 2.03 5.54 −7.10 4.34 −1.44 0.21
7 4.97 −11.58 16.06 −13.35 4.42 4.02 −6.74 4.60 −1.69 0.27
8 5.03 −11.77 16.28 −13.38 4.24 4.24 −6.89 4.71 −1.76 0.30
9 5.31 −13.26 19.92 −18.51 8.39 3.07 −8.17 6.39 −2.61 0.47
10 5.34 −13.39 20.24 −19.09 9.25 2.04 −7.28 5.87 −2.43 0.44

of DWT scales up to j = 11. The scale selection is based on
values given in the literature, and the common scaling region
is reproduced in our data as shown in Fig. 6. We observe that
above j = 6, the scaling functions grow almost linearly toward
the largest wavelet scale, defined by the sample size. At lower

FIG. 5. Sample paths of experimental EEG alpha band (8–12 Hz)
oscillations (a, b) and autoregressive AR(10) surrogates (c, d) on two
different time scales, 100 s and 8 s. The AR(10) model data reproduce
the alpha band dynamics on both time scales. Both, empirical EEG (a,
b) and surrogate data (c, d) show irregular bursts of 10 Hz activity. The
analytical amplitude (black) of the signal measures the instantaneous
power of the alpha band oscillation (gray).

scales, another previously observed scaling region is shown.
That region contains filtering effects introducing short-range
correlated components during preprocessing. Importantly, our
results are in line with previously published scalograms and
the Hurst exponents are highly similar to those presented in
the literature. These results validate our data sets and the used
estimation algorithms with respect to previously published
results. Scale-dependent variance estimates at scale j are
calculated as 1

Nj

∑Nj

k=1 | dj (k) |2, where Nj is the number of
wavelet coefficients at scale j .

For EEG microstate sequences, we used a recently pub-
lished method that maps the symbolic microstate sequence to
a metric time series based on a (2,2)-partition of the set of
microstate labels [40]. There are three unique (2,2)-partitions
Pi = {Pi1 ,Pi2},i = 1,2,3, explicitly P1 = {{A,B},{C,D}},
P2 = {{A,C},{B,D}} and P3 = {{A,D},{B,C}}. The values
xt of the microstate sequence are then mapped to the set {−1, +
1} by defining a function ϕi for each partition Pi , such that
ϕi(xt ) = +1 ifxt ∈ Pi1 andϕi(xt ) = −1 ifxt ∈ Pi2 . Finally, the
Hurst exponent of the random walk process Xn = ∑n

i=0 ϕi(xt )

FIG. 6. Hurst exponent estimation using the discrete wavelet
transform. The figure shows the scaling functions of all ten subjects,
analyzing the analytical amplitude of the alpha envelope recorded
at the left occipital electrode O1. The blue line above the scaling
functions (black) shows the theoretical scaling function using the
empirical average Hurst exponent across the ten subjects, H̄ = 0.74,
restricted to the fitting interval jmin = 6 to jmax. For two subjects, the
sample size determined jmax = 11, for all other subjects jmax = 12.
The blue line is shifted vertically for visualization purposes. The
smallest wavelet scales containing transient short-range correlations
are not shown.
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is estimated. From the three unique (2,2)-partitions of the state
space {A,B,C,D}, we obtain three Hurst exponents for each
time series.

For comparison, we also estimated Hurst exponents with
detrended fluctuation analysis (DFA) [42] and obtained equiv-
alent results. For better visibility, only wavelet-based results
are shown in the remaining paper, DFA results are given in the
text where necessary.

B. Discretization

To compute the discrete time-lagged mutual information
function, we first have to partition the real-valued continuous
process into a number of discrete classes. Thus, continuous
probability densities are approximated by discrete distributions
(histograms) and entropy calculations become straightforward
[43,44]. Several choices for the optimum number of dis-
cretization steps exist in the literature. We here present results
obtained with the Freedman-Diaconis rule [45]

NFD =
⌈

R

2 �n3

⌉
, (7)

using the ceiling function �·�. The rule does not apply assump-
tions about the underlying distribution.

We also tested two other discretization schemes, Scott’s rule
for normally distributed data [46], and Sturges’ rule [47], the
latter giving the lowest number of discretization steps. Scott’s
rule proposes the use of NSc = � R

3.5 σ n3 �, Sturges’ rule the use
of NSt = �1 + log2 n�. Sturges’ rule may underestimate the
optimum number but is taken to be a good approximation for
large samples. In all expressions, R = max(X) − min(X) is
the range of the signal X, the standard deviation is abbreviated
σ , and � = Q75 − Q25 is the interquartile range, i.e. the
difference between the 75% and the 25% quantiles. The
results for all discretization schemes were qualitatively similar,
therefore the latter two schemes are not further discussed
in this article. For the OU process, the Freedman-Diaconis
rule gave an average of N̄FD = 98 discretization steps and
Scott’s rule gave N̄Sc = 76. For the CIR process, we obtained
N̄FD = 211 and N̄Sc = 102. For fGn, we got N̄FD = 115 and
N̄Sc = 88. Average values were rounded to the closest integer.
For all processes, the sample size of nmax = 50 000 determined
NSt = 17.

C. Time-lagged mutual information

Time-lagged mutual information for discrete, positive time
lags k is defined as [43]

I (k) = H (Xt+k) − H (Xt+k | Xt ). (8)

Equation (8) defines mutual information as the difference
between the entropies of two distributions, P (Xt+k), and
the conditional probability of Xt+k , given Xt . Equivalently,
mutual information is given as the Kullback-Leibler diver-
gence [43] between the joint distribution P (Xt,Xt+1) and the
product measure under the temporal independence assump-
tion, P (Xt,Xt+1) = P (Xt )P (Xt+1). Thus, mutual information
measures temporal dependence as the amount of information
about Xt+k contained in Xt . Mutual information for the
Markovian null hypothesis, with equilibrium distribution π

and transition matrix P (Xt+1 = j | Xt = i) = Tij is given by

I (k) = −
∑

i

πi log πi +
∑

i

πi

∑
j

T k
ij log T k

ij , (9)

where T k
ij denotes the (i,j )th element of the kth matrix potency

of T .
To control for effects induced by choosing a specific

discretization scheme, we also performed tests using the con-
tinuous (binless) Kozachenko-Leonenko estimate of mutual
information [48]. We used the Kozachenko-Leonenko estimate
as implemented in the Python machine learning package scikit-
learn using the K-nearest neighbors approach with K = 3.

As EEG microstate sequences are discrete by construction,
i.e., all values are taken from a finite set, mutual information
can be computed exactly without discretization considerations.

Throughout the manuscript, we use the natural logarithm
to the base e (Euler’s number) in the computation of mutual
information values, expressed in “nat” units.

D. Markov confidence intervals

To obtain Markovian surrogate data, the empirical transition
matrix T̂ij = P (Xt+1 = j | Xt = i) and the empirical equilib-
rium distribution π̂ are calculated for each discretized time
series. As a first-order Markov chain is uniquely defined by
Tij and an initial distribution, a surrogate Markov data set
with T̂ and π̂ identical to the empirical quantities can be
synthesized [49]. For each time seriesXt tested, we synthesized
n = 1000 surrogate Markov sequences of the same length as
Xt . The iterative algorithm is initialized according to π̂ before
iterating the remaining elements according to T̂ij . Thus, the
value Xt+1 = j is a function of Xt = i and the conditional
transition probability T̂ij . Initialization and iteration are imple-
mented with pseudorandom variables rt ∼ U [0,1], uniformly
and independently distributed on the unit interval. The initial
state index j is given by

∑j−1
i=0 π̂i � r0 <

∑j

i=0 π̂i . During
iteration, the index j of the successor state Xt+1 = j is given
by

∑j−1
l=0 T̂il � rt <

∑j

l=0 T̂il .
Our aim is to test the neurobiologically derived hypothesis

that the analytical amplitude of the alpha frequency band is
a fGn-like, long-range correlated process [5,22,23]. As EEG
data has to be preprocessed to extract the signal of interest
(band-pass filter, Hilbert transform), we designed an additional
null hypothesis for continuous EEG signals. This second
null hypothesis for short-range memory takes into account
preprocessing effects and the bursty nature of the instantaneous
alpha power. To this end, we fitted an AR(10) model to
each EEG data set and used the coefficients to synthesize
n = 100 AR(10) surrogate samples for each EEG time series.
The surrogate time series were preprocessed in the same
way as experimental EEG (band-pass filter, Hilbert transform)
and the mutual information estimates were obtained using
the discretization method described above. From the set of
AR(10) mutual information functions we obtain a confidence
interval (α = 0.01) under the assumption of autoregressive,
short-range correlations. In case of long-range correlations,
we expect the empirical (EEG) mutual information function to
lie above the AR(10) confidence interval.
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FIG. 7. Effects of preprocessing on mutual information estima-
tion. Gaussian white noise yields low mutual information at all time
lags as shown by the flat confidence interval (α = 0.01) labeled
“unfiltered white noise.” Applying the EEG pre-processing algorithm
to white noise, the confidence interval labeled “white noise alpha
band envelope” shows short-term memory components up to approx-
imately 200 ms. Memory effects in EEG time series are therefore
considered for time lags >500 ms (gray shaded area).

E. Effects of preprocessing

To compare our results with previous studies assessing the
instantaneous amplitude of individual EEG frequency bands,
we follow the same preprocessing strategies as given in the lit-
erature [5,22,23,50]. As the occipital alpha rhythm (8–12 Hz) is
the most prominent feature in wakeful resting state recordings,
most studies consider this frequency band. Furthermore, as the
amplitude of alpha oscillations is affected by vigilance and
cognitive task engagement, among others, the instantaneous
alpha amplitude is considered an indicator of the brain’s
functional state [51]. The neurobiological hypothesis behind
the above mentioned investigations is that the brain’s dynamic
complexity is reflected in long-range temporal correlations
of the alpha oscillation’s envelope. The technical procedure
leading to the envelope of a specific frequency band involves
two linear and one nonlinear operator. In the first step, a (linear)
zero-phase band-pass filter is used to extract the 8–12 Hz
alpha frequency band. In the second step, the (linear) Hilbert
transform of the band-pass filtered signal is computed. The
band-pass filtered oscillation and its Hilbert transform define
an analytical signal whose absolute value (nonlinear operation)
is the alpha envelope. As the mutual information algorithm
works on the preprocessed signal, we have to consider the
possibility that the pre-processing strategy may affect the
outcome. Intuitively, the envelope computation is expected to
affect mutual information at short time lags since the envelope
cannot change arbitrarily fast. Looking at the signals shown
in Fig. 5, it is observed that the envelope smoothly connects
subsequent peaks of the alpha band oscillation, i.e., it is a
smooth curve between points approximately 100 ms apart.
The lack of high-frequency components below this time scale
suggests that our preprocessing may emphasize short-range
correlations.

We therefore analyzed the effects of preprocessing on Gaus-
sian distributed white noise for its uniform frequency content.
Figure 7 illustrates the results. The horizontal gray band at
the bottom of the figure is the first-order Markov confidence
interval (α = 0.01) for the mutual information function of

unprocessed white noise signals (labeled “unfiltered white
noise”). As expected, there is a low, finite-memory content that
does not depend on the time lag. When the white noise signal
is processed in the same way as EEG data, we obtain the upper
confidence interval labeled “white noise alpha band envelope.”
It is important to note that this represents the alpha band content
of white noise, not a biological signal. In accordance with the
arguments given above, the confidence interval for the filtered
signal shows significant memory effects at time lags below
200 ms. Introducing a further safety margin, we only consider
time lags >500 ms in all subsequent EEG analyses, indicated
by the gray area to the right of the vertical black line in Fig. 7.
These results are in line with previous studies assessing the
range of scales where confounding effects due to filtering are
expected [40,52,53].

IV. RESULTS

A. Hurst exponents

Hurst exponents were calculated using a discrete wavelet
transform with Daubechies’ Db5 wavelet. At each scale, the
empirical fluctuation was computed and plotted against the
wavelet scale j . For the three model stochastic processes (fGn,
OU, CIR) and the parameter ranges of H and τ defined above,
we synthesized and analyzed sample paths with a length of
50 000 samples each. For each process and each parameter
value, we synthesized n = 100 sample paths. The results are
summarized in Fig. 8. Figure 8(a) shows the estimated Hurst
exponents Ĥ for fGn. The nominal Hurst exponent used in the
simulations is shown on the abscissa and the wavelet estimate
Ĥ on the ordinate. The blue line is the identity line indicating
the correct H value. The mean value of the Hurst exponent
estimates is indicated by black squares. We also calculated the
standard error of the mean (SEM) for the n = 100 sample paths
and added corresponding error bars to Fig. 8(a). However, the
numerical values are so small (≈0.004–0.006) that the error
bars can only be perceived under considerable magnification
of the data. It is observed that the wavelet method gives
precise estimates of the Hurst exponent in the case of fGn.
There is a small negative bias of the wavelet estimate, which
however is small compared to other methods presented in the
literature [9,54]. Figure 8(b) shows the Hurst exponents for
the OU process, with increasing relaxation time shown on the
abscissa. It is observed that increasing τ is associated with
large Hurst exponents H 	 0.5. Figure 8(c) shows that also
the CIR process yields Hurst exponents H 	 0.5, especially
for slow relaxation times, i.e., for large τ . As for fGn, black
squares represent mean Hurst exponent estimates. Again, the
SEM for the n = 100 estimates are so small that the error bars
in Figs. 8(b) and 8(c) are invisible. All shown results repre-
sent wavelet estimated Hurst exponents, DFA estimates were
practically identical and are therefore not visualized in Fig. 8.

B. Mutual information with Markovian confidence intervals

For the three stochastic processes considered above, we
consistently found Hurst exponents H > 0.5, although two of
the processes (OU, CIR) are actually short-range correlated.
We will here assess the capacity of the mutual information
function to measure the memory structure of the discretized
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FIG. 8. Hurst exponents for fractional Gaussian noise, the
Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process. In
(a–c), n = 100 sample paths of length 50 000 are used per data point.
(a) For each nominal Hurst exponent H (abscissa), Ĥ is estimated by
the wavelet method (ordinate). Average Ĥ -values are shown as black
squares, SEM error bars are so small that they are not visible. The
blue line indicates the identity Ĥ = H . It is observed that long-range
correlations in fGn are correctly estimated. (b) For the OU process,
the same estimation procedure shows increasing Hurst exponent
estimates with increasing relaxation time τ , although the process is
short-range correlated. (c) For the CIR process, the same behavior
as in (b) is observed. It is concluded that for OU and CIR, the Hurst
phenomenon occurs without long-range correlations.

processes. Figure 9(a) shows the mutual information func-
tions for fGn, with H increasing from H = 0.5 (bottom)
to H = 0.95 (top). Figures 9(b) and 9(c) show the mutual
information functions for the OU and CIR processes, with τ

increasing from τ = 0.1 (bottom) to τ = 10.0 (top). The shape
of the short-range correlated processes [Figs. 9(b) and 9(c)]
is markedly different from the mutual information functions
of fGn. Short-range correlated mutual information functions
[Figs. 9(b) and 9(c)] show an inflection point whereas the long-
range correlated mutual information functions [Fig. 9(a)] are
convex. Figure 10 shows mutual information functions (bold
black lines) with Markovian confidence intervals (gray shaded
areas) for stochastic test signals as well as for EEG and AR(10)
example data. Figure 10(a) shows the results for a fGn sample
synthesized with H = 0.85, for which wavelet (DWT) and
DFA estimates yield the correct value Ĥ = 0.85. Compared
with the first-order Markov confidence interval, the mutual

FIG. 9. Time-lagged mutual information functions for Freedman-
Diaconis discretized stochastic processes, LRD and relaxation time
parameters (H , τ ) increase from bottom to top. (a) fractional Gaussian
noise (fGn), (b) Ornstein-Uhlenbeck (OU), (c) Cox-Ingersoll-Ross
(CIR).

information function shows a much slower decay, indicating
long-range memory. Figures 10(b) and 10(c) show the results
for OU and CIR samples with relaxation time τ = 1.0. The
estimated Hurst exponents for the OU process are ĤDWT =
0.77 and ĤDFA = 0.73, for the CIR process ĤDWT = 0.80
and ĤDFA = 0.74. If these results are interpreted according
to the rules valid for fGn, the estimated Hurst exponents
seem to indicate LRD effects. The corresponding mutual
information functions, however, lie within their first-order
Markov confidence intervals across the range of measured time
lags, demonstrating that the apparent Hurst phenomenon does
not indicate long-range memory.

Figures 10(d) and 10(e) illustrate the same analysis for
an EEG example and a corresponding short-range correlated
AR(10) surrogate. The EEG sample yields empirical Hurst
exponents of ĤDWT = 0.72 and ĤDFA = 0.75, and the AR(10)
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FIG. 10. Time-lagged mutual information functions (bold black
lines) for fGn (a), OU (b), and CIR (c), and their first-order Markov
confidence intervals (gray). fGn clearly deviates from the Markovian
hypothesis, showing a significantly higher memory content and a
much slower decay. For OU and CIR, the mutual information function
lies within the Markov confidence interval, demonstrating their short-
range correlated nature. For EEG data (d) and the AR(10) model (e),
two types of confidence intervals are shown, the first-order Markov
null hypothesis as in (a–c) (gray area with black borders) and the
AR(10) confidence interval (gray area with blue borders). EEG and
AR(10) data do not show a fGn-like mutual information function
and are statistically indistinguishable from short-range correlated
processes.

model gives estimates of ĤDWT = 0.62 and ĤDFA = 0.78.
Again, these results suggest LRD effects. The mutual in-
formation functions, however, show inflection points similar
to the short-range correlated processes shown in Figs. 10(b)
and 10(c). As first-order Markov surrogates parametrize these
processes insufficiently, we show both, the first-order Markov
(gray area with black borders) and the AR(10) (gray area
with blue borders) confidence intervals. The region for which
pre-processing effects can be excluded (time lags >500 ms) is
shown in light gray color. For EEG and AR(10) data, the mutual
information functions lie within the corresponding AR(10)
confidence intervals. This result can be formulated in two ways,
(a) the memory structure of the EEG alpha envelope is fully
captured by the AR(10) model, and (b) the EEG structure is

FIG. 11. Continuous Kozachenko-Leonenko estimates of mutual
information for fGn and EEG. (a) Average mutual information func-
tion for fGn with Hurst exponent H = 0.75 (n = 10). (b) Individual
mutual information functions for the ten EEG recordings. While fGn
shows a power-law decay of memory effects, the information content
of the alpha envelope decays like a short-range correlated process.

statistically not distinguishable from an autoregressive model,
i.e., the EEG alpha envelope shows short-range memory.
Moreover, the short-range correlated bursts of alpha activity
produced by the AR(10) model reliably produce a spurious
Hurst phenomenon.

C. Resting state EEG

The exemplary results for the analytical amplitude of resting
state EEG alpha oscillations shown in Figs. 10(d) and 10(e)
were further assessed for all ten subjects. For the ten data
sets, the mean and SEM values of the estimated Hurst expo-
nents were ĤDWT = 0.75 ± 0.025 and ĤDFA = 0.74 ± 0.019.
We thus observe a consistent Hurst phenomenon (H > 0.5),
with Hurst exponents identical to the values presented in the
literature [5,22,23]. Next, we test if the difference in the mutual
information functions of fGn and the EEG alpha envelope is
caused by the discretization scheme. We therefore performed
an additional analysis using the Kozachenko-Leonenko con-
tinuous estimate of mutual information for fractional Gaussian
noise and EEG signals. The results are shown in Fig. 11. To
compare fGn and EEG memory effects, Fig. 11(a) shows the
average mutual information function of ten fGn samples with
H = 0.75, to mimic the properties of the EEG data set. We
observe that for fGn, the continuous Kozachenko-Leonenko
estimate also indicates memory effects following a power-law,
i.e. decaying linearly in log-log coordinates. Figure 11(b)
shows the continuous mutual information estimates for the ten
EEG samples. Although the EEG-derived mutual information
functions show some variability, we observe the same shape
as for the discretized processes shown in Figures 10(d),
10(e). Notably, the EEG alpha envelope and fGn show clearly
dissimilar mutual information functions. To exclude spuri-
ous memory effects introduced by band-pass filtering and
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FIG. 12. Mutual information functions for neurophysiological data. (a) Analytical alpha amplitude of the left occipital EEG channel. Time
scales not affected by pre-processing effects are indicated by the gray-shaded area. (b) Memory effects for the EEG microstate random walk. (c)
fMRI signal recorded in the left occipital area, the same region where the signal in (a) was recorded using EEG. For (a–c), the empirical mutual
information functions (black lines) lie within the Markovian confidence intervals (gray areas, α = 0.01) supporting the short-range correlated
null hypothesis.

envelope computations, we also analyze memory effects in
EEG microstate time series computed from the same EEG data
sets as those analyzed in Fig. 11(b), but using a completely
different algorithmic approach including data from all EEG
channels. Exemplary mutual information functions for Subject
2, as indexed in Table I, are shown in Fig. 12. On the left,
Fig. 12(a) shows the discretized mutual information function
for the analytical alpha amplitude recorded at electrode O1.
The function lies within the Markovian confidence interval
obtained from the AR(10) model (gray area with black bor-
ders), similar to the example shown in Fig. 10(d). Time scales
not affected by pre-processing are again indicated by the light
gray area.

The middle panel, Fig. 12(b), shows the results for EEG
microstate analysis. The shape of the empirical mutual in-
formation function and the Markovian confidence interval are
highly similar to the results obtained in Fig. 12(a). A difference
is found at time lags around 100ms, corresponding to the EEG
alpha frequency band (8–12 Hz), where the microstate mutual
information function shows oscillatory peaks. Actually, the
peaks are located at multiples of twice the main frequency
component, here at multiples of approximately 50 ms. We
explained this frequency doubling effect in a recent publication
[55]. At time lags above 1–2 s, however, the mutual infor-
mation functions lies within the confidence intervals defined
by the first-order Markov null hypotheses, arguing against
long-range memory effects. Although we find no long-range
memory in the mutual information functions, the empirical
Hurst exponents of all microstate sequences satisfy H > 0.5,
in line with values reported in the literature [40,41]. Averag-
ing across the ten subjects, we obtain ĤDWT = 0.63 ± 0.013
and ĤDFA = 0.64 ± 0.013 for partition P1. For P2, we get
ĤDWT = 0.62 ± 0.019 and ĤDFA = 0.63 ± 0.013 and for P3,
we find ĤDWT = 0.66 ± 0.025 and ĤDFA = 0.66 ± 0.019. As
microstate analysis does not contain the preprocessing steps
contained in Fig. 12(a), i.e., band-pass filtering to the alpha
frequency band and analytical amplitude computation, we con-
clude that the observed short-range memory effects are a stable,
inherent property of the neural processes underlying EEG data.
We obtained the same kind of results for all other subjects
that are not shown in Fig. 12. Figures 12(a) and 12(b) both
show 99% confidence intervals computed from n = 100 surro-

gates. Interestingly, all recordings show a mutual information
function with a reverse sigmoid shape, i.e., with an inflection
point, similar to the short-range correlated stochastic processes
shown in Figs. 9(b) and 9(c), and Figs. 10(b) and 10(c).

D. Resting state fMRI

To further corroborate our results, we also tested a different
experimental technique (fMRI) for several reasons: (a) unlike
the EEG signal, the fMRI signal does not suffer from electrical
volume conduction through the skull, (b) no amplitude recon-
struction by the Hilbert transform is required, and (c) much
longer time series can be analyzed. We therefore analyzed
fMRI recordings from the same set of subjects as considered
in the EEG section. As EEG data were taken from the left
occipital electrode (O1), we analyzed the Hurst exponents
and the mutual information functions of fMRI time courses
extracted from the left occipital cortex as indexed by the AAL
anatomical MR atlas [56].

Hurst exponents were estimated using DWT (scales 1–
4) and DFA (scales 10–50) and we obtained results of
ĤDWT = 0.85 ± 0.032 and ĤDFA = 0.66 ± 0.019, in general
accordance with the literature. For subject 2, the Freedman-
Diaconis discretized mutual information function (black) and
the first-order Markov 99% confidence interval (gray area)
are shown in Fig. 12(c). Similar to EEG data, we observe
that the mutual information function lies within the Markov
confidence intervals. Analogous results were obtained for all
other subjects. Note that due to the different sampling rates and
different recording lengths of EEG and fMRI recordings, the
fMRI analyses represent 50 min records with time lags up to
100 s.

V. DISCUSSION

We here present the time-lagged mutual information func-
tion as an effective tool to assess long-range dependence in
finite length empirical data, especially in cases where Hurst
exponent estimation yields false positive results. Our results
can be summarized by the following points:

(1) Neural signals (EEG alpha envelope, EEG microstate
sequences, fMRI) show a consistent Hurst phenomenon when
analyzed with the wavelet and DFA algorithms but their
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mutual information functions lie within the confidence inter-
vals defined by short-range correlated surrogates.

(2) Neural data show mutual information functions simi-
lar to some short-range (exponentially) correlated stochastic
processes (OU, CIR). Testing OU and CIR samples for slow
relaxation time constants with the wavelet and DFA algorithms,
we observe a stable Hurst phenomenon (H > 0.5). In these
cases, however, the long-range dependence interpretation of
the Hurst exponent is erroneous.

(3) Long-range correlations and the Hurst phenomenon,
when present (fGn), are correctly quantified by all algorithms
tested, i.e., the classical wavelet and DFA algorithms, as well
as the information-theoretical approach investigated here.

(4) The time-lagged mutual information function with
Markovian confidence intervals, applied to discretized signals,
correctly distinguishes short-range from long-range correlated
processes.

A. Slow relaxation and sample length

The wavelet and DFA algorithms both quantify variance
contributions on different time scales for a given signal. The
amount of variance produced at a given length scale is analyzed
as a function of the scale parameter, i.e., the length of the time
window considered. Due to the specially designed covariance
structure of fGn, the Hurst exponent correctly parametrizes
the long-range correlations existing in fGn. For the short-
range correlated OU and CIR processes, if we use a relaxation
time that is large relative to the analyzed sample size, we
observe variance contributions at scales the size of the data
sample, and this can result in H > 0.5 (Fig. 8). The prob-
lem can be partially resolved by considering larger samples.
However, for any sample size we can encounter exponentially
correlated processes with relaxation times that are too large
for the chosen size. Also, in practice, sample size can be
limited due to stationarity or data quality issues. In the case
of resting state EEG data, vigilance changes are a common
nonstationarity [57] and electrode or eye-blink artifacts can
severely affect data quality. The duration of the EEG recordings
used by us are within the range of those in previous studies
reporting long-range correlations [24,52,53,58–63]. A notable
exception is the study by Kantelhardt [50], where very long
EEG recordings are reported and the scaling region was
extended to the 50–500 s range. To address longer time scales,
we analyzed 50 min fMRI recordings up to time scales of 100 s.

B. Mutual information with Markovian confidence intervals

The mutual information function analyzes temporal depen-
dencies in time series by computing a dissimilarity measure
between the independent and the dependent symbol distri-
butions for Xt and Xt+k . The analytical form of the mutual
information function for a first-order Markov process [Eq. (9)]
and empirical confidence intervals are derived. True LRD data,
i.e., fGn sample paths, show a linear (Fig. 11) or slightly convex
shape (Fig. 10) of the mutual information function in log-log
coordinates. Comparing the mutual information functions of
the processes with known autocorrelation properties, as shown
in Fig. 9, we observe that the short-range correlated OU
and CIR processes show a (reverse) sigmoid shape markedly
different from the fGn case.

To distinguish short-range from long-range memory, we
construct confidence intervals based on a null hypothesis of
short-range, Markovian correlations. In the case of fGn, the
contrast between the long-range memory present in fGn and the
Markovian memory decay of the confidence interval is clearly
seen in Fig. 10(a). The figure also shows that OU and CIR
processes are correctly characterized as short range correlated.
For EEG data, we find that a simple first-order Markov process
characterizes the real data only insufficiently. The more flexible
AR(10) model, however, yields a confidence interval enclosing
the empirical EEG mutual information function.

With Hurst exponent estimation, it was not possible to
distinguish these cases as all data gave values indicating
long-range correlations (H > 0.5). Analyzing the discrepancy
between the empirical mutual information function and the
Markov confidence interval, we find that it is possible to dis-
tinguish short-range from long-range dependence statistically,
even in cases of slow relaxation times and finite sample size.

C. LRD in neural data

Applying the mutual information approach to experimental
EEG and fMRI resting state data from healthy subjects, we
consistently reproduce large Hurst exponents (H > 0.5), but at
the same time find mutual information functions approaching
those computed from Markovian surrogates. In the case of
EEG, the tested signals were (a) the analytical amplitude
of alpha frequency band oscillations, representing the most
prominent EEG feature in the wakeful resting state condition,
and (b) EEG microstate sequences computed from the same
data sets, which capture the temporal dynamics of the spatial
EEG profile after data compression to four representative
topographies of the electrical potential. The fMRI signal is
recorded from the same subjects and from the same brain
regions where alpha rhythm generators are localized. For
all modalities, long-range memory effects based on Hurst
exponent estimates H > 0.5 have been reported. Our results
confirm these previous findings of H ≈ 0.6–0.8 [5,22,27,40],
showing that large Hurst exponents seem to be a consistent
phenomenon in neural data. On the other hand, our findings
question the long-range memory interpretation when looking at
the information content of the time series directly. The Shannon
entropy of the neural signals decays over time, finally as fast
as a Markovian process mimicking other signal properties
such as underlying oscillations and bursty amplitude dynamics.
Furthermore, our results still hold when restricted to time
scales beyond those affected by preprocessing, as shown in
Figs. 10 and 12. The fact that short-range correlated AR(10)
models produce the same memory structure as experimental
data, although these models have an integrable autocorrelation
function, shows that Hurst exponents alone provide only partial
evidence for LRD.

Analyzing the analytical amplitude of EEG signals visually
(Fig. 4), we observe that resting state alpha activity occurs in
irregular bursts which produce a complex, multi-scale variance
structure of the signal envelope. This contribution of large
variance terms at different time scales contributes to scaling
exponents H > 0.5. Visually and quantitatively, neural signals
behave differently from fGn samples, and therefore, fGn prop-
erties such as long-range correlations cannot always be inferred
directly from empirical Hurst exponents of empirical data.
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VI. CONCLUSIONS

Long-range memory is an exceptional feature generated
by certain stochastic processes and by real-world complex
systems. Stochastic processes such as fractional Gaussian
noise can be constructed in such a way that Hurst exponents,
power-law exponents and fractal dimension are connected via
simple algebraic relations. While the resulting fGn process
is stationary, i.e. the variance is distributed uniformly along
the time axis, real-world signals often exhibit more irregular,
bursty, and otherwise nonstationary properties. We present
two elementary stochastic processes (OUP, CIR) whose Hurst
exponents do not predict the long-range information content
of the process correctly. This observation is not completely
unexpected as whole families of nonstationary stochastic pro-
cesses with Hurst exponents H > 0.5 but Markovian memory
structure have been introduced in Ref. [17]. In those cases,
H > 0.5 is not due to suboptimal estimation but represents an
analytical property of the Markovian process.

The main message of our work is that the interpretation
of memory effects in real-world signals may benefit from
information-theoretical analyses, in addition to Hurst exponent
estimation. We show that the time-lagged mutual information
function is a useful method to measure memory effects. More-
over, the null hypotheses used to construct confidence intervals
should capture as many features of the experimental time series

as possible, in the case of EEG including oscillations with
bursty amplitude dynamics, while guaranteeing short-range
correlations. To this end, we used the AR(10) model which
is known to yield a satisfying parametrization of EEG data in
other contexts [28,29].

To put our results into context, it is interesting to observe
that our results are similar to previous information-theoretical
analyses of EEG data using the diffusion entropy method,
where short-range correlations and spurious LRD results were
observed [64,65]. In two recent studies, we could show that
Hurst exponents and memory effects of EEG microstate se-
quences describe two different aspects of the time series, and
that nonstationarity and slow relaxation affect Hurst exponents
[41,55].

The fact that several experimental modalities representing
the same neural process (resting state activity in parieto-
occipital regions) show converging results considering mem-
ory effects, suggests that the patterns observed describe some
biologically robust phenomenon. While Hurst exponents are a
useful measure to characterize different physiological states,
as shown multiple times [24,27,37,50,58,66], we propose
to add complementary information about the time series’
memory structure using information theoretical measures. The
additional approach should complement and not substitute
existing methodologies, and thus add to our understanding of
the complex dependencies apparent in neural signals.
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