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Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate
input and output signals. In many cases, optimal regulatory performance can be thought to correspond to
configurations of variables and parameters that maximize the mutual information between inputs and outputs.
Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use
methods of statistical field theory to calculate the statistics of the maximal mutual information (the “capacity”)
achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller
regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small
noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean
capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness
occurring in regulatory systems with heterogeneous kinetic parameters.
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I. INTRODUCTION

Regulatory processes in living cells are universally sub-
ject to noise. In many cases, it is essential that stochastic
fluctuations affecting an upstream node of the regulatory
network (e.g., a transcription factor, a cell-surface receptor,
etc.) are not amplified as the biochemical cascade triggered
by its activation (e.g., RNA transcription, a specific signaling
pathway, etc.) proceeds to downstream nodes (e.g., proteins).
Indeed, efficient modulation of the cell’s response in changing
extracellular and/or endogenous conditions requires the output
to be controllable with sufficient accuracy. In this light, noise
processing appears to be a central task of regulatory circuits,
and quantifying their noise-processing capability is an impor-
tant theoretical question.

During the past decade many studies have addressed this
issue within an information theoretic framework in different
contexts [1–18]. The general idea behind this line of work is
that optimal effectiveness of a regulatory module is achieved
when the mutual information between input and output nodes
is maximized. While individual motifs may operate under
nontrivial trade-offs in extended regulatory networks or even
in populations of cells [19], optimal properties establish fun-
damental limits to noise processing by regulatory circuits.
Therefore, their quantification allows in principle to isolate and
characterize the physical ingredients that constrain informa-
tion flow (e.g., noise sources, parameter configurations, etc.),
leading to predictions that can be tested either in experiments
(see, e.g., Refs. [14,20]) or via transcriptional or proteomic
data analysis (see, e.g., Ref. [18]).

Here we aim at extending the current theoretical picture
by analyzing the statistics of optimal information flow in
ensembles of regulatory motifs using tools of statistical field
theory. In specific, we consider ensembles generated by sam-

pling the parameters characterizing input-output couplings
from given probability distributions. This choice reflects a
situation typical, e.g., of sequence-specific couplings. In such
cases, interaction parameters can be thought to change over
time scales much longer (evolutionary) than those charac-
terizing variations in molecular levels, and may therefore be
considered fixed (quenched) with respect to the faster variables.
Generically speaking, as the number of components increases,
ensemble properties often become less sensitive to the details
of the interactions (i.e., the specific parameter values) while
retaining a dependence on the parameter distribution [21].
In this sense, they describe typical properties of systems of
interacting units and provide a robust benchmark against which
optimal properties can be gauged.

For simplicity, we focus on the elementary case in which a
single controller regulates a (possibly large) number of target
nodes at stationarity [2]. We shall see that, in this class of
systems, the existence of a well defined optimum allows for
typical properties to get closer and closer to it as the number of
targets increases. This suggests that, at least to some degree,
sufficiently large and centralized regulatory elements might be
relatively insensitive to interaction details. Biological instances
in which such a situation could be realized are found, e.g.,
in miRNA-mediated post-transcriptional regulatory networks
(where some miRNAs are known to control the expression
of a large number of target RNAs [22]), in the coupling of
transcription factors to promoters in bacteria [23,24] and in
certain emergent properties of metabolic networks [25,26].
However, for sakes of brevity and to focus the article on
our main goal, we shall not address extensively the biolog-
ical context underlying these models, referring the reader,
e.g., to Refs. [7] and [18] for detailed discussions of the
cases of transcriptional and post-transcriptional regulation,
respectively.
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FIG. 1. Scheme of one controller (e.g., a transcription factor) regulating N independent targets. Px(x) is the probability distribution of the
controller level x, recalled by the dashed black lines in middle panels. The channel is represented by the mean target levels {gi(x)}N

i=1 (solid lines
in middle panels), modeled as Hill functions of x (the controller can either activate or repress each of the N targets). The error bars represent
±σi(x), where σ 2

i (x) is the intrinsic noise variance of the ith target. The presence of noise induces a probabilistic relationship between the
levels of the controller and the targets: the outputs of the regulatory network are the probability distributions {Pg(gi)}N

i=1, whose shape depends
on the matching between the controller distribution and the noisy channel.

After briefly recapping the background and stating the
problem and our strategy (Secs. II and III), we concentrate
on the ensemble of optimal motifs generated by a probability
distribution of (the values of) kinetic parameters. Specifically,
we first compute the average capacity, i.e., the mean value of the
maximum mutual information exchanged between controller
and targets (Sec. IVA), and then derive an expression for the
probability distribution of the capacity (Sec. IVB). Analytical
results are compared against numerical experiments in Sec. V.
Finally, in Sec. VI we provide an outlook of our results.

II. BACKGROUND

We follow Ref. [4] and consider a single input node,
representing, e.g., a transcription factor or a regulatory RNA,
controlling N targets, see Fig. 1. We assume that targets
interact through the controller exclusively (i.e., there is no
direct coupling between targets). The state of each node is
described by a concentration variable. We let x denote the
controller level, which we measure in units of a preassigned
concentration value, and assume it ranges from xmin to xmax.
The vector g = {gi} will instead represent target levels, with
i = 1, . . . ,N . For sakes of simplicity, we assume that gi’s are
dimensionless and that gi ∈ [0,1] for each i, amounting to a
rescaling of each gi by its maximum attainable level.

In a purely static setting, each gi is taken to be determined
independently from x via a regulatory channel described by
the conditional probability density P (gi |x), which encodes for
the complex physical processes that map the input variable x

into the output variables gi . Again following [4], P is taken to
be Gaussian with mean gi(x) and variance σ 2

i (x), i.e.,

P (gi |x) = 1√
2πσ 2

i (x)
exp

[
− (gi − gi(x))2

2σ 2
i (x)

]
. (1)

In short, one can imagine that the regulatory motif responds
stochastically to the value of x being fed into it, with an average
response given by gi and fluctuations described by σ 2

i . Whether
x tends to activate or repress the ith target is determined
by the behavior of gi (and more complicated dependencies
can be realized by modulating the topology [5,8]), whereas
σ 2

i accounts for the different sources of noise that contribute
to the overall stochasticity of the channel x → gi . Detailed
discussions of the biological ingredients of both gi and σ 2

i can
be found, e.g., in [27–29]. For instance, if the controller is a
transcription factor (TF) that activates the transcription of the
targets’ RNAs on binding to the DNA, a minimal, biologically
plausible model for σ 2

i and gi is given by

gi(x) = xhi

xhi + K
hi

i

, (2)

σ 2
i (x) = 1

Mmax

[
gi(x) + x

(
∂gi

∂x

)2
]
, (3)

where Mmax stands for the maximum achievable number of
target molecules. In short, the Hill function (2) generically
describes the increase of gi with x that is expected when the
controller enhances the synthesis of the target. The dissociation
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constant Ki gives the value of x for which gi attains half
of its maximum, while hi > 0 (the Hill index) quantifies the
steepness of gi for values of x around Ki (when gi is most
sensitive to changes in x, as gi � 1 for x � Ki and gi � 1
for x � Ki). Equation (3) instead details the contributions of
standard molecular noise (first term) and of the randomness
associated to diffusion-mediated DNA-TF interactions (second
term) to the stochasticity of gi at any given x. Note that the
specific forms of gi and σ 2

i are immaterial for our theory.
Generically, if x is sampled from an ensemble of values

described by the probability density Px(x), the quantity

Pg(g) =
∫ xmax

xmin

P (g|x)Px(x)dx, (4)

with P (g|x) = ∏N
i=1 P (gi |x), describes the statistics of the

output vector g. In order to quantify the degree of control over
g that can be exerted through x, one can employ the mutual
information (in bits) between the input and output variables,
namely

I (x; g) =
∫

d g dx P (x,g) log2
P (x,g)

Px(x)Pg(g)

=
∫ xmax

xmin

dx Px(x)
∫

d g P (g|x) log2
P (g|x)

Pg(g)
, (5)

where P (x,g) = P (g|x)Px(x) stands for the joint probability
density of x and g. In rough terms, the number of different
“states” for the vector g that can be reliably distinguished
based on the noisy input variable x is approximately given
by 2I (x;g). In a transcriptional regulatory setting, this would
correspond to the number of distinct “expression profiles” of
the N targets that might be obtained by tuning the level of
the controller. Hence larger values of I can generically be
associated to more refined degrees of control over the output
layer. In particular, for a fixed input/output channel P (g|x),
one can probe the limits to information flow by searching for
the input distribution Px that maximizes I .

When σ 2
i (x) is sufficiently small for all x (“small

noise approximation”), the maximization problem can be
solved analytically [4]. The mutual information takes the
form (see Appendix A for a short recapitulation of
this scenario)

I (x; g) = S[Px] +
∫ xmax

xmin

dx Px(x)

× log2

√√√√ 1

2πe

N∑
i=1

1

σ 2
i (x)

(
∂gi

∂x

)2

, (6)

where

S[Px] = −
∫ xmax

xmin

dx Px(x) log2 Px(x) (7)

is the entropy of Px. By variational differentiation of the above
expression over Px (with a constraint enforcing normalization)

one finds that the input distribution

P �
x (x) = 1

Z

[
1

2πe

N∑
i=1

1

σ 2
i (x)

(
∂gi

∂x

)2
]1/2

, (8)

Z =
∫ xmax

xmin

[
1

2πe

N∑
i=1

1

σ 2
i (x)

(
∂gi

∂x

)2
]1/2

dx, (9)

exploits the channel described by (1) optimally, i.e., maximizes
the mutual information between x and g. For Px = P �

x , in
particular, one gets

I (x; g) ≡ I � = log2 Z. (10)

In information-theoretic terms, the quantity I � represents the
capacity of the given input/output channel.

III. PROBLEM STATEMENT AND CALCULATION
STRATEGY

In concrete cases, the value of I � depends on the specifics
of the functions σ 2

i and gi . For fixed choices of the above
functions, e.g., as in (2) and (3), an important reference value
is given by the maximum of I � over the parameter space, i.e.,

I �
opt = max

K,h
I �, (11)

where K = {Ki} and h = {hi}, the parameters characterizing
(2) and (3), are assumed to take on values in prescribed
ranges. Quantities like (11) have been studied extensively in
the literature (see, e.g., Refs. [4,5,8]). On the other hand, one
may be interested in the statistics of the capacity I � for an
ensemble of regulatory motifs defined, for any given choice of
σ 2

i and gi , by a probability distribution Q for the parameter
vectors. Numerical results obtained for small N and in the
small noise limit have shown that, at least in some cases, the
optimum of I � in the parameter space can be rather broad,
implying a relatively weak dependence of the capacity on
parameters [4,17,18]. It is therefore important to quantify
ensemble properties more precisely.

The probability distribution of I � [we shall denote it by
PI (I �)] induced by a probability distribution of parameters is
defined over the interval [0,I �

opt] and can be easily computed
numerically from (9) and (10). Figure 2 shows results obtained
by choosing gi and σ 2

i as in (2) and (3), together with the
best fits to a generalized extreme value (GEV) distribution
[30]. Notice how the mean lies within a few percentages of the
optimum in each case (and moves closer to it as N increases).

Here we aim at studying the distribution of I � = log2 Z

and its mean value 〈I �〉 using statistical mechanics tools. Our
starting point will be Eq. (9), which we rewrite as

Z =
√

N

∫ xmax

xmin

dx
√

λ(x) (12)

on defining

λ(x) = 1

N

N∑
i=1

fi(x), (13)

fi(x) = 1

2πeσ 2
i (x)

(
∂gi

∂x

)2

. (14)
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FIG. 2. Blue markers: probability distributions PI (I �) obtained
numerically for ensembles of 104 regulatory motifs with different
N constructed by choosing gi and σ 2

i as in (2) and (3), by sampling
each Ki independently from a uniform distribution in [xmin,xmax], with
xmin = 10−2, xmax = 1, and by setting hi = 2 for each i = 1, . . . ,N .
The red line represents the best fit to a GEV distribution [30]. Blue
and red vertical lines mark, respectively, the positions of the numerical
mean and of the mean of the GEV fitted to the data. The purple star
indicates I �

opt, Eq. (11). The maximum number of target molecules
was set to Mmax = 100.

Randomness in the parameters of the functions gi(x) and of
σ 2

i (x), and hence in the fi(x), makes Z a random variable.
In turn, its probability density depends on the probability dis-
tribution of parameters via the function λ(x) which expresses
the arithmetic mean of the fis at fixed x. It is reasonable to
think that, if the cumulants of the fis do not grow too fast
with N , the probability density functional P[λ] of λ(x) will be

approximately Gaussian for large N , i.e.,

P
[
λ] � 1

N exp

[
−N

2

∫
dx dx ′ [λ(x) − μ(x)] �−1(x,x ′)

× [λ(x ′) − μ(x ′)]
]
, N � 1, (15)

where N is a normalization factor, μ(x) denotes the mean of
λ(x), namely

μ(x) = 1

N

N∑
i=1

〈fi(x)〉c, (16)

and �−1(x,x ′) stands for the inverse of

�(x,x ′) = 1

N

N∑
i,j=1

〈fi(x) fj (x ′)〉c. (17)

In the above formulas, averages are taken over the probability
distribution functional of fi(x) or, equivalently, over param-
eters (with probability distribution Q), while the subscript
“c” denotes cumulants or connected correlation functions,
depending on the context. Note that, if fi(x) and fj (x ′) for
i �= j are statistically independent, only terms with i = j

survive in expression (17), which simplifies to

�(x,x ′) = 1

N

N∑
i=1

〈fi(x) fi(x
′)〉c. (18)

Equation (15) suggests that, for large enough N , means
of quantities involving Z may be evaluated by relying on the
first two cumulants of fi(x) only. Moreover, if the (quenched)
average capacity

〈I �〉 = 〈log2 Z〉 (19)

can be approximated by the annealed estimate

〈I �〉ann = log2 〈Z〉, (20)

only cumulants of fi(x) at fixed value of x are required
[see (12)]. The error made on replacing (19) with (20), an
estimate of which is given in Appendix B, numerically turns
out to be extremely small already for N = 5. Therefore, we
shall begin by computing 〈I �〉ann analytically in the Gaussian
approximation, showing that numerical results for (19) are
remarkably well reproduced by our analytical result for (20)
even for small N . Next, we shall obtain an expression for PI

via a direct computation starting from (12), still within the
Gaussian scenario. A comparison with numerical results will
again turn out to be very good, although the accuracy will now
depend more strongly on N .

Improvements to the Gaussian approximation are not hard
to include, at least formally. To illustrate how, we shall consider
the lowest-order correction, leading to a cubic theory based on
the third-order cumulant

g3(x,x ′,x ′′) = 1

N

N∑
i,j,k=1

〈fi(x) fj (x ′) fk(x ′′)〉c . (21)

The possibility of keeping only diagonal terms in the above
expression (i.e., with x = x ′ = x ′′) greatly simplifies calcu-
lations. We will see that cubic corrections provide a better
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description of the statistics of λ(x) for small x, especially when
xmax � xmin, and improve the Gaussian estimate for 〈I �〉.

Two important remarks are in order. First, since the compar-
ison with numerical (or, possibly, experimental) data becomes
harder as the order of the cumulants increases [even for
statistically independent fi(x)], the predictions obtained with
the Gaussian theory provide, in our view, a useful benchmark
per se. Second, we shall see that our approach does not require
to prescribe the details of the probability distribution Q of
parameters. Likewise, the particular choices of gi and σ 2

i

are immaterial for the calculation. We shall therefore only
specify them on comparing with numerical results. To fix ideas,
though, we shall henceforth indicate the parameters entering
the definitions of gi and σ 2

i by K and h, as in (2) and (3), and
their probability distribution by Q(K ,h).

IV. ANALYTICAL RESULTS

A. Average channel capacity

As said above, we shall approximate the average capacity
by the quantity

〈I �〉ann = log2 〈Z〉, (22)

where the average 〈· · · 〉 is over the parameters K and h, i.e.,

〈(· · · )〉 =
∫

d Kdh Q(K ,h) (· · · ), (23)

or, equivalently, over the functions fi(x), i.e.,

〈(· · · )〉 =
∫

D f P[ f ] (· · · ), (24)

with probability distribution functional

P[ f ] =
∫

dx

∫
d Kdh Q(K ,h)

×
N∏

i=1

δ

[
fi(x) − 1

2πeσ 2
i (x)

(
∂gi

∂x

)2
]
. (25)

While (23) and (24) are equivalent, the use of one vs. the other
may depend on the context.

Using (12), the quantity 〈Z〉 can be written as

〈Z〉 =
√

N

∫ xmax

xmin

dx

∫ ∞

0
dλ Pλ(λ; x)

√
λ, (26)

where

Pλ(λ; x) =
∫

d f Pf( f ,x) δ

(
λ − 1

N

N∑
i=1

fi

)
, (27)

and Pf( f ; x) = 〈∏N
i=1 δ(fi(x) − fi)〉 is the probability density

of the value of the functions fi(x) at the given x. Using the
integral representation of the Dirac δ function, one gets

Pλ(λ; x) = N

∫ +∞

−∞

dφ

2π

∫
d f Pf( f ; x) e−iφ(Nλ−∑

i fi )

= N

∫ +∞

−∞

dφ

2π
e−Niφλ+ln〈eiφ

∑
i fi 〉x . (28)

The subscript “x” here indicates that the average is taken at
fixed x. The second term in the exponent can be expressed

using the cumulants of the quantity
∑

i fi as

ln〈eiφ
∑

i fi 〉x =
∑
n�1

1

n!
(iφ)n

〈(∑
i

fi

)n〉
x,c

. (29)

Thus, defining

μ(x) = 1

N

N∑
i=1

〈fi〉x, (30)

�(x) = 1

N

N∑
i,j=1

〈fifj 〉x,c, (31)

gn(x) = 1

N

N∑
i1,... ,in=1

〈
fi1 · · · fin

〉
x,c

, (n � 3), (32)

and introducing the action

S(φ; x) = �(x)

2
φ2 −

∑
n�3

gn(x)

n!
(iφ)n, (33)

the function Pλ(λ; x) can be recast as

Pλ(λ; x) = N

∫ +∞

−∞

dφ

2π
e−N[S(φ;x)−iφ(μ(x)−λ)]

= NA
2π

eNW (J ;x)

∣∣∣∣
J=i(μ(x)−λ)

,

(34)

where A ≡ A(x) = ∫
dφ e−NS(φ;x) and W (J ; x) is the cumu-

lant generating function of the random variable φ, whose
probability density reads e−NS(φ;x)/A(x). The normalization
constant A(x) ensures that W (J = 0; x) = 0.

We stress that the cumulants (30), (31), and (32) depend on
x. Moreover, (30) coincides with (16), while (31) corresponds
to �(x,x) as defined in (17). Similarly, the quantity gn(x)
defined in (32) is simply gn(x1, . . . ,xn) with x1 = · · · = xn =
x as defined in (21) for n = 3. For simplicity, we shall
henceforth retain the explicit dependence on x only in the
notation Pλ(λ; x), dropping it elsewhere.

It is also worth noting that 〈λ〉 = μ, 〈λ2〉c = �/N and
〈λn〉c = gn/N

n−1 for n � 3. Thus, if μ, � and gn are all of
O(1) as N � 1, the cumulants of λ vanish more rapidly with
N as the order increases. It follows that Pλ(λ; x) can be well
approximated, for large N , by a Gaussian with mean μ and
variance�/N . This result could have been anticipated from the
Central Limit Theorem. The procedure just discussed however
allows for a systematic treatment of corrections to this picture.
Indeed, in the following we shall first compute Pλ(λ; x) in the
Gaussian scenario by retaining only the first (quadratic) term
in S(φ), and then consider the first correction to it, obtained by
including the term proportional to g3 in (33). In each case, the
quantity 〈I �〉ann will ultimately be obtained from (22) and (26)
using the expressions for Pλ(λ; x) derived in each case.
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1. Gaussian approximation (central limit theorem)

Neglecting all terms but the quadratic in (33) one easily
arrives at the Gaussian form

Pλ(λ; x) = N

∫ +∞

−∞

dφ

2π
e−N[ 1

2 �φ2−iφ(μ−λ)]

=
√

N

2π�
e− N

2�
(λ−μ)2

,

(35)

from which 〈λ〉 = μ and 〈λ2〉c = �/N readily follows.

2. Cubic approximation: leading order

The first correction to the Gaussian approximation is ob-
tained by including the third-order term in the action S(φ),
Eq. (33), which now reads

S(φ) = 1

2
�φ2 + i

g3

3!
φ3. (36)

The simplest way of computing the corrections induced by the
third-order term is by inserting (36) into the first line of (34)
and expanding the resulting expression in powers of �/N . A
better approximation consists in using the second line of (34)
and computing the cumulant generating function W (J ) of the
theory governed by S(φ) from its Legendre transform 
(ϕ)
(also known as “effective potential”), defined via


(ϕ) + W (J ) = Jϕ, ϕ = ∂

∂J
W (J ), J = ∂

∂ϕ

(ϕ).

(37)

The advantage is that, in a diagrammatic theory, the function

(ϕ) is the generating function of one-particle irreducible (1PI)
vertices. This means that, roughly speaking, in this approach
all terms in the expansion in powers of �/N represented by
one-particle reducible diagrams are summed up. Such terms
represent an infinite series, thereby leading to a more accurate
approximation [31].

The effective potential can be expressed as


(ϕ) = S(ϕ) + 1

2N
ln D−1(ϕ) + 
1(ϕ) + C, (38)

where −
1(ϕ) is the sum of all 1PI vacuum diagrams of a new
theory with action

S(φ; ϕ) = 1

2
D−1(ϕ) φ2 + i

g3

3!
φ3 , (39)

D−1(ϕ) = � + ig3ϕ . (40)

The (constant) term C = − 1
2N

ln ( 2π
NA2 ) appearing in (38)

ensures that 
(ϕ) = 0, where ϕ = ϕ(J = 0), following from
the normalization W (J = 0) = 0. In practice, it merely fixes
the value of A to

A =
√

2π

ND−1(ϕ)
e−N[S(ϕ)+
1(ϕ)], (41)

and will henceforth be omitted. In turn, the function 
1(ϕ) can
be written as a power series of D(ϕ)/N (“loop expansion”)
starting with an O(1/N2) term. Hence, to the leading O(1)

order, 
(ϕ) reads


(ϕ) � S(ϕ) = 1

2
�ϕ2 + i

g3

3!
ϕ3. (42)

In order to compute W (J ) as W (J ) = Jϕ − 
(ϕ) we have
to eliminate ϕ as function of J using

J ≡ ∂

∂ϕ

(ϕ) = �ϕ + i

g3

2
ϕ2. (43)

Solving for ϕ one finds

ϕ = ϕ0 ≡ i

�−1g3
[1 −

√
1 + 2ig3�−2J ], (44)

where the solution with ∂2
(ϕ)/∂ϕ2 > 0 has been taken [32].
Since ϕ = 0, from (41) it follows that

A =
√

2π

N�
. (45)

Finally, starting from (37), straightforward algebra leads to

W (J ) = 1

3

iJ�

g3
+

[
2

3

iJ�

g3
+ 1

3

�3

g2
3

]
× [1 −

√
1 + 2g3�−2iJ ]. (46)

Summing up, from the second line of (34), one obtains

Pλ(λ; x) =
√

N

2π�
e−NF0(λ), (47)

with

F0(λ) = �

3g3

{
(μ − λ) +

[
2(μ − λ) − �2

g3

]
× [1 −

√
1 − 2g3�−2(μ − λ)]

}
. (48)

This approximation is valid provided

μ − λ � �2

2g3
. (49)

By comparison, the Gaussian approximation holds as long as
|λ − μ| = O(

√
�/N ).

3. Cubic approximation: next-to-leading order

The O(1/N ) term of the cubic theory can be computed by
including, in the approximate expression for 
(ϕ), the second
term on the right-hand side of (38). This yields


(ϕ) � S(ϕ) + 1

2N
ln D−1(ϕ)

= 1

2
�ϕ2 + i

g3

3!
ϕ3 + 1

2N
ln[� + ig3ϕ]. (50)

The equation for ϕ, which now reads

J ≡ ∂

∂ϕ

(ϕ) = �ϕ + i

g3

2
ϕ2 + 1

2N

ig3

� + ig3ϕ
, (51)

can no longer be solved in closed form for ϕ. Nevertheless, by
solving it numerically for ϕ, W (J ) can be evaluated for any J

directly as W (J ) = Jϕ − 
(ϕ).
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In our case, as J = i(μ − λ) is purely imaginary, so is the
solution of (51). Therefore, redefining iϕ → ϕ, we have

Pλ(λ; x) = C e−NF (λ), (52)

with

F (λ) = 1

2
�ϕ2 + g3

3
ϕ3 − 1

2N

g3ϕ

� + g3ϕ

+ 1

2N
ln[� + g3ϕ], (53)

and where ϕ ≡ ϕ(λ) denotes the solution of

λ − μ = �ϕ + g3

2
ϕ2 − 1

2N

g3

� + g3ϕ
. (54)

The normalization constant C is given by

C =
√

N

2π [� + g3ϕ]
exp

{
N

[
�

2
ϕ2 + g3

3!
ϕ3

]}
, (55)

where ϕ ≡ ϕ(μ). Now the probability distribution function
Pλ(λ; x) can be evaluated for any λ by solving (54) numerically
on varying λ. Note that this approximation holds if

� + g3ϕ > 0. (56)

B. Probability distribution PI (I�)

The maximal mutual information I � = log2 Z depends on
the quantity

y ≡ Z√
N

=
∫ xmax

xmin

dx
√

λ(x), (57)

where λ(x) = 1
N

∑N
i=1 fi(x), cf. (12). Hence, in order to

compute the full probability density PI (I �) of I �, one has to
evaluate the probability density of y, given by

Py(y) =
〈
δ
(
y −

∫
dx

√
λ
)〉

λ

=
〈∫

dŷ

2π
e−iŷ(y−∫

dx
√

λ)

〉
λ

=
∫

dŷ

2π
e−iŷy〈eiŷ

∫
dx

√
λ〉λ, (58)

where the subscript “λ” indicates the average over the function
λ(x) (functional average) with probability density functional
P[λ]. Note that, at variance with the calculation of the average
capacity, the correlations of the fis at different values of x

are relevant to compute PI and cannot be neglected. As a
consequence, we shall limit the calculation to the Gaussian
approximation in which P[λ] is given by (15).

The simplest way of computing Py(y) for large N starts
with the observation that, for N � 1, the functional P[λ]
is expected to be sharply peaked about its mean. Therefore,
the average 〈· · · 〉λ of a generic functional F[λ] of λ can be
evaluated as

〈F[λ]〉λ � F[μ] +
∫

dx
δF[λ]

δλ(x)

∣∣∣∣
μ

〈λ(x) − μ(x)〉λ

+ 1

2

∫
dx dx ′ δ2F[λ]

δλ(x)δλ(x ′)

∣∣∣∣
μ

×〈[λ(x) − μ(x)][λ(x ′) − μ(x ′)]〉λ + · · · . (59)

For our purposes [see (58)], F[λ] = eiŷ
∫

dx
√

λ, so that

δF[λ]

δλ(x)
= iŷ

2
√

λ(x)
eiŷ

∫
dx

√
λ (60)

and

δ2F[λ]

δλ(x)δλ(x ′)
= −

[
iŷ

4λ(x)3/2
δ(x − x ′)

+ ŷ2

4
√

λ(x) λ(x ′)

]
eiŷ

∫
dx

√
λ. (61)

On the other hand, a Gaussian P[λ] as in (15) implies

〈λ(x) − μ(x)〉λ = 0, (62)

〈[λ(x) − μ(x)][λ(x ′) − μ(x ′)]〉λ = �(x,x ′)/N. (63)

Putting pieces together, one gets

〈eiŷ
∫

dx
√

λ〉λ � exp
[
iŷ y − �z

2N
ŷ2 + O(1/N2)

]
, (64)

where

y =
∫

dx

[
μ(x)1/2 − �(x,x)

8Nμ(x)3/2

]
, (65)

�z = 1

4

∫
dx dx ′ �(x,x ′)√

μ(x) μ(x ′)
. (66)

Substituting this expression back into (58) and integrating over
ŷ we obtain

Py(y) �
√

N

2π�z

exp

[
− N

2�z

(y − y)2

]
+ O(1/N2). (67)

Because Z = √
Ny, see Eq. (12), we have

PZ(Z) = dy

dZ
Py(y)

∣∣∣∣
y= Z√

N

= 1√
N

Py(y)

∣∣∣∣
y= Z√

N

, (68)

which immediately yields

PZ(Z) � 1√
2π�z

exp

[
− 1

2�z

(Z −
√

N y)2

]
. (69)

Finally, from

PI (I �) = dZ

dI�
PZ(Z)

∣∣∣∣
Z=2I�

, (70)

we arrive at

PI (I �) � 2I �

√
2π�z

exp

[
− 1

2�z

(2I � −
√

Ny)2

]
, (71)

which represents our final expression of PI under the Gaussian
approximation. Notice that, in absence of further constraints,
the quantity I � appearing here varies in principle from −∞ to
+∞. Hence, in this framework we cannot obtain an analytical
estimate of the maximum achievable value of I �, namely I �

opt.

V. NUMERICAL RESULTS

Following, e.g., Ref. [4], we now specify the functions gi

and σ 2
i to expressions (2) and (3) respectively. With this choice,
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FIG. 3. Probability distributions Pλ(λ; x) at four different values of the controller level x for N = 5 targets. The vector K was sampled
from a uniform distribution in [xmin,xmax], xmin = 10−2, xmax = 0.1,1,10 (respectively top, middle, and bottom rows). Hill indices were fixed to
hi = 2, ∀i = 1, . . . ,N . Red markers represent the numerical results, while solid lines display analytical results corresponding to the Gaussian
[Eq. (35), cyan] and cubic [Eqs. (52)–(54), magenta] approximations.

Z [Eq. (9)] can be written as

Z =
√

Mmax

2πe
Z̃ (72)

where

Z̃ =
∫ xmax

xmin

{
N∑

i=1

h2
i K

2hi

i

x
[
h2

i K
2hi

i + x1−hi

(
xhi + K

hi

i

)3]
}1/2

dx .

(73)

In turn, the maximal mutual information reads

I � ≡ log2 Z = 1

2
log2

Mmax

2πe
+ Ĩ �, (74)

where Ĩ � = log2 Z̃ is independent of Mmax. For this reason, we
shall henceforth focus our attention on Ĩ � as opposed to I �.

In order to evaluate 〈Ĩ �〉ann = log2〈Z̃〉, we have computed
〈Z̃〉 using the different approximations discussed for Pλ(λ; x),
namely the Gaussian estimate (35) and the cubic estimate
(52)–(54). As these quantities depend on the cumulants of
the fis, we have first computed, for each value of the input
variable x in the interval [xmin,xmax], the quantities μ, � and
g3 defined in Eqs. (30)–(32). To give an idea of the quality of
the different approximation schemes, we showcase in Fig. 3
the distributions Pλ(λ; x) obtained by fixing the Hill indices
h and sampling K uniformly in [xmin,xmax], for xmax = 0.1
(top row), xmax = 1 (middle row), and xmax = 10 (bottom row)
and at the values of x corresponding to the different columns.

For xmax = 0.1 and xmax = 1 the Gaussian distribution appears
to provide an accurate approximation to the true Pλ(λ; x) at
sufficiently large values of x, while corrections to the Gaussian
picture are necessary to describe the tail of Pλ(λ; x) for smaller
values of x, especially for x = xmin and xmax � xmin (although
even the cubic theory falls short of describing the small-λ
regime in that case).

Figure 4 shows how numerical results for 〈Ĩ �〉 = 〈log2 Z̃〉
compare with the annealed approximation 〈Ĩ �〉ann as a function
of xmax (and fixed xmin) for N = 5 and N = 20. In the case of
fixed h and K uniformly sampled in [xmin,xmax] (top panels),
one sees that already for N = 5 the Gaussian approximation
describes numerical results with good accuracy, as slight
deviations only occur at large xmax. The cubic approxima-
tion slightly improves the Gaussian picture. Notice that the
ensemble average systematically trails the optimum by a few
percentages. When the distribution of K is uniform in log
scale (see bottom panels), the qualitative scenario is unchanged
although the relative difference between the mean and the
optimum increases (for N = 20, it generically ranges between
10 and 20%). In this case the improvement provided by the
cubic approximation is more appreciable, especially for N = 5
and large xmax.

Figure 5 displays how the distribution of capacities PI(Ĩ �)
obtained numerically compares with the analytical expression
(71), for two ensembles of regulatory motifs: one with fixed
Hill indices h and quenched random K , and the other with fixed
K and quenched random h. Specifically, we have evaluated
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FIG. 4. Comparison between numerical results for the average capacity 〈log2 Z̃〉 (markers) and analytical results for the annealed average
log2〈Z̃〉 obtained within the Gaussian [Eq. (35), cyan] and cubic (Eqs. (52)–(54), magenta) approximations. Vectors K in the top panels and
in the bottom panels are sampled respectively from a uniform and a uniform in log-scale distributions in [xmin,xmax], xmin = 10−2, while Hill
indices are fixed to hi = 2, ∀i = 1, . . . ,N . The dashed line gives the value of Ĩ �

opt for each xmax. The absolute difference between quenched and
annealed averages estimated at xmax = 40 through the argument given in Appendix B in the uniform (log-uniform) case is �4 × 10−3 (2 × 10−2)
for N = 5 and �10−3 (3 × 10−3) for N = 20. Note that in the log-uniform case, for N = 20 and large xmax, the difference between the cubic
approximation and the quenched numerical average is comparable to the difference between quenched and annealed numerical averages.

(71) in two ways: first, by estimating its parameters y and
�z [Eqs (65) and (66)] from numerical data (green curves);
second, by straightforwardly fitting them to data (red curves).
In the fixed-h ensemble, estimated parameters lead to a
good agreement between analytic expression and numerical
results only for larger N , while fitted distributions appear to
provide a slightly better description of the data already for
N = 5. In the fixed-K ensemble, the agreement is generi-
cally good already for N = 5 for both estimated and fitted
parameters.

Finally, Fig. 6 shows the distribution of capacities obtained
with fixed Hill indices h and quenched random K sampled
from a uniform distribution in log scale in [xmin,xmax]. Dis-
tributions appear to be broader than in the previous case,
while estimated parameters provide a good agreement with
numerical results already for N = 5. The qualitative outlook
is, however, similar to that obtained for uniform K .

VI. DISCUSSION

Since the mid-2000s, field-theoretic techniques have found
novel application grounds in the quantitative study of signal
processing in molecular networks (see, e.g., Ref. [33] for

a recent example). In this paper, we have used approxima-
tion methods routinely employed in statistical field theory
to characterize states of optimal (static) information flow in
elementary regulatory motifs in which a single variable x

controls N output variables gi (i = 1, . . . ,N).
We have specifically focused on the ensemble of motifs

generated by randomly sampling kinetic parameters according
to a prescribed distribution. Our analysis started from the
observation that optimal properties are determined by the
statistics of λ(x), Eq. (13), at fixed x. As this quantity involves
a sum of the N functions fi(x) defined in (14), one may hope
to apply the central limit theorem and describe its large-N
statistics via a Gaussian approximation. The latter amounts
to truncating the exact expression for the action S [Eq. (33)]
that defines the probability density Pλ(λ; x) [Eq. (34)] to the
first term, and leads to expression (35) for Pλ(λ; x). In turn,
it provides, via the annealed approximation, the Gaussian
estimates for the mean maximum mutual information 〈I �〉ann
and for the probability density PI(I �). We have also derived
expressions for Pλ(λ; x) beyond the Gaussian approximation,
by including the second term (third order) in S, obtaining
expression (47) at the leading order, and (52)–(54) at the
next-to-leading order.
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FIG. 5. Probability distributions PI (Ĩ �) for different xmax (rows) and N (columns). Markers represent the distribution obtained numerically
from 104 samplings of K from a uniform distribution in [xmin,xmax] (xmin = 10−2) and Hill indices fixed at hi = 2 ∀i = 1, . . . ,N (left two
columns), and from 104 samplings of h from a uniform distribution in [1,5] and fixed K (chosen randomly in [0.01,0.1] for the case xmax = 0.1
and properly rescaled for the cases xmax = 1 and xmax = 10). The red and green lines represent the analytical form (71) with fitted and estimated
parameters, respectively (see text for details). In all panels, purple stars denote the value of Ĩ �

opt.

Our results provide very good estimates for 〈I �〉 (see Fig. 4)
even for N as small as 5. On the other hand, the estimate
of PI obtained from the Gaussian approximation appears to
be generically accurate for large enough N . For smaller N

(e.g., N = 5), the precise form of the “disorder distribution”
Q appears to be important.

The major limitation of the theory we presented lies, in our
view, in the assumption that no direct intertarget interactions
occur. It is not hard to understand that, while allowing for a
richer phenomenology (see, e.g., Ref. [5]), the presence of
correlations between target levels considerably complicates
calculations. Advancing the theory in that direction would
greatly broaden our grasp of how the effectiveness of reg-
ulatory circuits is modulated by topological and/or kinetic
heterogeneities.

While working in the large-N limit may seem to be unreal-
istic, real regulatory modules often involve molecular species
controlling large numbers of targets. An example is provided
by noncoding regulatory RNAs like miRNAs, some of which
are known to regulate hundreds of RNA species in eukaryotes.
In this light, our results highlight some features with potential
biological significance. Firstly, assuming optimal input control
and strong randomness in parameters, the mean information
flow (i.e., the average over parameters of the maximum mutual
information achievable between input and outputs) always
appears to be very close to the optimum (generically, within a

few per cent for N between 5 and 20). This suggests that, in the
presence of multiple targets, where information can potentially
be exchanged across many channels by exploiting kinetic
heterogeneities, optimizing kinetic parameters might only pro-
vide relatively minor and possibly very costly improvements
to noise processing. Albeit roughly, such a scenario might
indeed explain why, in certain transcriptional [24] and post-
transcriptional [34] regulatory systems, a substantial fraction
of input-output couplings appear to be suboptimal or even
nonspecific.

On the other hand, achieving optimal control of the input
variable appears to be crucial if information flow is to be
optimized (or nearly optimized). Indeed, in the small noise
limit, the information flow I due to a suboptimal input
distribution undershoots the optimal value I � by the KL-
divergence between the suboptimal (Px) and the optimal (P �

x )
input distributions, i.e.,

I = I � − DKL(Px||P �
x ) . (75)

Numerically, suboptimal inputs have been shown to cause
significant losses in the efficiency of information flow when
capacities are sufficiently large, specifically larger than about
1 bit [3]. By contrast, we find here that the losses induced by
suboptimal parameter values are very modest. This suggests
that, when the input variable is endogenously controlled, regu-
latory systems may want to invest resources into fine-tuning its
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FIG. 6. Same as Fig. 5 but with K sampled from a uniform
distribution in log scale in [xmin,xmax], with fixed xmin = 10−2 and
hi = 2 ∀i = 1, . . . ,N .

distribution. In turn, a potentially important cost-benefit trade-
off may arise in optimizing the input variable. Such a trade-off
is likely to be especially limiting when the noise affecting
the input-output channel cannot be considered “small.” It
would therefore be especially interesting to characterize these
aspects more precisely by extending the scenario described
here beyond the small noise approximation, e.g., along the
lines discussed in Ref. [3].

APPENDIX A: THE SMALL NOISE APPROXIMATION

For sakes of completeness, we recapitulate here the op-
timal information flow scenario in the small noise approx-
imation, focusing for simplicity on the case N = 1 (the
extension to generic N is straightforward). We assume
a Gaussian input-output channel P (g|x), with mean g(x)
(taken to be positive and invertible) and variance σ 2

g (x).
Assuming that the latter quantity is “small,” P (g|x) be-
haves roughly as a δ distribution under integration. This
implies that the output distribution Pg(g) is approximately
given by

Pg(g) ≡
∫

P (g|x)Px(x)dx � Px(x)

|g′(x)| , (A1)

where x ≡ g−1(g). In turn, because g(x) = g, we have

[g − g(x)]2 � [g′(x)]2(x − x)2, (A2)

so that, from Bayes’ rule,

P (x|g) � Px(x)

Px(x)

√
[g′(x)]2

2πσ 2
g (x)

e
− 1

2
[g′ (x)]2

σ2
g (x)

(x−x)2

≡ Px(x)

Px(x)
G

[
g−1(g),σ 2

x (g)
]
, (A3)

where G[A,B] denotes a Gaussian distribution with mean A

and variance B, and σ 2
x (g) � σ 2

g (x)/[g′(x)]2.
Summing up, “small” σ 2

g (x) implies

Pg(g) � Px[g−1(g)]

|g′[g−1(g)]| , (A4)

P (x|g) � Px(x)

Px[g−1(g)]
G

[
g−1(g),σ 2

x (g)
]
. (A5)

With our choice for P (g|x), the mutual information takes the
form

I (g; x) = −
∫

dxPx(x) log2

√
2πeσ 2

g (x)

−
∫

dxPx(x)
∫

dgP (g|x) log2 Pg(g). (A6)

However, again approximating P (g|x) with a Dirac-δ under
integration, we have∫

dgP (g|x) log2 Pg(g) � log2 Pg[g(x)], (A7)

where Pg[g(x)] � Px(x)/|g′(x)| (since g−1[g(x)] = x). Hence

I (g; x) � S[Px(x)] −
∫

dxPx(x) log2

√
2πeσ 2

g (x)

[g′(x)]2
, (A8)

where S[Px(x)] = − ∫
dxPx(x) log2 Px(x). By maximizing I

over Px (with an appropriate constraint enforcing normaliza-
tion) one finds that the optimal input distribution is given by
P �

x (x) ∝ |g′(x)|/σg(x). This, together with expression (A8),
replicates the results obtained, e.g., in Ref. [4].

APPENDIX B: ON THE DIFFERENCE BETWEEN
QUENCHED AND ANNEALED AVERAGES

Here we provide an estimate of the difference between the
quenched average 〈log2 Z〉 and the annealed average log2 〈Z〉.
(Note that, by Jensen’s inequality, log2 〈Z〉 � 〈log2 Z〉). Re-
calling that I � ∈ [0,I �

opt], Z is a random variable defined in

[1,2I �
opt ]. We shall denote its probability distribution by P (Z).

The quenched average is given by

〈log2 Z〉 =
∫ 2

I�
opt

1
P (Z) log2 Z dZ. (B1)

Introducing the variable t as Z = 〈Z〉 + t , we can easily isolate
the annealed average log2 〈Z〉 to obtain

〈log2 Z〉 = log2 〈Z〉 + 1

ln 2

∫ 2
I�
opt −〈Z〉

1−〈Z〉
P (t)

× ln

(
1 + t

〈Z〉
)

dt, (B2)
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where P (t) ≡ P (t + 〈Z〉). The integral could in principle be
evaluated using the Maclaurin series

ln(1 + x) = −
∞∑

n=1

(−x)n

n
, (B3)

and integrating term by term. However, this is possible only if
the series is convergent, i.e., in this case only if |x| < 1. This
translates into the constraint 2I �

opt < 2〈Z〉 that, from numerical
simulations, turns out to be always satisfied in our system.
Therefore, the first nonzero term of the series (corresponding to

n = 2) represents an estimate of the error made on substituting
〈log2 Z〉 with log2 〈Z〉. We obtain

〈log2 Z〉 = log2 〈Z〉 − 1

2 ln 2

σ 2

〈Z〉2 + O[〈(Z − 〈Z〉)3〉],

(B4)

where

σ 2 =
∫ 2

I�
opt

1
P (Z)(Z − 〈Z〉)2 dZ (B5)

is the variance of the probability distribution P (Z).
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