
PHYSICAL REVIEW E 97, 022402 (2018)

Nascent RNA kinetics: Transient and steady state behavior of models of transcription

Sandeep Choubey
FAS Center for Systems Biology and Department of Molecular and Cellular Biology,

Harvard University, Cambridge, Massachusetts 02138, USA

(Received 23 September 2017; revised manuscript received 2 December 2017; published 9 February 2018;
corrected 15 February 2018)

Regulation of transcription is a vital process in cells, but mechanistic details of this regulation still remain elu-
sive. The dominant approach to unravel the dynamics of transcriptional regulation is to first develop mathematical
models of transcription and then experimentally test the predictions these models make for the distribution of
mRNA and protein molecules at the individual cell level. However, these measurements are affected by a multitude
of downstream processes which make it difficult to interpret the measurements. Recent experimental advancements
allow for counting the nascent mRNA number of a gene as a function of time at the single-cell level. These measure-
ments closely reflect the dynamics of transcription. In this paper, we consider a general mechanism of transcription
with stochastic initiation and deterministic elongation and probe its impact on the temporal behavior of nascent
RNA levels. Using techniques from queueing theory, we derive exact analytical expressions for the mean and
variance of the nascent RNA distribution as functions of time. We apply these analytical results to obtain the mean
and variance of nascent RNA distribution for specific models of transcription. These models of initiation exhibit
qualitatively distinct transient behaviors for both the mean and variance which further allows us to discriminate
between them. Stochastic simulations confirm these results. Overall the analytical results presented here provide
the necessary tools to connect mechanisms of transcription initiation to single-cell measurements of nascent RNA.
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I. INTRODUCTION

Transcription is a multistep process that starts with the
binding of general transcription factors (TFs) to a region of
DNA, called the promoter [1]. Through the action of these
TFs, RNA polymerase (RNAP) is recruited to the promoter.
This RNAP molecule subsequently initiates transcription of
the corresponding gene, resulting in the synthesis of a mRNA.
The process of transcription initiation is regulated in response
to environmental and intracellular cues. How this regulation
occurs in vivo remains one of the fundamental questions in
regulatory biology.

Transcription initiation is inherently stochastic [2–4], which
leads to variability in levels of mRNA [3,5–8] and protein
[9–13] across a population of genetically identical cells.
Theoretical [14–16] and experimental [6,13,17] studies have
tried to connect the mean and variability at mRNA and
protein levels with models of transcription initiation. However,
interpreting the distributions of mRNA and protein molecules
is challenging because they are affected by other stochastic
processes downstream of transcription initiation, such as the
maturation time of fluorescent reporters [18], mRNA transport
[19], splicing [20], and small RNA regulation [21], all of which
can create variability in the levels of mRNA and protein.

An alternative to counting mRNA and protein molecules
is to count the number of nascent RNAs (or the number
of transcribing polymerases) at the single-cell level. Recent
experimental advancements allow for counting nascent RNAs
associated with a gene of interest [22–25]. Nascent RNAs
are a more direct readout of transcription initiation dynamics
compared to mRNA and protein levels [23,26]. For instance,
electron micrograph (EM) [27–29] images enable counting of
the RNAP molecules engaged in transcribing a gene, while

nascent RNAs can be counted by fluorescently labeling them
using fluorescence in situ hybridization (FISH) [25,30]. These
approaches give snapshots of transcription, but experiments
that observe transcriptional dynamics in single cells using MS2
tags provide complete time traces corresponding to individual
transcription sites [22,31,32]. The EM and FISH methods
provide the steady state nascent RNA measurements but MS2
measurements carry information about both the transient and
steady state regimes. Multiple studies have examined how
the different models of transcription initiation generate steady
state nascent RNA levels [23,26,33], However, the transient
behaviors of these models for the nascent RNA distribution
remain relatively unexplored.

In this manuscript we use analytical tools from queueing
theory and show how to compute the mean and variance of the
transient distribution of nascent RNAs for a general mechanism
of transcription initiation and deterministic elongation. We
apply these results to obtain the mean and variance of nascent
RNAs for specific and well-studied models of transcription. We
show that these different models of initiation show qualitatively
distinct transient behaviors for both the mean and variance,
which enables us to discriminate between these models. We
confirm these analytical results using Gillespie simulations
[34]. Overall our results provide the necessary tools to infer
the dynamics of transcription initiation as well as extract the
associated kinetic parameters from single-cell nascent RNA
measurements.

II. MODEL

To connect mechanisms of transcription initiation with the
experimentally measured transient nascent RNA distributions,
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FIG. 1. Model: An arbitrary promoter architecture with N number of promoter states is considered. Here we show a model with five different
states. The different promoter states are 1–5. The rate of transition from the ith to the j th state is given by kji . The rate of initiation from the
first state is r . The rate of initiation from every other promoter states is zero. After initiation, each polymerase molecule traverses the gene at a
speed vEL, where L is the length of the gene. Time taken to traverse the gene is, therefore, T = L/vEL.

we consider a model of transcriptional dynamics with a general
scheme of initiation mechanism followed by a deterministic
elongation process. We consider the promoter dynamics to
model the transcription initiation process. As shown in Fig. 1,
the promoter transitions between different states as different
transcription factors bind and fall off the promoter region,
thereby modulating the rate of initiation. We assume that
a promoter can exist in N different states. The transition
rate of going from the ith to the j th state is kji . The rate of
transcription initiation from one of these promoter states (in
which transcription can occur) is r and from the rest of the states
is zero. We further assume that after initiating transcription,
every polymerase molecule moves along the gene at a constant
speed vEL [23,26,35]. Consequently, for a gene of length L,
the time it takes for each polymerase to traverse the gene is
T = L

vEL
[33,36]. Although transcription elongation is typically

more complicated and involves pausing and backtracking of
polymerases along the gene, for a vast number of genes our
assumption of deterministic elongation is justified [23,26].
For a discussion on this assumption see the Appendix.

In this section, we lay out the basic mathematical framework
to obtain the analytical expressions for the mean and variance
of the nascent RNA distribution as functions of time, for this
model of transcription.

In order to tackle this problem, we take a cue from the
renewal processes in queueing theory [37]. Some theoretical
studies have applied queueing theory to explore the impact
of transcription and translation on the statistical properties of
mRNA and protein distributions across isogenic populations
[16,38,39]. Queueing theory deals with the mathematical
analysis of the waiting lines formed by customers randomly
arriving at a service station and staying in the station until they
receive service from a number of servers. Diverse types of
queueing process can be defined based on the following four
features: (a) the arrival time distribution of the customers; (b)
the distribution of the number of customers, i.e., the batches
in every arrival; (c) the service time distribution; and (d) the
number of available servers. For if the arrival and service time
distributions are independent and identically distributed (iid),
i.e., these two processes are renewal processes, then for these
models closed form analytical expressions for the moments

of the number of busy servers can be obtained as functions
of time [37]. Our model of transcription can be mapped to a
queueing process in the following way: Individual transcription
initiation events are analogous to the arrival of customers with
a batch size of 1, the transcription elongation process of each
polymerase molecule is akin to customers being serviced, and
finally since the polymerases move independently of each
other, the number of servers in the equivalent queueing model
is infinite. Since in our model RNAPs initiate transcription
from only one of the promoter states, the distribution of
times between successive initiation events is independent and
identically distributed and hence resembles a renewal process
(for a discussion on renewal processes, see the Appendix).
Given its characteristics our model can be described by the
well-studied G/D/∞ system in the queueing theory literature.
In this framework, the symbol G corresponds to the general
waiting time distribution, D stands for deterministic service
time, and “∞” stands for an infinite number of servers. The
G/D/∞ system has been analyzed in detail in previous work
in queueing theory [40]. By exploiting this mapping, we extract
exact analytical expressions for the mean and variance of the
nascent RNA distribution for a gene of interest.

The first step towards computing mean and variance of
the nascent RNA distribution is to obtain an expression for
the waiting time distribution between successive initiation
events. We calculate the probability q(x) that two transcription
initiation events are separated by time x; i.e., if one initiation
event happens at time x = 0, the next initiation event occurs
at time x later, between x and x + dx. We employ a master
equation approach to compute the probability Pi for the
promoter to be in the ith state at time x without having initiated
any transcription event between 0 and x. The master equation
for the time evolution of Pi is given by

d

dx
Pi =

N∑
j=1

[kjiPj − kijPi] − riPi . (1)

To compute the probability that two successive initiation
events are separated by a time x, we consider the only
active state m from which transcription initiation occurs. The
probability that two initiation events are separated by time x,
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and the second initiation event happens at time x between x

and x + dx is given by
q(x) = rPm(x). (2)

Here q(x) is a product of the probability Pm(x) that the
promoter is in the mth state at time x and the probability rdx
that an RNAP molecule initiates transcription from this state
between time x and x + dx. For details of the calculation see
Ref. [41] and the Appendix.

Next, we obtain an analytical expression for the renewal
function for our model. Renewal function R(t) is a key quantity
in the field of queueing theory [37], and is defined as the
expectation value of the number of arrivals of the customers at
the service station (equivalent to the initiation events for our
model) observed up to a time t [37]. For a detailed discussion
on the renewal function, see the Appendix.

To obtain the renewal function we consider the renewal
equation [37] since the renewal function R(t) satisfies the
renewal equation, given by

R(t) = Q(t) +
∫ t

0
R(t − x)q(x)dt. (3)

where Q(t) is the cumulative distribution function of waiting
times, defined as Q(t) = ∫ t

0 q(x)dx. To obtain the renewal
function we need to solve the renewal equation. Details of the
calculation of the renewal function are given in the Appendix.

Following the work of Liu et al. [40], we find the mean
M(t) and variance Var(t) of the nascent RNA distribution as a
function of time, given by

M(t) = R(t), t � T

= R(t) − R(t − T ), t > T ,

Var(t) = 2
∫ t

0
R(t − y)dR(y) + R(t) − [R(t)]2, t � T

= 2
∫ t

t−T

R(t − y)dR(y) + M(t)[1 − M(t)], t > T .

(4)

Both the mean and variance are piecewise-defined functions
with two domains in time defined by less or greater than the
time (T ) that a polymerase molecule takes to traverse a gene.

In the steady state, when time t → ∞, we get the following
expressions for the mean (M) and variance (Var):

M = λT ,

Var = 2λ

∫ T

0
R(t)dt + λT (1 − λT ). (5)

Here λ is the long-time average of the number of initiation
events per unit time. This quantity is a product of the steady
state probability of the promoter being in the mth state and the
rate of initiation from this state, r . For details see the Appendix.

The procedure described above can be applied to promoters
with any number of states one of which is transcriptionally
active.

III. DIFFERENT MODELS OF TRANSCRIPTION
INITIATION EXHIBIT DISTINCT TEMPORAL

BEHAVIORS FOR THE NASCENT RNA DISTRIBUTION

To gain mechanistic insights into the dynamics of transcrip-
tion initiation, we apply our analytical results to three well-

studied models of initiation: (a) Poisson initiation [13,41], (b)
ON-OFF initiation [26,42], and (c) two-step initiation [38,43],
as shown in Fig. 2. These three models have been established
as the canonical models of initiation due to their simplicity
and their ability to successfully capture the mechanisms of
transcription initiation of many genes, both in prokaryotes and
eukaryotes [6,26,44]. The key finding of this section is that
these three models predict qualitatively different behaviors
at the nascent RNA level, for the mean and the variance as
functions of time.

A. Poisson initiation model

In the Poisson initiation model, the promoter remains in
an active state and initiates transcription at a constant rate
r , as shown in Fig. 2(a). This is a well-studied model of
transcription and fully captures the initiation mechanism of
many constitutively expressed genes in various organisms [44].
We compute the transient and steady state mean and variance
of the distribution of nascent RNAs using the results in the
previous section.

The analytical expressions for the mean, M(t), and variance,
Var(t), of the nascent RNA distribution using Eq. (4) are given
by

M(t) = rt, t � T

= rT , t > T ,

Var(t) = rt, t � T

= rT , t > T . (6)

In the transient regime, the mean goes linearly as a function
of time for t � T [Fig. 2(a)], where T is the time a single RNAP
takes to traverse the entire length of the gene of interest. At a
time greater than T , the mean is constant and is given by the
product of the initiation rate and T . Similarly, the variance also
grows linearly in time for t � T . At any time greater than T , the
variance becomes constant and equals the value of the mean.

We can obtain the steady state mean and variance of the
nascent RNA distribution, by taking the limit of time t → ∞,

M = lim
t→∞ M(t) = rT ,

Var = lim
t→∞ Var(t) = rT . (7)

We arrive at the same results for the steady state mean
and the variance from Eq. (5). It must be noted that the Fano
factor which is defined as the ratio of the variance and mean
is independent of time and is 1 for this model, as shown in
Fig. 2(a). Hence, this model can serve as a point of reference
while discussing more complicated initiation models, as will
be discussed in the next section.

B. ON-OFF initiation model

Next, we consider the ON-OFF model of initiation. This
model has been established as the “hydrogen atom” model of
transcriptional regulation due to its effectiveness in explaining
“bursty” gene expression observed for a wide range of genes
[45]. As shown in Fig. 2(b), in this model, the promoter
switches between a transcriptionally active (ON) and an in-
active (OFF) state. The rate of switching from the ON state to
the OFF state is kOFF, and from the OFF to ON state is kON. The
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FIG. 2. (a) Poisson initiation model. The promoter always remains active and initiates transcription at a rate r . Using our analytical results,
we explore the mean and the Fano factor as functions of time, for this model. We also use Gillespie simulations to confirm the analytical results.
To make these plots, we use the following parameters: r = 0.16/min, vEL = 0.8 kb/min, and L = 15 kb, i.e., T = 18.75 min. These parameters
are characteristic of various genes (such as PDR5, MDN1, etc.) in yeast, as reported in [6]. (b) ON-OFF initiation model. The promoter switches
between two states: an active and an inactive one. The rate of switching from the active state to the inactive state is kOFF, and from the inactive
to the active state is kON. From the active state, transcription initiation occurs at a rate r . Mean and Fano factor profiles: From the analytical
expressions we have obtained, we explore the mean and Fano factor as functions of time. Simulations results are also shown. To illustrate this
point, we use the following: kON = 0.435/min, kOFF = 5, kINI = 5/min, L = 4436 bps, and vEL = 0.8 kb/min, which are characteristic of the
PDR5 promoter in yeast, as reported in data published in [6]. (c) Two-step model of initiation. Initiation happens in two sequential steps: the
formation of the preinitiation complex at the promoter occurs with rate kLOAD followed by RNA polymerase escaping the promoter leading to
an initiation event at rate r . Predictions for the mean and Fano factor profiles are shown as functions of time. Simulations results are shown. For
the two-step model, we use kLOAD = 0.14/min, r = 0.14/min, and vEL = 0.8 kb/min, characteristic of the MDN1 promoter, which we find by
analyzing the data reported in [25].

rate of transcription initiation in the ON state is r and in the
OFF state is zero. The ON and OFF states might correspond
to a free promoter state and another bound by a repressor, or a
nucleosome, respectively.

The analytical formulas for the transient and steady state
mean of the nascent RNA distribution are given by

M(t) = −Ae−Ct + Bt + A, t � T

= Ae−Ct [−1 + eT C] + BT, t > T ,

M = kONrT

(kON + kOFF)
, (8)

where

A = rkOFF

(kON + kOFF)2 , B = rkON

(kON + kOFF)
, C = (kON + kOFF).

See the Appendix for the detailed derivation. Interestingly,
the mean nascent RNA number displays three regimes in the
transient phase. Initially the mean increases just as it would for
a Poisson initiation model with initiation rate r , since in this
regime the promoter remains in the ON state before switching
to the OFF state. In the second regime, the mean level increases
with a smaller slope as the promoter starts to switch between
the two states. In the third regime, the mean level increases
and overshoots the steady state level, unlike the Poisson model
of initiation, as shown in Fig. 2(b). After time T , the mean
decreases and eventually reaches the steady state value. The
amount by which the mean overshoots is given by A − Ae−CT ,
which is a function of the different kinetic rates. This signature
can be used to discriminate the Poisson and ON-OFF models
of initiation.
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Next, we compute the transient and steady state expressions
of the variance, given by

Var(t) = B2T 2 + 2A2e−tC(−1 + etC − tC)

+ 4AB(−1 + e−tC + tC)

C

+A − Ae−tC + Bt − (A − Ae−tC + Bt)2, t � T ,

= B2T 2 + 2A2e−tC(−1 + eT C − T C)

+ ABe−(t+T )C(etC + eT C)(1 + eT C(−1 + T C))
C

− e2tC(A(−1 + eT C) + BetCT )

× (A(−1 + eT C) + etC(−1 + BT )), t > T .

Var = M

⎡
⎣1 + 2rkOFF

(kON+kOFF)2

+ 2rkOFF

(kON+kOFF)3

(
e−(kON+kOFF)T −1

T

)
⎤
⎦. (9)

See the Appendix for the detailed derivation. We use
these expressions to compute the Fano factor, and monitor
its behavior as a function of time, as shown in Fig. 2(b).
Initially at small times, the promoter mostly remains in the
ON state, resulting in a Fano factor of unity. However, as
time t increases, the Fano factor goes up and eventually
saturates.

C. Two-step initiation model

In this model, transcription initiation proceeds in two
sequential steps. In the first step, a RNAP molecule binds
to an empty promoter with a probability of kLOAD per unit
time, followed by transcription initiation at a rate r , in the
second step, as shown in Fig. 2(c). In eukaryotes, the first
step of RNAP binding could correspond to the assembly of
the transcriptional machinery at the promoter region. Recent
experimental studies have shown that for many promoters in
yeast [26] and Escherichia coli [42], initiation commences
through two sequential steps.

We compute the transient [M(t)] and steady state (M) mean
of the nascent RNA distribution for this model, using Eqs. (4)
and (5). The expressions are given by

M(t) = A

B2
(e−Bt − 1) + A

B
t, t � T

= Ae−Bt [1 − eBT + BT eBt ]

B2
, t > T ,

M = AT

B
, (10)

where A = rkLOAD, and B = r + kLOAD.
The mean increases as a function of time and eventually

reaches the steady state value, as shown in Fig. 2(c).
Next, using Eqs. (4) and (5), we calculate the transient

[Var(t)] and steady state (Var) variance, which are given by

Var(t) = A

B2
(e−Bt − 1) + A

B
t −

[
A(e−Bt − 1)

B2
+ At

B

]2

− A2e−Bt [6 + 2Bt − eBt (6 − 4Bt + B2t2)]

B4
, t � T

= Ae−Bt [1 − eBT + BT eBt ]
[
1 − Ae−Bt (1−eBT +BT eBt )

B2

]
B2

−
A2e−Bt

[
4 + 2B(t−T ) + 2BT + 2eBT (−2 + BT )
−eBt (2 − 2BT + B2T 2)

]
B4

, t > T ,

Var = M

[
1 − AT

B
+ A

T B2

×(
2−2e−BT

B
− 2T + BT 2

)
]
. (11)

The Fano factor (ratio of the variance and mean) is plotted
as a function of time, as shown in Fig. 2(c). The steady state
value of the Fano factor goes below 1, as expected [26].

For all the three models, we confirm the analytical results
for the mean and Fano factors of the nascent RNA distribution
using Gillespie simulations [34]. One of the crucial outcomes
of our theoretical analysis is that we can discriminate between
the Poisson, ON-OFF, and two-step initiation models by track-
ing the temporal behavior of the nascent RNA distributions.

IV. DISCUSSION

A key challenge in regulatory biology is to discriminate
between the mechanisms of transcription in vivo. Recent years
have seen an explosion of precision measurements at the single-
cell level [3,5–8]. By keeping pace with these experimental
studies, theoretical models [14,15,26,38,41,46–53] have been
developed to unravel the dynamics of transcription. The aim

of these studies has been to explicitly test the validity of these
models and refine our understanding.

In this manuscript, we focus on the impact of transcription
initiation dynamics on the temporal behavior of nascent RNA
levels in individual cells, which can be experimentally mea-
sured [22,54]. We propose a general model of transcription and
for this model compute the exact analytical expressions for the
mean and variance of nascent RNA distributions as functions of
time. These analytical expressions capture the model behavior
of both the transient and steady state regimes. We illustrate
the utility of the theory presented here by applying it to
three well-known models of initiation, namely, the Poisson,
ON-OFF, and two-step models. At the level of both the mean
and Fano factor of the nascent RNA level, these three models
make distinct predictions, which allows us to discriminate
between them.

The analytical framework developed here offers a way to
tap into measured distributions of nascent RNAs. The first
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two moments of nascent RNA distribution obtained from a
population of cells as functions of time can be fitted to a
mathematical model that incorporates the stochastic kinetics
of transcription. The extracted fitting parameters can be inter-
preted as representative of the kinetic properties of stochastic
gene expression such as burst size, burst frequency, average
transcription rate, etc.

It is increasingly becoming clear that different genes are
regulated in various ways [14,31,41]. Although the Poisson,
two-step, and ON-OFF models are good representatives of
transcription initiation mechanisms for many genes, complex
promoters with more than two states are widely prevalent
[41]. While combinatorial control of transcription initiation by
multiple species of transcription factors is commonplace, even
promoters that are regulated by a single transcription factor,
such as bacterial promoters can have multiple states [41,50,55].
Mammalian genes that show bursty gene expression consist
of three promoter states, two of which are inactive and one is
active [56]. Our analytical results can be easily applied to these
above-mentioned models of transcription to develop a better
understanding of transcriptional dynamics.

In the model presented here, it is implicitly assumed that
the transcriptional machinery such as RNA polymerases and
transcription factors are abundant in the cell and are not
limiting. This assumption breaks down if the numbers of these
transcriptional resources are limiting [57–59]. This will alter
the waiting time distribution between successive initiation
events. However, our framework would still be applicable in
such cases, as long as we can compute the exact distribution of
initiation times for the specific scenario under consideration.

In conclusion, the theoretical analysis presented here offers
the necessary tools to connect mechanisms of transcription ini-
tiation with single-cell nascent RNA data and gain mechanistic
insights into the dynamics of initiation.
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APPENDIX: ANALYTICAL EXPRESSIONS FOR THE
MEAN AND VARIANCE OF THE NASCENT RNA

DISTRIBUTION

1. Waiting time distribution between successive initiation events

The first step towards computing the mean and variance
of the nascent RNA distribution for a general model of
transcription, as shown in Fig. 1, is to obtain an expression
for the waiting time distribution between successive initiation
events. We calculate the probability q(x) that two transcription
initiation events are separated by time x; i.e., if one initiation
event happens at time x = 0, the next initiation event occurs
at time x later, between x and x + dx. We employ a master
equation approach to compute the probability Pi for the
promoter to be in the ith state at time x without initiating any
transcription event between 0 and x. The master equation for

the time evolution of Pi is given by

d

dx
Pi =

N∑
j=1

[kjiPj − kijPi] − riPi . (A1)

The above set of linear equations can be expressed as
matrices, as follows:

d

dx
P = [K − R]P . (A2)

The vector P = (P1,P2, . . . ,PN ), contains probabilities for
all possible promoter states at time x, without having made a
transcript up to time x. Matrix K contains rates of transitioning
between the different promoter states; kij is the rate at which the
promoter switches from the j th state to the ith state. R contains
transcription initiation rates from all the different states. The
solution to this matrix equation is given by

P(x) = e[K−R]x P(x = 0). (A3)

To find P , we need to specify the initial condition for P ,
i.e., P(x = 0). In our model, P(x = 0) is given by a column
vector whose entries depend on the details of the transcription
initiation models we study. This will be demonstrated when we
explore specific examples in the ensuing sections. We can solve
the above equation by finding the eigenvalues and eigenvectors
of the K -R matrix appearing in the exponent of the exponential
function. In the ensuing sections, we will show the solutions
of this equation for a few specific cases.

The probability that two initiation events are separated by
time x, and the second initiation event happens at time x

between x and x + dx is given by

q(x) = rPm(x). (A4)

q(x) is a product of the probability Pm that the promoter is
in the mth state at time x (and no other transcription initiation
events have happened before this time), and the probability rdx

that an RNAP molecule initiates transcription from this state
between time x and x + dx. It must be noted that transcription
initiation happens only from the mth state.

The waiting time distribution between successive initiation
events is an important random variable in the field of queueing
theory [37] as will be clear in the next section.

2. Renewal function: Expectation value of the number
of initiation events within a given period

We next obtain an analytical expression for the renewal
function for our model. Renewal function is a key quantity in
the field of queueing theory [37] since most of the available
analytical results are obtained using the renewal function [37].

To introduce the idea of renewal function to the readers,
we briefly introduce the key concepts of renewal theory. We
reproduce some of the known results in renewal theory which
can be found in the classic text on probability theory by
Ross and Pekoz [37]. It is well known that for a Poisson
counting process where an event occurs with a constant rate,
the times between successive events are independent and
identically distributed (iid) exponential random variables [37].
This can be generalized for other counting processes for
which the times between successive events are independent
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and identically distributed with an arbitrary distribution. Such
counting processes are called renewal processes. One example
of renewal process is the lightbulb example [37]. This example
deals with the lifespan of a lightbulb. Let us assume that we
have one lightbulb in a room and we turn it on. The bulb is kept
turned on until it runs out. When the bulb runs out we switch
on another bulb. We assume that the time it takes to switch on
the lightbulb is zero. If the life span of one lightbulb does not
affect the life span of another, the life spans of different bulbs
are identically distributed. Hence this process, {N (t), t � 0},
is a renewal process where N (t) represents the number of
lightbulbs that have failed by time t .

The mean of the distribution P [N (t)] of the number of
renewal events in time t is given by R(t). The function R(t)
is known as the renewal function. It is a key quantity in
the renewal theory literature due to its usefulness in obtain-
ing different statistical properties of the system such as the
distribution of the number of renewals. Let us assume that
the distribution of waiting times between successive arrival
events is given by q(x), where two arrival events are separated
by time x; i.e., if one arrival event happens at time 0, the
next arrival occurs at time x later, between x and x + dx.
There is a one-to-one correspondence between the cumulative
distribution of interarrival distributions Q(t) = ∫ t

0 q(x)dx. and
the renewal functions R(t), which is given by

R(t) = Q(t) +
∫ t

0
R(t − x)q(x)dx. (A5)

In order to obtain the renewal function, we need to solve the
renewal equation. By taking a Laplace transform of both sides
of the renewal equation, Eq. (A5), we arrive at the following
relationship:

LR(s) = Lx(s)

s[1 − Lx(s)]
. (A6)

Here LR(s) and Lx(s) are given by

Lx(s) =
∫ ∞

0
q(x)e−sxdx, and LR(s) =

∫ ∞

0
R(t)e−st dt.

(A7)

The strategy here is to first compute the Laplace transform
Lx(s) of the waiting time distribution given by Eq. (A4).
Substituting the expression of Lx(s) in Eq. (A6), we obtain
an expression for LR(s), which is the Laplace transform of
the renewal function. To obtain the renewal function, we need
to compute the inverse Laplace transform of LR(s), which is
given by

R(t) = 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

estLR(s)ds. (A8)

With the renewal function at hand, we can compute the first
two moments of the nascent RNA distribution as functions of
time using known results in the queueing theory literature [40].

In a fine piece of work, Liu et al. [40] computed the moments
of the number of busy servers in a queue for a wide range
of models defined by the G/D/∞ system. From the set of
analytical results that they obtained, we find the mean M(t) of
the nascent RNA distribution as a function of time is given by

M(t) = R(t), t � T

= R(t) − R(t − T ), t > T . (A9)

The mean is a piecewise-defined function with two domains
in time defined by less or greater than time T . The same is true
for the variance Var(t), given by

Var(t) = 2
∫ t

0
R(t − y)dR(y) + R(t) − [R(t)]2, t � T

= 2
∫ t

t−T

R(t − y)dR(y) + M(t)[1 − M(t)], t > T .

(A10)

In the steady state, when time t → ∞, we get the following
expressions for the mean(M) and variance (Var):

M = λT , (A11)

Var = 2λ

∫ T

0
R(t)dt + λT (1 − λT ). (A12)

Here λ is the long-time average of the number of initiation
events per unit time. This quantity is a product of the steady
state probability of the promoter being in the mth state and the
rate of initiation from this state, r , given by

λ = rPm
ss . (A13)

Here Pm
ss is the steady state probability for the promoter to

be in the first state. Steady state probabilities are given by the
following equation:

K P = 0, (A14)

where the normalization condition to be satisfied is∑N
m=1 Pm

ss = 1. The procedure described above can be ap-
plied to promoters with any number of states, one of which
is transcriptionally active. In the proceeding sections, we
demonstrate how to use the results developed here to find
analytical expressions for the first two moments of nascent
RNA distribution for some of the well-studied models [41] of
transcription.

3. Poisson initiation model

In the Poisson initiation model, the promoter remains in an
active state and initiation happens at a constant rate r , as shown
in Fig. 2(a).

To compute the transient and steady state mean and variance
of the number of nascent RNAs along a gene of interest using
the results obtained in the previous section, first we compute the
waiting time distribution between successive initiation events.
Using Eq. (A1), we write down the master equation for the
probability P (x) that no initiation event has occurred between
time 0 and x,

d

dx
P = −rP . (A15)

The solution to this master equation is given by

P (x) = e−rx . (A16)

We can obtain the waiting time distribution using Eq. (A4),

q(x) = re−rx . (A17)
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Next, we compute the renewal function using the procedure
described in the previous section.

Following Eq. (A7), the Laplace transform Lx(s) for the
waiting time distribution is given by

Lx(s) =
∫ ∞

0
re−rxe−st dx. (A18)

This integral can be very easily computed using standard
results, available in Mathematica. Lx(s) is given by

Lx(s) = r

s + r
. (A19)

We compute LR(s), using Eq. (A6),

LR(s) = r

s2
. (A20)

Using the expression of LR(s), we can obtain an expression
for the renewal function R(t) from Eq. (A8). The inverse
Laplace transform can be computed using standard results from
Mathematica and is given by

R(t) = rt. (A21)

The functional form of the renewal function can be easily
intuited. In this model, the promoter is assumed to initiate
transcription with a constant probability r per unit time. Hence
within a given duration from 0 to t , the number of renewals
is rt .

Being armed with the renewal function we can obtain closed
form analytical expressions for the mean and variance as
functions of time. Using Eq. (A9), we find the mean nascent
RNA number M(t) is given by

M(t) = rt, t � T

= rT , t > T . (A22)

As expected, in the transient regime, the mean goes linearly
as a function of time for t � T . At any time greater than T ,
the mean is constant and is simply given by the product of the
initiation rate and T (the time a single RNAP takes to traverse
the gene of interest), as shown in Fig. 2(b).

The variance as a function of time can be obtained from
Eq. (A10). Using simple algebra, we arrive at an expression
for the variance [Var(t)],

Var(t) = rt, t � T

= rT , t > T . (A23)

Like the mean, variance also grows linearly in time for t �
T . At any time greater than T , the variance becomes constant
and equals the value of the mean. In the steady state, i.e., in
the limit t → ∞ we find

Var = lim
t→∞ Var(t) = rT . (A24)

We can arrive at the same results for the mean and the
variance from Eqs. (A11) and (A12).

4. ON-OFF initiation model

Next, we consider the ON-OFF model. As shown in
Fig. 2(b), in this model the promoter switches between a
transcriptionally active (ON) and an inactive (OFF) state. The
rate of transcription initiation in the ON state is r and in the OFF

state is zero. To compute the mean and variance for this model
as functions of time we consider the waiting time distribution
q(x) between successive initiation events. We monitor the
probability q(x) of two transcription initiation events being
separated by time x. The probabilities of the promoter being
in the ON and OFF states at time x are PON(x) and POFF(x),
respectively. To compute the probability distributions PON(x)
and POFF(x), we write down the master equation as employed
for the one-step initiation model, by monitoring all the possible
ways that lead to changes in the fraction of time the promoter
stays in the ON or the OFF state. Following Eq. (A1), the time
evolution equations for the probability PON(x) and POFF(x) are
given by

d

dx
PON(x) = kONPOFF(x) − (r + kOFF)PON(x), (A25)

d

dx
POFF(x) = −kONPOFF(x) + kOFFPON(x). (A26)

In the matrix form, the above set of equations can be written
as

d

dt
P = [K − R]P. (A27)

Here P is given by P = (PON, POFF). K =(−kOFF kON

kOFF −kON
),

R = (−r 0
0 0

) are the rate matrices.

Since transcription initiation happens only in the ON state,
the initial conditions are PON(x = 0) = 1, POFF(x = 0) = 0.

By computing the eigenvalues and eigenvectors of the
exponential function and with a bit of algebra, we find

q(x) = A1k1e
−k1x + A2k2e

−k2x, (A28)

where the constants k1, k2, A1, and A2 are given by

k1,2 = 1

2
[kON + kOFF + r ±

√
(kON + kOFF + r)2 − 4rkON],

(A29)

A1 = r − k2

k1 − k2
, (A30)

A2 = 1 − A1. (A31)

Next, following the protocol as before, we take the Laplace
transforms of the renewal equation. After a bit of algebra using
Eq. (A6), we get

LR(s) = s(A1k1 + A2k2) + k1k2

s2[s + (k1 + k2 − A1k1 − A2k2)]
. (A32)

Taking the inverse Laplace transform, we obtain an expres-
sion R(t) for the renewal function,

R(t) = −Ae−Ct + Bt + A, (A33)

where

A = rkOFF

(kON + kOFF)2 , B = rkON

(kON + kOFF)
,

C = (kON + kOFF).
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With the renewal function at hand, we can calculate the
transient expressions for the first two moments of the nascent
RNA distribution.

The mean nascent RNA number M(t) is given by

M(t) = −Ae−Ct + Bt + A, t � T

= Ae−Ct [−1 + eT C] + BT, t > T . (A34)

In the limit of t → ∞, we acquire the steady state expression
of the mean M , given by

M = kONrT

(kON + kOFF)
. (A35)

Next, we compute the variance Var(t) as a function of time.
The variance is given by

Var(t) = B2T 2 + 2A2e−tC(−1 + etC − tC) + 4AB(−1 + e−tC + tC)

C
+ A − Ae−tC + Bt − (A − Ae−tC + Bt)2, t � T ,

= B2T 2 + 2A2e−tC(−1 + eT C − T C) + ABe−(t+T )C(etC + eT C)(1 + eT C(−1 + T C))
C

− e2tC(A(−1 + eT C) + BetCT )(A(−1 + eT C) + etC(−1 + BT )), t > T . (A36)

In the t → ∞ limit, we get the steady state expression for
the variance. This expression has been reported before [26].

Var = M

⎡
⎣1 + 2rkOFF

(kON+kOFF)2

+ 2rkOFF

(kON+kOFF)3

(
e−(kON+kOFF)T −1

T

)
⎤
⎦. (A37)

We use these expressions to compute the Fano factor, and
monitor its behavior as a function of time, as shown in Fig. 2(b).

5. Two-step initiation model

In this model, transcription initiation proceeds in two
sequential steps. In the first step, a RNAP molecule binds
to an empty promoter with a probability of kLOAD per unit
time, followed by the escape of the promoter bound RNAP
molecule at a rate r in the second step, as shown in Fig. 2(c).
Using Eq. (A1), we write down the master equations for the
probability of the promoter to be in the empty [P1(x)] and
RNAP bound [P2(x)] state after time x, given by

d

dx
P1(x) = −kLOADP1(x) + rP2(x), (A38)

d

dx
P2(x) = −rP2(x) + kLOADP1(x). (A39)

We can solve the above set of master equations using the
matrix method, as shown in the first section. Transcription
initiation happens only in the empty promoter state [P1(x)]
since after every initiation event the promoter goes back
to the empty state. Hence the initial conditions are given
by P1(x = 0) = 1, P2(x = 0) = 0. Using Eq. (A4), we can
easily compute the waiting time distribution q(x), which is

given by

q(x) = rkLOAD

kLOAD − r
(e−rx − e−kLOADx). (A40)

Next, using Eq. (A6), we obtain the Laplace transforms of
the renewal function LR(s), given by

LR(s) = A

B2

[
1

s + B
− 1

s
+ B

s2

]
, (A41)

where A = rkLOAD and B = r + kLOAD.
Taking the inverse Laplace transform [Eq. (A8)], we obtain

an expression R(t) for the renewal function,

R(t) = A

B2
(e−Bt − 1) + A

B
t. (A42)

With the renewal function at hand, we can easily calculate
the mean M(t) and variance Var(t) of the nascent RNA
distribution, using Eqs. (A9) and (A10).

The mean M(t) as a function of time is given by

M(t) = A

B2
(e−Bt − 1) + A

B
t, t � T

= Ae−Bt [1 − eBT + BT eBt ]

B2
, t > T . (A43)

The mean increases as a function of time and asymptotically
reaches the steady state value ofM = AT

B
, as shown in Fig. 2(c).

Next, using Eq. (A10), we obtain the variance Var(t) as a
function of time, given by

Var(t) = A

B2
(e−Bt − 1) + A

B
t −

[
A(e−Bt − 1)

B2
+ At

B

]2

− A2e−Bt [6 + 2Bt − eBt (6 − 4Bt + B2t2)]

B4
, t � T

= Ae−Bt [1 − eBT + BT eBt ]
[
1 − Ae−Bt (1−eBT +BT eBt )

B2

]
B2

−
A2e−Bt

[
4 + 2B(t−T ) + 2BT + 2eBT (−2 + BT )

−eBt (2 − 2BT + B2T 2)

]
B4

, t > T .

(A44)
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We obtain the steady state variance of the nascent RNA level
in the limit t → ∞, given by

Var = M

[
1 − AT

B
+ A

T B2

×(
2−2e−BT

B
− 2T + BT 2

)
]
. (A45)

The Fano factor (ratio of the variance and mean) is plotted
as a function of time shown in Fig. 2(c). The steady state value
of the Fano factor goes below 1, as expected [26].

6. Limitations of the model

Our model assumes that transcription initiation time scales
are much slower compared to the elongation time scale.
Consequently, RNAPs do not interfere with each other while
moving along the gene. This approximation is reasonable for
all but the strongest promoters such as ribosomal promoters
characterized by very fast initiation [60,61]. In a previous
work [26], we demonstrated this explicitly using numerical
simulations which included a detailed model of transcription
elongation that involved excluded-volume interaction between
adjacent RNAP molecules, as well as pausing of RNAPs along
the gene [4,8]. We showed that the mean and variance of
steady state nascent RNA distributions based on a simple model
of transcription with stochastic initiation and deterministic
elongation, and the simulation results based on a more realistic
model of elongation that incorporates traffic jams and pausing
of RNAPs, only start to break down when the initiation time
scales become comparable to the elongation time scales. For a
detailed discussion on this issue, please see Ref. [26].

In our manuscript, we monitor the RNA polymerase number
on a gene as a function of time. Since most of the existing

experimental methods, such as single-molecule FISH and
MS2, count nascent RNAs, we use nascent RNA counts as
a proxy for the RNAP counts. However, while considering
experiments that count nascent RNAs it is important to be
mindful of the fact that the number of RNAP molecules along
a gene is not necessarily equal to the nascent RNA counts.
In our previous work, we have discussed this point in detail
[26]. Transcribing polymerase molecules have partial nascent
transcripts attached to them depending on how far along the
gene they have moved (as indicated in Fig. 1). In single-
molecule FISH experiments, the RNA sequence that is targeted
by the fluorescent probes determines if these transcripts are
detected or not. Probes against the 5′ end detect transcripts
early on, while probes against the 3′ end will detect only
almost finished transcripts [62,63]. However, if there is a way to
correctly extract the RNAP number distribution from nascent
RNA intensity, our model can accurately transform these data
into information about the transcriptional dynamics. Moreover,
recent experiments involving MS2 tags have shown that the
nascent RNA count is a good proxy for nascent RNA counts
[22,64].

It is important to notice the limitations of the mathematical
framework developed here in this manuscript. Our goal here
is to test specific hypotheses about biological mechanisms by
comparing our model predictions with the data. However, like
all quantitative models, our model would be most informative
when there is a discrepancy between the model predictions
and experimental data. This would offer the opportunity to
discard wrong assumptions we make about the dynamics of
transcription. Also, such a scenario would suggest that we
either need to include more factors to the model or come up
with a different model.
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