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According to a recent information-theoretical proposal, the problem of defining and identifying communities
in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are
information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder
but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is
perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection.
The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However,
the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to
generate novel insights on the problem of community detection. In this paper, we illustrate two main applications
of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding
technique to generate a family of quasioptimal community detection algorithms. Second and more important, we
show that the Shannon’s noisy-channel coding theorem can be invoked to establish a lower bound, here named as
decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection
of communities. When computed for well-established synthetic benchmarks, the decodability bound explains
accurately the performance achieved by the best community detection algorithms existing on the market, telling
us that only little room for their improvement is still potentially left.
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I. INTRODUCTION

Real networks are often assumed to be organized in clusters
or communities [1]. A community is naively defined as a
subgroup of nodes with a density of internal connections
larger than the density of external links. Most of the research
in the area has focused on the development of algorithms
aimed at detecting such objects. The philosophy of the ap-
proaches considered so far varies widely, with methods that
rely on heuristics [2,3], spectral properties of operators [4], and
optimization of quality functions [5–8], just to mention a few
of them. Principled approaches, as those relying on generative
network models [9–14], provide not only practical algorithms,
but also a solid notion of a community. In this respect, they
allow to generate insights on the problem of identification
of communities in networks, as for example establishing the
existence of a universal limitation affecting all community
detection algorithms [9,15–18]. The limitation refers to the
performance of a perfect algorithm in stochastic network
models with planted community structure, and consists in
the existence of a maximum level of fuzziness, generally
named as detectability threshold, that can be tolerated by
the algorithm to be able to detect, in the limit of infinite
network sizes, a nonvanishing portion of the true community
structure. As statistical inference approaches rely on stochastic
network models [9–14], the detectability threshold of these
models provides an indication of the parameter ranges where
community detection algorithms are expected to be useful.
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Although rigorous conditions for the establishment of the
regime of detectability has been studied also for finite-size
networks [19], the notion of detectability is much less useful in
another important application of stochastic block models, that
is, the numerical validation of community detection algorithms
[2,20–22]. In this type of application in fact, the focus is not
only on network models with small or medium size, but, more
importantly, on the regime of exact recovery of the planted
community structure.

The formal establishment of the regimes of partial and exact
recovery in the stochastic block model has been the subject of a
series of recent publications in coding theory [23–26]. In these
papers, the problem of defining and identifying communities
is interpreted as a classical communication process (Fig. 1),
analogous to the one considered by Shannon [27]: group
assignments of the nodes in the network represent a message
that is first encoded, then transmitted along a noisy channel,
and ultimately decoded. It is important to remark that the
noisy-channel interpretation of the problem of community
detection coincides with the one at the basis of statistical
inference approaches [9–14]. The only difference is the angle
from which one looks at it. Instead of interpreting a stochastic
model as the generator of noisy edges, the stochastic model
is seen as a source of noise that disrupts a network with
community structure otherwise unambiguous. In this respect,
edges in the network are not regarded as entities that define
communities rather as redundant but altered information that
is added to preexisting information on node memberships.
Interpreting the task of detecting communities in graphs as
a decoding process of a noisy signal has the great advantage
to lead to rigorous mathematical statements, valid in the limit
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FIG. 1. Definition and detection of communities in networks as a communication process [23–25]. The message generated from the source
contains information about the group assignments of the various nodes. The message is encoded in a network structure where all nodes belonging
to the same group are connected one with the other, but no connections are present between any pair of nodes belonging to different groups.
The codeword is transmitted along a noisy channel. The effect of the channel is twofold: it erases all information about group assignments,
and deteriorates the network structure by adding and removing edges. The received word is decoded to reconstruct, even if only partially, the
transmitted message.

of infinitely large graphs, regarding the identification of the
regimes of partial and exact reconstruction of the planted
community structure of the stochastic block model, regimes
that are entirely determined by the amount of noise that
characterizes the network model. Partial recovery corresponds
to the aforementioned detectability [26]. The determination
of the exact recovery threshold is instead a completely novel
result, able to provide a precise indication of the range of
parameter values of a stochastic block model where perfect
recovery of the planted community structure is allowed [23].
The computation of the exact recovery threshold can be
performed in general stochastic block models [24]. However,
the mathematical result is derived in the limit of infinitely
large systems. On finite systems, we expect the threshold to
delineate conservative regimes of performance. How much is
the threshold value underestimating the potential of algorithms
on mid-sized networks as those used in typical numerical
experiments [20,22]? Are there more predictive approxima-
tions for finite-size networks? Please note that this information
is of fundamental importance. Without a theoretical baseline,
we can assess the performance of algorithms only in pairwise
comparisons. This means that we do not have the ability to
judge their full potential, and determine if there is still room
for improvement.

This paper aims at filling this gap. We provide numerical
evidence that the exact recovery threshold [23–25] generates
predictions that seem to be not very accurate in the descrip-
tion of the performance of algorithms in finite-size networks
[20,22]. Specifically, we provide numerical evidence that
existing community detection algorithms are able to achieve
perfect recovery of communities in small or medium stochastic
block models well beyond the exact recovery threshold [20,22].
We show, however, that the Shannon’s noisy-channel coding
theorem [27] allows us to establish a less restrictive approx-
imation for the regime of exact recovery which describes
particularly well the maximum level of fuzziness tolerated by
algorithms to achieve perfect detection in stochastic bench-
marks [20,22]. We refer to the approximation obtained with
the Shannon’s theorem as the decodability bound, being this
quantity always a lower bound of the exact recovery threshold.
The derivation of the decodability bound is very simple, as it
requires only estimating the channel capacity of a generative
network model. Further, the bound appears to be not very
sensitive to important ingredients of a generative model with

planted community structure such as degree and community
size distributions. The procedure seems therefore potentially
generalizable to more complicated models. Please note that
the decodability bound is still derived under the hypothesis
that network size is infinite, thus its effectiveness in finite-size
systems is not a priori granted. However, numerical results
provide compelling evidence that no algorithm has been able
to beat the decodability bound in the settings of the stochastic
block model generally considered in the literature [20,22]. At
the same time, we note also that the best algorithms available
on the market have performances already very close to those
predicted by the decodability bound, leaving therefore only
little room for potential improvement. To reach our main
results, we follow a path at the interface between community
detection and traditional coding theory [28]. In particular, we
deploy a family of error-correcting algorithms for community
detection that rely on a traditional decoding technique [29,30].
Although these methods do not provide scalable algorithms,
they do allow for straightforward calculations showing that the
decoding algorithms are theoretically able to achieve almost
perfect recovery at the decodability bound.

II. METHODS

A. Low-density parity-check codes

In this section, we describe a family of linear codes that can
be used to interpret the problem of community detection in
networks from a classical information-theoretic perspective.
We stress that the code P that we are going to present has
been originally introduced in Ref. [23]. Here, in addition to
rephrasing and expanding its description, we show that the
code is only one member of a large family of equivalent codes.

Except for the final section, the entire paper focuses on the
case of two communities only. This fact allows us to work with
a binary alphabet and modulo-2 arithmetic. The message that
the source wants to deliver is a vector �σT = (σ1, . . . ,σN ) of
N bits, where σi = 0,1 specifies the membership of node i,
and N is the size of the graph. We refer to the bits σ as the
information bits. Note that the transformation σi → (σi + 1)
does not change the content of information. This means that the
effective number of information bits generated by the source
is N − 1. The encoder acts on the message in a very simple
way. It basically generates a network where communities are
disconnected cliques. From this perspective, edges are purely
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redundant information, as the encoder generates N (N − 1)/2
bits for every pair (i,j ) of nodes to satisfy parity-check
equations of the type

σi + σj + θi,j = 0. (1)

The bits θ are called the parity bits of the codeword. Note that,
in any codeword, an edge corresponds to a parity bit θ = 0,
and every nonedge to a parity bit θ = 1. This choice is made
for convenience. We refer to the code described by the system
of Eq. (1) as the pair code, or shortly as the code P . The rate
of this code is

R = log2(2N/2)

N (N − 1)/2
= 2

N
(2)

as the total number of possible messages is 2N/2 (the divi-
sion by 2 arises from symmetry), and the total number of
parity bits is N (N − 1)/2. The code P is linear, and can be
written as a single matrix-vector equation H �χ = �0, where
�χT = (σ1, . . . ,σN,θ1,2, . . . ,θN−1,N ) is the codeword, �0 is a
vector with the same dimension as �χ but where every single
component is equal to zero, and

H = (V T |IN(N−1)/2) (3)

is the parity-check matrix of the code. In the above expression,
Iq is the identity matrix of dimensions q × q, whereas V is a
rectangular matrix with N rows and N (N − 1)/2 columns that
can be written as composed of N blocks

V = (V1|V2| . . . |Vi | . . . |VN ).

The ith block is defined as

Vi =
⎛
⎝ 0[i−1]×[N−i]

J1×[N−i]

IN−i

⎞
⎠,

where 0q×t is a matrix with q rows and t columns whose entries
are all equal to zero, and Jq×t is a matrix with q rows and t

columns whose entries are all equal to one. The parity-check
matrix of the code P has two nice properties. First, it appears
in the so-called systematic form. This means that the actual
generator matrix G of the code, the one used to generate
codewords as �σT G = �χT , can be written as G = (IN |V ).
Second, H is a sparse matrix, as the density of ones is vanishing
as N grows. Linear codes based on low-density parity-check
matrices are usually denoted as LDPC codes, and they are at
the basis of many error-correcting techniques [29,30].

After the message is encoded, the codeword �χT = (�σT ,�θT )
is sent through a noisy communication channel. The effect
of the channel is twofold. First, it erases completely the
information bits σ . Second, it changes the value of some parity
bits θ . What is received at the end of the channel is therefore
a network with only partial information about the original
community structure generated by the source. The way one can
attempt to recover the content of the original message is finding
the codeword that best represents, in terms of minimal distance,
the received word. Several decoding algorithms can be used
in this respect. A naive approach is for instance based on a
spectral algorithm (see Appendix A). In this paper, we consider
state-of-the-art error-correcting algorithms, typically used in
decoding processes over arbitrary memoryless noisy channels

[28]. We will come back to it in a moment. Meanwhile, we
would like to make some important remarks.

Although apparently very similar, the interpretation pre-
sented here is different from the one considered by Rosvall
and Bergstrom [7]. The two approaches suffer from the
detectability limit in the stochastic block model [12]. They
stand, however, for different takes of the community detection
problem. Their difference is analogous to the one present
between the source coding theorem and the noisy-channel
coding theorem [28]. In Ref. [7], the authors rephrased the
community detection problem as a communication task over a
channel with limited capacity. The goal of their approach was to
provide the best encoding strategy to deliver information with
such a limitation. Here instead, the focus is on the performance
of the communication task depending on the noise of the
channel. In this respect, it is very important to remark that,
in most of practical situations, one has no clue of the type
of noise that characterizes the channel. In these situations,
the only possibility is to make and test hypotheses. This is
pretty much in the same spirit as of community identification
algorithms based on statistical inference [9,10], or, from the
perspective of coding theory, maximum-likelihood decoders
devised for specific noisy channels. We are not seriously
concerned by the lack of knowledge about the noise of the
channel, as the main goal of the paper is to generate insights
on the problem of community detection in networks, rather
than simply deploying practical algorithms.

The fact that the code is linear has one important feature
[31]. One can create equivalent linear codes by performing
special types of operations on the matrix H , as for example
permutation of rows and columns, multiplications of rows
by nonzero scalars, sum of rows, and so on. Equivalence
means that the codes share the same set of codewords. For
instance, summing the rows corresponding to the equations
σi + σj + θi,j = 0, σi + σk + θi,k = 0, and σj + σk + θj,k =
0, one obtains the equation

θi,j + θi,k + θj,k = 0. (4)

This equation involves only parity bits and not information
bits. One can actually apply the same operation to all triplets of
nodes to obtain an equivalent system of equations consisting in
sums of triplets of parity bits only. We refer to this as the triplet
code, or shortly as the code T . The equivalence betweenP and
T is particularly simple. If we find a codeword containing only
parity bits for T , we are able to trivially deduce the information
bits of the corresponding codeword of P . This can be done
by simply fixing the value of one information bit σi∗ = 0,1,
and use Eq. (1) to iteratively retrieve the values of the other
information bits such that they satisfy their respective parity-
check equation. This fact tells us that looking at higher-order
local structures does not provide any significant benefit to the
decoding process, that is, the identification of the communities
in the network. We will see, however, that working with the
code T is useful to characterize performances of decoders.

B. Gallager decoders

A convenient way to graphically represent a LDPC code
is to use a bipartite network called Tanner graph. The graph
is constructed from the parity-check matrix H of the code.
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Every row of H identifies a check node, and every column of
H identifies a variable node. A variable node v is connected to
a check node c if the entry Hc,v = 1; if Hc,v = 0, v and c are
instead disconnected. Tanner graphs are particularly useful in
the description of a probabilistic decoding strategy introduced
by Gallager in the 1960’s [29]. We provide in the Appendices D
and E a detailed description of the algorithm as implemented
for the specific cases of the P and T codes, respectively. Here,
we just describe the spirit of the approach, and report the
simplified equations for the code P . The technique consists in
a series of messages exchanged by check nodes and variable
nodes connected in the Tanner graph. A variable node v sends
to a connected check node c a message mv→c representing the
probability of the bit value that v should assume according
to the other check nodes c′ �= c connected to it. In turn, a
check node c replies to a variable node v with a message nc→v

consisting in the probability of the bit value that the other
variable nodes v′ �= v attached to c would like to see from v.
The algorithm is initialized from suitable initial conditions,
i.e., our beliefs on the variable nodes, and run until convergence
or up to a maximum number of iterations. The approach is
exact in acyclic Tanner graphs, and thus particularly effective
in the context of LDPC codes. Cycles in the Tanner graph
deteriorate the performance of the algorithm, as they introduce
dependencies among messages that are actually neglected

in the algorithm by Gallager. Most of the information theory
research in this context is indeed centered on the construc-
tion of LDPC matrices (not necessarily equivalent) with
small number of short loops, avoiding in particular loops of
length four.

Going back to our specific problem, the matrix H defined
in Eq. (3) generates a Tanner graph with girth equal to six
(the girth is the length of the shortest loop in the graph).
Such a property cannot be changed by creating equivalent
parity-check matrices. In principle, one can apply the Gallager
algorithm to any of the Tanner graphs generated starting
from equivalent parity-check matrices, leading therefore to
a class of algorithms. Typically, the more irregular, in terms
of degree for check and variable nodes, the Tanner graph
is, the lower is the total number of iterations required for
the eventual convergence. On the other hand, increasing the
degree heterogeneity of the Tanner graph increases also the
complexity of the algorithm, whereas the solution obtained
by the algorithm remains basically the same. If one applies
the Gallager algorithm to the Tanner graph generated from
the systematic parity-check matrix of Eq. (3), it is possible to
simplify the implementation of the algorithm (Appendix D),
and obtain the following system of equations that relates
variables at iteration t of the algorithm to the values of the
same variables at stage t − 1 of the algorithm:

ζ
(t)
i→j =

⎧⎪⎨
⎪⎩

�i for t = 0,

�i + ∑
k �=j �=i log

1+ tanh
(

1/2 ζ
(t−1)
k→i

)
tanh (1/2 �i,k)

1− tanh
(

1/2 ζ
(t−1)
k→i

)
tanh (1/2 �i,k)

for t � 1,
(5)

where the logarithm is taken in the natural basis, and tanh(. . .)
is the hyperbolic tangent function. �i = log P (σi=0|si )

P (σi=1|si )
is the a

priori log-likelihood ratio (LLR) of the information bit σi ,
based on the information received si . It essentially stands for
the logarithm of the ratio between the probabilities that σi

is zero and σi is one, given our observation si at the end of
the noisy channel. �i,j = log P (θi,j =0|Ai,j )

P (θi,j =1|Ai,j ) is exactly the same
quantity but for the parity bit θi,j , and Ai,j is the element (i,j )
of the adjacency matrix of the graph, i.e., one plus the (i,j )th
parity bit received at the end of the channel. The messages ζ

(t)
i→j

are also LLRs. They are defined for every pair of nodes i and
j , not just those actually connected. At every iteration t , the
best estimate of the LLRs for the information and parity bits
are given, respectively, by

�̂
(t)
i = �i +

∑
k �=i

log
1 + tanh

(
1/2 ζ

(t−1)
k→i

)
tanh (1/2 �i,k)

1 − tanh
(
1/2 ζ

(t−1)
k→i

)
tanh (1/2 �i,k)

(6)

and

�̂
(t)
i,j = �i,j + log

1 + tanh
(
1/2 ζ

(t−1)
j→i

)
tanh

(
1/2 ζ

(t−1)
i→j

)
1 − tanh

(
1/2 ζ

(t−1)
j→i

)
tanh

(
1/2 ζ

(t−1)
i→j

) .

(7)

A hard-decision process is made at every stage t : the best
estimates of the information bit i are σ̂i = 0 if �̂

(t)
i,j > 0 and

σ̂i = 1, otherwise. Similar rules hold for the determination of

the best estimate of the parity bits θ̂ . These values are used to
test convergence of the algorithm by simply checking whether
the best estimates of the parity and information bits are such
that all Eq. (1) is satisfied. In such a case, the algorithm stops.
Otherwise, the algorithm is run up to a maximum number of
iterations. The a priori LLRs �i and �i,j appearing in Eqs. (5),
(6), and (7) play a fundamental role as they determine the fixed
point which the algorithm will converge to. These parameters
represent our prior belief about the message sent from the
source on the basis of the corrupted word we received on the
other side of the channel. If no other information is available,
we can simply set �i = 0 for all i, except for a single node
i∗ for which �i∗ = ±∞. The latter condition is given by the
fact that the original message is perfectly symmetric, so that
we can impose that a given information bit is certainly 0 (i.e.,
�i∗ = +∞) or 1 (i.e., �i∗ = −∞) without providing aid to our
decoder. The values of the LLRs �i,j are instead functions of
the features of the noisy channel, and the observed value of
the element of the adjacency matrix Ai,j . Without any prior
knowledge (or hypotheses) on how the parity bits were actually
altered by the channel, the approach is thus not applicable.

The iterative algorithm just introduced resembles the one
considered by Decelle et al. [9,32]. This is a natural conse-
quence of the fact that both algorithms are trying to solve the
same type of problem. There are, however, some differences.
The most important one is conceptual, as ours is a straight
adaptation of a well-established decoding technique to specific
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decoding tasks. In this respect, the algorithm maintains a
general character. For instance, the algorithm explicitly adapts
to any noisy channel by simply choosing appropriately the
values of LLRs �. Also within the same noisy channel, the
algorithm written for the code P is just one of the potentially
many algorithms that can be generated starting from equivalent
parity-check matrices. Further, our algorithm includes an error-
correcting component for the parity bit values [Eq. (7)]. Finally,
the performance of the family of algorithms can be studied
with a standard technique of coding theory named density
evolution [29,33], as we are going to illustrate below. We
should remark, however, that the algorithm has the practical
disadvantage of working with a number of equations that
scale quadratically with the system size, rather than linearly
as the algorithm by Decelle et al. This is a consequence of the
general nature of the algorithm, being not devised to perform
the specific decoding task considered here. In this respect,
we stress that other efficient and effective coding-theoretical
algorithms specifically devised for the stochastic block model
are available on the market [26,34].

III. RESULTS

A. Stochastic block model and the detectability threshold

In terms of performance, our algorithm behaves similarly
to the one by Decelle et al. This fact is visible in Fig. 2(a),
where we consider the application of the algorithm to the
stochastic block model, finding once more the existence of
the so-called detectability threshold [9,15]. The information-
theoretic sufficient and necessary condition of the detectability
threshold has been proven in Refs. [23–26]. In its simplest
variant (the one considered here), the stochastic block model
serves to generate networks with planted community structure,
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FIG. 2. Performance of the Gallager algorithm in the stochastic
block model with two communities. (a) The plot shows the probability
of error pe for the information bits, i.e., the fraction of information bits
that are not correctly decoded by the algorithm. We consider block
models with N = 10 000 divided in two equally sized groups with
n = N/2 nodes. Each curve represents the results obtained for fixed
average degree 〈k〉 = (n − 1)pin + npout. The probability of error is
computed as a function of difference between the average internal
degree 〈kin〉 = (n − 1)pin and the average external degree 〈kout〉 =
npout. As the figure shows, the decoder is not able to recover any
information in the regime 〈kin〉 − 〈kout〉 � √〈k〉 (gray full line). The
probability of error is larger than zero at the decodability bound (red
dashed line). (b) Same data as in panel (a), but the probability of error
is plotted against the ratio C/R between channel capacity and rate of
the code.

where N nodes are divided in two groups of sizes n and
N − n, respectively. Nodes belonging to the same group are
connected with probability pin, while pairs of nodes belonging
to different groups are connected with probability pout. Using
this knowledge of the channel, we can easily estimate the
value of the LLRs �i,j required by the Gallager algorithm
(Appendix B). The detectability threshold is generally studied
for equally sized groups, so that n = N/2. One defines the
average internal degree as 〈kin〉 = (n − 1)pin, the average
external degree as 〈kout〉 = npout, and the average degree as
〈k〉 = 〈kin〉 + 〈kout〉. If the difference 〈kin〉 − 〈kout〉 is smaller
than

√〈k〉, the algorithm is not able to detect any group. Groups
start to be partially decoded only when 〈kin〉 − 〈kout〉 >

√〈k〉.

B. Capacity of the noisy channel associated
with the stochastic block model

The detectability threshold is one side of the medal. It tells
us what is the minimum level of disorder that the channel
should introduce to disrupt completely our ability to decode
the original signal. One may, however, be interested in the
behavior at regimes of lower noise, specifically to the value
of maximum noise that can be tolerated to achieve perfect
decoding, i.e., retrieve the original signal with no mistakes.
This is often the case considered in the literature about
performance of community detection algorithms [21,22]. It
is also the typical case contemplated in information theory for
reliable communication [28]. Recent literature has shown that
exact recovery in the stochastic block model is still subjected
to a threshold phenomenon [23,25]. The value of the threshold
for the stochastic block model with two communities is given

by 〈kin〉 − 〈kout〉 = log N
√

2〈k〉
log N

− 1 (see Appendix H for the

rephrasing of the original results of Refs. [23,25] according to
the notation used in this paper). The above condition is valid
in the limit of infinitely large stochastic block models with
two equally sized communities decoded using a maximum
likelihood decoder. The rationale behind the existence of such
a finite-threshold effect is analogous to the one that describes
the connectivity of the Erdős-Rényi model [35]. For instance,
the logarithmic dependence of the threshold from the system
size arises from the requirement of having no nodes with degree
equal to zero, as those nodes cannot be correctly classified.

The threshold value is exact for infinitely large systems.
However in numerical validations of community detection
algorithms [20,22], system sizes are not very large. As we are
going to show, the exact recovery threshold determines a too
restrictive condition that does not provide an accurate estimate
of the regime of exact recovery reached by the best algorithms.
Such a condition must be relaxed to obtain more reliable
predictions in finite-size systems. Here, we propose a simple
way to do it. We compute a lower bound on the true value of the
threshold using the Shannon’s noisy-channel coding theorem
[27]. We refer to it as the decodability bound. The value of the
bound differs from the one of the exact recovery threshold for
a simple reason, already well emphasized in Ref. [24]: Shan-
non’s theorem is not the mathematically correct way to study
exact recovery in community detection. The theorem applies
in fact to the case where the channel properties are independent
of the choice of the code. In the noisy-channel interpretation
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FIG. 3. Performance of the Gallager decoder at threshold. (a) Comparison between the exact recovery threshold (�a , dashed blue line) and
the decodability bound (�s , orange full line) for a stochastic block model with N = 10 000 nodes as a function of the average degree 〈k〉. (b)
Probability of bit error pe as a function of the network size N . We fix the value of the average degree 〈k〉 = 32, and apply the Gallager decoder
to 10 instances of the model. Results stand for average values of pe over those realizations. Different colors and shapes correspond to different
choices of 〈kin〉. Orange circles are obtained at the exact recovery threshold; blue squares correspond to regimes of slightly larger amount of
noise than the one corresponding to the exact recovery threshold, that is 〈kin〉 is 0.9 times of the threshold value; green triangles are obtained
at the decodability bound; purple diamonds are obtained slightly above the decodability bound by setting 〈kin〉 is 1.1 times of its decodability
bound value. (c) Same as in panel (b), but for 〈k〉 = 128.

of community detection instead, the code is given, and there
is no way of playing with it without necessarily changing
the features of the channel. Given the lack of flexibility, the
decodability bound is necessarily a lower bound of the true
threshold. This tells us that exact recovery is impossible if the
noise level is higher than what predicted by Shannon theorem.
On the other hand, having a lower amount of noise than the one
established by the bound does not provide a sufficient condition
for perfect recovery. Both the exact recovery threshold and the
decodability bound scale with the square root of the average
degree of the graph (see Fig. 7). The difference between them
grows logarithmically with the system size [see Figs. 7 and
3(a)]. As Shannon’s theorem is still derived in the limit of
infinitely large systems, the decodability bound is potentially
subjected to the same limitations as those of the exact recovery
threshold. However, the different scaling with the system size
of the decodability bound makes it a meaningful indicator
for characterization of performances of community detection
algorithms [20,22]. Another nice feature of the decodability
bound is that it can be computed in a rather simple way by
knowing just the properties of the stochastic network model
without relying on any specific decoding protocol. In the
following, we provide concrete support to these statements. For
simplicity, we start describing how the decodability bound is
computed in the stochastic block model with two communities.
We will then proceed with calculations valid for other models,
and numerical tests of the predictive power of the decodability
bound.

In the interpretation of the community detection problem
as a communication process, the stochastic block model is
equivalent to an asymmetric binary channel [36]. We can
compute the capacity of the channel as (see Appendix C)

C = H2[α∗pin + (1 − α∗)pout]

− α∗H2(pin) − (1 − α∗)H2(pout). (8)

H2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary en-
tropy function. α∗ is a function of pin and pout, and represents
the value of the proportion of parity bits θ = 0 in the transmit-
ted codeword that maximizes the mutual information between

transmitted and received words. Knowing the capacity of the
channel C and the rate R of the code [Eq. (2)], the decodability
bound is determined by the condition C/R = 1. As the results
of Fig. 2(b) show, the ratio C/R provides a natural scale to
monitor the performance of the algorithm as a function of the
channel noise, at the same footing as (〈kin〉 − 〈kout〉)/

√〈k〉
does. The two quantities are effectively related by the law
C/R ∼ (〈kin〉 − 〈kout〉)2/〈k〉 (see Fig. 7).

The results of Figs. 3(b) and 3(c) highlight one of the
potential reasons of why the decodability bound turns out
to be more informative than the exact recovery threshold
in finite-size systems. The figures show how the Gallager
algorithm performs at different levels of noise as the system
size increases. Slightly above the decodability bound but below
the exact recovery threshold, the probability of information-bit
error pe is not exactly equal to zero. However, pe is so small
to become unnoticeable in numerical simulations. Further, the
entity of the error becomes even smaller as the average degree
increases.

C. Capacity-achieving codes

An issue that still remains open is understanding the
performance of the LDPC codes we introduced earlier in the
paper from a more formal point of view. In particular, we
would like to better characterize their performances around the
decodability bound. To address the issue, we rely on a popular
technique, called density evolution, generally used to study
the performances of LDPC decoders based on the Gallager
algorithm. The advantage of the approach is that it allows us
to study the performance of the algorithm without the need to
run any simulation. The technique was introduced by Gallager
himself in the analysis of the binary symmetric channel [29],
and later generalized to arbitrary channels by Richardson and
Urbanke [33]. The technique consists in assuming the LLR
of the variable nodes as independent, and study the evolution
of their probability density during the first t stages of the
algorithm, with t smaller or equal than half of the girth of
the underlying Tanner graph, i.e., until the assumption of
independence among variables is justified. Estimating how
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FIG. 4. Achieving the capacity of the stochastic block model. We consider a stochastic block model with N = 105, and groups of equal
size n = N/2. (a) Probability density of the log-likelihood ratios (LLRs) after one iteration of the Gallager algorithm. The full orange line
indicates the distribution for parity bits corresponding to internal pairs of nodes. The dashed blue line indicates the distribution for parity bits
corresponding to external pairs of nodes. Here, we set 〈kin〉 = (n − 1)pin = 36 and 〈kout〉 = npout = 28. The parameter values correspond to the
regime where communities are not detectable. (b), (c) Same as in (a), but for the second and third iterations of the algorithm. (d)–(f) Same as in
(a)–(c), but for 〈kin〉 = (n − 1)pin = 41 and 〈kout〉 = npout = 23. In this regime communities are detectable, in the sense that good algorithms
should be able to identify a nonvanishing portion of the nodes belonging to the two clusters. (g) Performance of the iterative algorithm after
three iterations. We consider three different values of the average degree 〈k〉. The description of the figure is similar to the one of Fig. 2(b) with
the difference that the probability of error pe refers to parity bits only. (h) Probability ps that a randomly chosen parity-check equation of the
code T is not satisfied as a function of the ratio C/R. We consider the same networks as those of (g).

LLR densities evolve requires repeated convolutions of distri-
butions. The mathematical treatment of the density evolution
for Gallager algorithm for the code P is quite involved.
However, for the equivalent code T , it is greatly simplified
(see Appendix F). In the limit of sufficiently large N , the
distributions P

(t)
in (�̂) and P

(t)
out(�̂), respectively valid for the LLR

of parity bits corresponding to pairs of nodes in the same
group (internal pairs) and different groups (external pairs),
are computed iteratively as convolutions of normal and delta
distributions. These computations can be efficiently performed
via numerical integration whose computational cost is virtually
independent of the system size. From the LLR densities,
we can further estimate (i) the probability of error on the
best estimates of the parity bits, and (ii) the probability of
error for the parity-check equations of the code T [Eq. (4)].
These quantities serve to judge the overall performance of the
algorithm. Everything can be carried out until t = 3 iterations,
as the girth of the Tanner graph of the code equals six. This is
a low number, yet sufficient to capture the general behavior of
the algorithm.

Results of the density evolution analysis are reported in
Fig. 4. First, we grasp why the detectability threshold emerges
in the Gallager decoder. For 〈kin〉 − 〈kout〉 <

√〈k〉, P (t)
in (�̂) and

P
(t)
out(�̂) are essentially identical, leading to the impossibility

to properly disentangle internal from external parity bits. For
〈kin〉 − 〈kout〉 >

√〈k〉 instead, the two distributions progres-
sively separate one from the other, leading to partial (or even
complete) recovery of the correct value of the parity bits.
We note that decoding correctly a portion of the parity bits
does not necessarily correspond to the correct recovery of
a portion of the information bits [Fig. 4(g)]. If some of the
parity-check equations of the T code are violated [Fig. 4(h)],
then some parity-check equations of the code C are violated
too. The relation between the two codes in terms of syndromes

is not trivial. Hence, one cannot conclude that a probability of
parity-bit error smaller than 0.5 corresponds to a probability of
information-bit error smaller than 0.5. On the other hand,P and
T share the same codewords, thus, if the Gallager algorithm on
the T code converged finding a codeword, then convergence
to the same codeword is guaranteed also for the code P . In
particular, if the codeword for T is the one that perfectly
disentangles parity bits corresponding to internal and external
pairs, then the corresponding codeword for C is the one that
recovers perfectly the true values of information bits σ . As
Fig. 4(h) shows, this situation happens approximately at the
decodability bound, where both the probabilities of error for
parity bits and parity-check equations are very close to zero. As
a consequence, the algorithm is able to achieve performance
very close to the channel capacity.

D. Stochastic block models with more than two groups

So far, we considered the simplest scenario of stochastic
block models composed of two groups only. This is a rather
special case, as the problem of identifying the memberships of
the nodes can be mapped into a linear decoding task. Writing
linear codes that apply to stochastic block models with more
than two groups seems challenging. However, we can still
provide insights to the problem of community detection by
simply studying the channel characteristics, and relying on the
Shannon’s noisy-channel coding theorem to provide a lower
bound for the maximal amount of noise admitted for exact
recovery. From the graphical point of view, the situation of
multiple groups is identical to the one of two groups (Fig. 1):
we can imagine that the encoder generates a network of
disconnected cliques, where every clique corresponds to a
planted community. The effect of the channel is also the same as
for the case of two groups: it erases completely the information
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bits, and flips the values of some of the parity bits according
to some stochastic rule. If the number of groups is Q, the rate
of the code is given by

R = log2(QN/Q)

N (N − 1)/2
= 2 log2 Q

N
, (9)

i.e., the generalization of Eq. (2) to the case of Q communities.
We assume that the channel is still a binary asymmetric one,
where parity bits θ = 0 are flipped with probability 1 − pin,
and parity bits θ = 1 with probability pout. This scenario
includes naturally the case of the Girvan-Newman benchmark
graphs [2]. Under these circumstances, we can extend all
calculations valid for Q = 2 to arbitrary values of Q, arriving
to the same expression for the capacity of the channel [Eq. (8)].
The only formal difference is in the value of α∗ (see Fig. 6).
The computation of this quantity requires to take derivatives
with respect Q − 1 variables. However, the profile of mutual
information is pretty much flat, reaching a maximum for a
big number of different configurations. This fact allows us to
assume that the maximum of the mutual information is also
reached for equally sized groups, so that we can use

α∗ = N/Q − 1

N − 1
. (10)

In Fig. 5, we establish the value of the decodability
bound for various models of interest in the literature about
performance of algorithms in the detection of communities in
syntethic graphs [20,22]. In Fig. 5(b), we consider the case of
the Girvan-Newman (GN) benchmark graphs [2]. According to
the Shannon’s theorem, decoding exactly the community mem-
berships is impossible as long as C/R < 1, with C computed
using Eqs. (8) and (10), and R defined in Eq. (9). We estimate
the bound in terms of the mixing parameter μ = 〈kout〉/〈k〉 to
make the results directly interpretable in terms of the numerical
tests about performances of community detection algorithms
on the same model (see Fig. 1 of Ref. [22]). The results of
Fig. 5 are particularly illuminating in this regard. There are
two regimes for which communities are in principle perfectly
decodable: (i) a sufficiently assortative regime, where nodes
have a number of internal edges that are sufficiently larger than
the number of external connections, and (ii) a strongly disassor-
tative regime, where external connections greatly outnumber
internal connections. The bound in the assortative regime is
located at μ � 0.5. Indeed, the best-performing algorithms in
the analysis of Ref. [22] achieve almost perfect recovery until
μ = 0.4, while their performance drops down before reaching
the point μ = 0.5. The exact recovery threshold provides
instead much more restrictive conditions [24]. According to
it, the maximum amount of noise tolerable by the channel
corresponds to μ � 0.25. However, most of the community
detection algorithms are able to perfectly recover the planted
community structure in the GN model well above μ � 0.25.
To provide clear evidence of this fact, we replicated the results
of Ref. [22] for Infomap [8], i.e., one of the top-performing
algorithms. We extended the analysis also to the Lancichinetti-
Fortunato-Radicchi (LFR) benchmark graphs [21], although
this model is not exactly described by a stochastic block model
(or a binary asymmetric channel from the perspective of coding
theory). Yet, we are able to recover approximate estimates
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FIG. 5. Decodability bounds for the stochastic block model with
multiple groups. We consider synthetic networks where N nodes
are divided into Q groups of equal size. Pairs of nodes within
the same group are connected with probability pin, and pairs of
nodes belonging to different groups are connected with probability
pout. The average value of the internal degree of a node is 〈kin〉 =
pin(N/Q − 1), whereas the average value of the external degree is
〈kout〉 = poutN (Q − 1)/Q. The probabilities pin and pout are sub-
jected to the constraint 〈k〉 = 〈kin〉 + 〈kout〉. As the decodability bound
is determined by the condition C/R = 1, with C/R ratio between the
capacity of the channel and the rate of the code, we plot C/R − 1 as a
function of the mixing parameter μ = 〈kout〉/〈k〉. The latter quantity is
used in place of the difference 〈kin〉 − 〈kout〉 to make the results easily
interpretable in the comparison with the performances of community
detection algorithms on the same model [22]. The decodability bound
is determined by the μ value where the orange full line drops down
to values smaller than zero. As a term of comparison we plot, as
vertical dashed blue lines, the value of exact recovery threshold [24]
(see Appendix H for details on how the threshold is computed). As a
paradigmatic example of a good community detection algorithm, we
used Infomap [8], i.e., the top-performing algorithm according to the
analysis of Ref. [22]. For every μ value, performance is measured in
terms of 1 − pe, where pe is the probability of parity-bit error (green
squares). Exact recovery corresponds to pe = 0. The results presented
in the various panels refer to the average value of pe computed over at
least 10 independent realizations of the synthetic network model. (a)
As in Fig. 2, we set N = 10 000, Q = 2, and 〈k〉 = 64. (b) Same as in
(a), but for N = 128, Q = 4, and 〈k〉 = 16. (c) Same as in (a) and (b),
but for N = 5000, Q = 100, and 〈k〉 = 20. (d) Same as in (a)–(c),
but for N = 5000, Q = 50, and 〈k〉 = 20. For the computation of
the exact recovery threshold and the decodability bound, parameter
values in (c) and (d) are chosen such that they are comparable with
those used in Figs. 1 and 2 of Ref. [22]. In (c) and (d), Infomap is run
on the LFR benchmark. Parameters of the model are chosen identical
to those considered in Ref. [22].

about the regime of perfect performance of algorithms that well
describe their behavior. In Figs. 5(c) and 5(d), for instance, we
estimate the decodability regime for a stochastic block model
with parameters that make the model comparable with the
LFR benchmarks of types S and B, respectively, as defined
in Ref. [22]. First, we recover threshold values that are just

022316-8



DECODING COMMUNITIES IN NETWORKS PHYSICAL REVIEW E 97, 022316 (2018)

slightly greater than those measured for the best-performing
algorithms. The decodability bound isμ � 0.75, point at which
all algorithms fail to correctly recover the planted partition.
Second, as the threshold value for benchmarks of type B is
smaller than the one found for benchmarks of type S, we are
able to explain why such a slight difference in performance is
also visible in practical algorithms (see also Fig. 2 of Ref. [22]).
A third and final deduction from the plots is the disappearance
of the disassortative regime of decodability visible instead in
the GN benchmark graph. Still for the LFR model, the exact
recovery threshold seems to not well represent the regime of
perfect performance of the best algorithms for community
detection available on the market. Also, from a comparison
among the various panels of Fig. 5, it seems that the predictive
power of the exact recovery threshold deteriorates as the
number of communities in the stochastic model increases.

IV. CONCLUSIONS

The analogy between the problems of identifying commu-
nities in networks and communicating over a noisy channel is
intrinsically present in all the methods for community detec-
tion based on statistical inference. In our contribution, we con-
sidered the analogy explicitly as already done in Refs. [23–25],
and leveraged coding theory to achieve four main results.
First, we built a family of equivalent linear codes based on
low-density parity-check (LDPC) matrices, and show that they
can be used to generate a class of LDPC community decoders.
Second, we showed that the Shannon’s noisy-channel coding
theorem sets a lower bound, named here as decodability bound,
on the maximal amount of noise allowed for perfect community
detection in the stochastic block model. Third, we connected
the first two results, showing that LDPC community decoders
are potentially able to reach the Shannon capacity of the
stochastic block model. Fourth, whereas the above results are
valid for the simplest case of stochastic block models with two
communities only, we also showed that the decodability bound
can be easily extended to the case of multiple communities
providing a quantitatively accurate prediction of the regimes
of performance of the best community detection algorithms
available on the market [22]. This final result is certainly
the most important from the practical point of view, as it
seems to indicate that not much potential for improvement
in performance is left. We stress that this conclusion can, at
the moment, be supported only by numerical evidence. This
fact restricts ourselves to consider the conclusion valid only
for specific algorithms and specific settings of the stochastic
block model. We do not exclude that the best-performing
algorithms in the GN and LFR benchmarks will fail in other
models, as a recent theoretical study [37] demonstrated that a
single algorithm outperforming all other algorithms in every
community detection task cannot exist. Further, as the mathe-
matical proof of the Shannon’s noisy-channel coding theorem
is valid only in the limit of infinitely large systems, there is
no mathematical guarantee that the decodability bound must
hold also for finite-size networks. Numerical evidence so far is
supportive, but, until a mathematical explanation is provided,
there is always the chance to find an algorithm able to beat the
decodability bound.
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APPENDIX A: SPECTRAL DECODER

An algorithm that approximates a minimum distance de-
coder can be deployed as follows. Our goal is to find the value
of the information bits σ̂ that lead to the minimum number
of violated parity-check equations [Eq. (1) of the main text],
given the word received. We can define a penalty function as

D =
∑
i>j

Ai,j

(
1 − δσi ,σj

) +
∑
i>j

(1 − Ai,j )δσi ,σj

×E − 2
∑
i>j

Ai,j δσi ,σj
+

∑
i>j

δσi ,σj
,

where δx,y = 1 if x = y, and δx,y = 0 if x �= y, Ai,j is the
i,j element of the adjacency matrix of the received network,
and E is the total number of observed edges. Note that above
sums are not performed in modulo 2. In the definition of the
penalty function D, we are not allowing for any correction
on the parity bits received. Thus, we can only act on the
information bits. The best estimates of the bits σ̂ are such that
D is minimal. To approximate the solution, we can perform
the transformation σi = 0 → ξi = 1, and σi = 1 → ξi = −1,
so that δσi ,σj

= (1 + ξiξj )/2, and rewrite D as

D = E −
∑
i>j

Ai,j (1 + ξiξj ) + 1

2

∑
i>j

(1 + ξiξj )

× N (N − 1)

4
+ 1

2

∑
i>j

ξiξj −
∑
i>j

Ai,j ξiξj

or in matrix-vector notation as

D = N (N − 1)

4
+ �ξ T (J/2 − I/2 − A)�ξ, (A1)

where J is the all-one matrix, and I is the identity matrix.
The first term on the right-hand side of Eq. (A1) is a constant
dependent only on the size of the network N . We need therefore
to minimize only the rightmost term of the equation. An
approximate solution for the configuration that minimizes
D can be found by finding the largest eigenvector of the
operator A − J/2 + I/2, and set σ̂i = 1 if the corresponding
component is smaller than zero, or σ̂i = 0, otherwise.

APPENDIX B: STOCHASTIC BLOCK MODEL
AS A NOISY CHANNEL

In the stochastic block model, two nodes i and j belonging
to the same group, with corresponding parity bit θi,j = 0,
are connected with probability pin. The two nodes i and j

belonging to different groups, with corresponding parity bit
θi,j = 1, are connected with probability pout. This means that
parity bits θ obey the rules of the following binary asymmetric
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channel:

θi,j Ai,j P (Ai,j |θi,j )
0 1 pin

0 0 1 − pin

1 1 pout

1 0 1 − pout

. (B1)

We use the information about the noisy channel to determine
the best estimate of θi,j given the observed value of Ai,j . We
can write

P (θi,j |Ai,j ) = P (Ai,j |θi,j )P (θi,j )

P (Ai,j )
.

As we have no prior knowledge of the group assignments
of the nodes, and therefore about true values of the parity
bit θi,j , we can set P (θi,j ) = 1/2. Additionally, we can write
P (Ai,j = 1) = (pin + pout)/2 and P (Ai,j = 0) = 1 − (pin +
pout)/2. Using our knowledge of the noisy channel, we can
thus write

P (θi,j = 0|Ai,j = 1) = pin

pin + pout

and

P (θi,j = 0|Ai,j = 0) = 1 − pin

2 − (pin + pout)
.

We can use those probabilities to determine the value of the
log-likelihood ratios (LLRs)

�i,j = log
P (θi,j = 0|Ai,j )

P (θi,j = 1|Ai,j )

=
{

log (pin) − log (pout) if Ai,j = 1,

log (1 − pin) − log (1 − pout) if Ai,j = 0.
(B2)

APPENDIX C: CAPACITY OF THE CHANNEL

Messages are given by divisions of the network of N nodes
into two blocks with size n and N − n, respectively. Once n is
fixed, there will be

(
N

n

)
equiprobable messages. One of those

messages is encoded into a codeword �θ composed of

�0 =
(

n

2

)
+

(
N − n

2

)

parity bits equal to zero, and

�1 = n(N − n)

parity bits equal to one. The length of the codeword is fixed
and does not depend on n:

L = �0 + �1.

Strictly speaking the codeword contains also information bits.
However, those bits are completely erased by the channel,
thus for the computation of the capacity, we can think that
the codeword is composed of parity bits only.

In the stochastic block model, the relation between transmit-
ted and received parity bits is given by Eq. (B1). For simplicity,
let us define φi,j = (1 + Ai,j ) mod 2. As the probability that
an individual received bit φi,j is dependent only on the value

of the bit transmitted θi,j , we can write

P ( �φ|�θ) =
∏
(i,j )

P (φi,j |θi,j ) .

As the probability associated to the value of a generic
received parity bit φ is dependent only on the value of
the transmitted bit θ , and for a fixed value of n all

(
N

n

)
configurations are equiprobable, we can simply state that

P (θ = 0|n) = �0/(�0 + �1) = α

and

P (θ = 1|n) = �1/(�0 + �1) = (1 − α).

The parity bit φ is received as flipped with probability pout

if θ = 1, while it will stay equal to θ with probability pin if
θ = 0. The conditional entropy is then given by

H (φ|θ ) = αH2(pin) + (1 − α)H2(pout),

where

H2(f ) = −f log2(f ) − (1 − f ) log2(1 − f )

is the binary entropy function. The probability that a received
parity-check bit φ is zero is

P (φ = 0) = αpin + (1 − α)pout.

Thus, the entropy of the received bit φ is

H (φ) = H2[αpin + (1 − α)pout].

The expression for the mutual information reads as

I (θ ; φ) = H2[αpin + (1 − α)pout]

−αH2(pin) − (1 − α)H2(pout). (C1)

In Fig. 6, we display the profile of the mutual information
for specific settings of the stochastic block model. To find the
channel capacity, we need to maximize I with respect to α. For
simplicity, we will assume α continuous. The derivative of the
binary entropy function is

d

dx
H2(x) = log2(x−1 − 1).

The derivative of the mutual information is therefore

d

dα
I (θ ; φ) = (pin − pout) log2

[
1

αpin + (1 − α)pout
− 1

]
−H2(pin) + H2(pout).
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FIG. 6. (a) Mutual information I [Eq. (C1)] divided by the rate of the code R = 2/(N + 2) as a function of the module size n (the size
of the other module is N − n). We consider fixed values of the probabilities pin and pout. Here, N = 105. (b) Same as in (a), but for different
values of pin and pout.

Setting the previous expression equal to zero, we have

(pin − pout) log2

[
1

α∗pin + (1 − α∗)pout
− 1

]
−H2(pin) + H2(pout) = 0,

log2

[
1

α∗pin + (1 − α∗)pout
− 1

]
= H2(pin) − H2(pout)

pin − pout
,

1

α∗pin + (1 − α∗)pout
− 1 = 2

H2(pin )−H2(pout )
pin−pout .

For simplicity, let us define

z = 2
H2(pin )−H2(pout )

pin−pout ,

thus,

1

α∗pin + (1 − α∗)pout
= z + 1,

α∗pin + (1 − α∗)pout = 1

1 + z
,

α∗(pin − pout) = 1 − pout(1 + z)

1 + z
,

α∗ = 1 − pout(1 + z)

(1 + z)(pin − pout)
,

so that we have

α∗ = 1 − pout
(
1 + 2

H2(pin )−H2(pout )
pin−pout

)
(
1 + 2

H2(pin )−H2(pout )
pin−pout

)
(pin − pout)

. (C2)

The capacity of the channel is

C = H2[α∗pin + (1 − α∗)pout]

−α∗H2(pin) − (1 − α∗)H2(pout). (C3)

In Fig. 7, we show that the ratio between channel capacity and
code rate is a tight function of the parameters of the stochastic
block model.
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FIG. 7. (a) Relation between the ratio C/R, capacity divided by rate, and (〈kin〉 − 〈kout〉)/
√〈k〉 for the stochastic block model with N = 106

and two groups with identical size n = N/2. 〈kin〉 = pin(n − 1), 〈kout〉 = poutn, and 〈k〉 = 〈kin〉 + 〈kout〉. We consider different values of 〈k〉.
The black dashed line identifies a power law with exponent 2. (b) We compute � as the value of 〈kin〉 − 〈kout〉 for which C/R = 1. As the plot
shows, the value �/

√〈k〉 saturates quickly at 1.66 as 〈k〉 grows. (c) We determined the value of the ratio C/R when 〈kin〉 − 〈kout〉 = √〈k〉. We
indicated this with (C/R)d , and plotted the quantity as a function of the average degree 〈k〉. We observe a quick saturation (C/R)d � 0.36 as
〈k〉 grows.
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APPENDIX D: ITERATIVE DECODING
FOR THE PAIR CODE

We employ the Gallager algorithm to decode the received
word. The technique involves messages sent back and forth
between variable nodes to check nodes on the Tanner graph
constructed from the parity-check matrix H of Eq. (3) of the
main text. We have a total of N + N (N − 1)/2 variable nodes.
The first N correspond to the actual nodes of the graph. The
other N (N − 1)/2 variable nodes are instead given by all pairs
of nodes in the graph. Check nodes amount to N (N − 1)/2,
each corresponding to a pair of nodes in the graph.

To describe variable nodes, we use the following notation.
The generic node i has associated log-likelihood ratio (LLR)

�i = log
P (σi = 0|si)

P (σi = 1|si)
,

where si = 0,1 is the received information bit, and σi is the
transmitted information bit. Please note that in our problem
we actually do not receive any information bit, as these are
erased by the channel. Similarly, for a generic pair (i,j ) of
nodes, we define the LLR as

�i,j = log
P (θi,j = 0|Ai,j )

P (θi,j = 1|Ai,j )
,

where φi,j = 1 + Ai,j is the received parity bit. Note that the
former definition is perfectly symmetric under the exchange
of i and j . It is clearly not defined, and actually not used, for
i = j . This fact is assumed below.

�i and �i,j are our best estimates of the value of the variable
nodes at stage t = 0 of the algorithm. At iteration t of the
algorithm, the variable node i sends to the check node (i,j ) the
message

m
(t)
i→(i,j ) =

{
�i if t = 0,

�i + ∑
k �=j,k �=i n

(t−1)
(i,k)→i if t � 1.

The message sent from the variable node (i,j ) to the check node
(i,j ) is instead equal to �i,j in all rounds of the algorithm. In
the above expression, n(i,j )→i is the message sent back from
the check node (i,j ) to node i, and is defined as

n
(t)
(i,j )→i = log

1 + tanh
(
1/2 m

(t−1)
j→(i,j )

)
tanh (1/2 �i,j )

1 − tanh
(
1/2 m

(t−1)
j→(i,j )

)
tanh (1/2 �i,j )

.

The check node (i,j ) sends a message back also to the variable
node (i,j ) equal to

n
(t)
(i,j )→(i,j ) = log

1 + tanh
(
1/2 m

(t−1)
i→(i,j )

)
tanh

(
1/2 m

(t−1)
j→(i,j )

)
1 − tanh

(
1/2 m

(t−1)
i→(i,j )

)
tanh

(
1/2 m

(t−1)
j→(i,j )

) .

Please note that the latter message is not used in the iterative
algorithm. It is, however, used to check the convergence of the
algorithm as it follows. At round t > 0 of the algorithm, the
estimated values of the LLRs are

�̂
(t)
i = �i +

∑
k �=i

n
(t)
(i,k)→i ,

�̂
(t)
i,j = �i,j + n

(t)
(i,j )→(i,j ).

The estimate of the bits associated with the variable nodes
is performed with a hard-decision choice, setting σ̂i = 0 if

�
(t)
i < 0 and σ̂i = 1, otherwise. Similarly for the best estimate

of the pair variable θ̂i,j = 0 if �
(t)
i,j < 0 and θ̂i,j = 1, otherwise.

Based on this choice, we can establish if the bit string decoded
at iteration t is an actual codeword, i.e., (σ̂i + σ̂j + θ̂i,j )
mod 2 = 0, for all i �= j . In such a case, we determine that
the algorithm has converged. Otherwise, we run the algorithm
up to a desired maximal number of iterations.

When applied to the stochastic block model, we can set
�i = 0 for all i, except for �i∗ = ±∞ for one node i∗. The
values of �i,j are instead provided in Eq. (B2).

Simplification of the decoding algorithm

The structure of the equations above allows us to simplify
the decoding algorithm. As messages sent by pair variables are
unchanged, we can simply define

ζ
(t)
i→j = m

(t)
i→(i,j )

to write ζ
(t=0)
i→j = �i and

ζ
(t)
i→j = �i +

∑
k �=j

log
1 + tanh

(
1/2 ζ

(t−1)
k→i

)
tanh (1/2 �i,k)

1 − tanh
(
1/2 ζ

(t−1)
k→i

)
tanh (1/2 �i,k)

for t � 1. The best estimates of the LLRs at stage t � 1 are

�̂
(t)
i = �i +

∑
k

log
1 + tanh

(
1/2 ζ

(t−1)
k→i

)
tanh (1/2 �i,k)

1 − tanh
(
1/2 ζ

(t−1)
k→i

)
tanh (1/2 �i,k)

and

�̂
(t)
i,j = �i,j + log

1 + tanh
(
1/2 ζ

(t−1)
j→i

)
tanh

(
1/2 ζ

(t−1)
i→j

)
1 − tanh

(
1/2 ζ

(t−1)
j→i

)
tanh

(
1/2 ζ

(t−1)
i→j

) .

APPENDIX E: ITERATIVE ALGORITHM FOR THE
TRIPLET CODE

If instead of the pair code, we consider the triplet code

(θi,j + θi,k + θj,k) mod 2 = 0,

we can still use the Gallagher algorithm on the corresponding
Tanner graph. The Tanner graph contains N (N − 1)/2 variable
nodes. Each of those variable nodes is connected to N − 2
check nodes. The total number of check nodes is N (N −
1)(N − 2)/6, each for every triplet.

At iteration t of the algorithm, the variable node (i,j ) sends
to the check node (i,j,k) the message

m
(t)
(i,j )→(i,j,k) =

{
�i,j if t = 0,

�i,j + ∑
s �=i,j,k n

(t−1)
(i,j,s)→(i,j ) if t � 1.

The sum appearing above runs over all triplets connected to
(i,j ), excluding the triplet (i,j,k). In turn, check nodes reply
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to variable nodes with

n
(t)
(i,j,k)→(i,j ) = log

1 + tanh
(
1/2 m

(t−1)
(i,k)→(i,j,k)

)
tanh

(
1/2 m

(t−1)
(j,k)→(i,j,k)

)
1 − tanh

(
1/2 m

(t−1)
(i,k)→(i,j,k)

)
tanh

(
1/2 m

(t−1)
(j,k)→(i,j,k)

) .

The reply depends only on the messages that the triplet (i,j,k) received from the other two pairs attached to it, namely, (i,k) and
(j,k). For t � 1, best estimates of the LLRs for variable nodes are

�̂
(t)
i,j = �i,j +

∑
k

n
(t−1)
(i,j,k)→(i,j ) = �i,j +

∑
k

log
1 + tanh

(
1/2 m

(t−1)
(i,k)→(i,j,k)

)
tanh

(
1/2 m

(t−1)
(j,k)→(i,j,k)

)
1 − tanh

(
1/2 m

(t−1)
(i,k)→(i,j,k)

)
tanh

(
1/2 m

(t−1)
(j,k)→(i,j,k)

) .

APPENDIX F: DENSITY EVOLUTION FOR THE TRIPLET
CODE ON THE STOCHASTIC BLOCK MODEL

For simplicity, we consider only the case of two equally
sized groups, so that n = N/2. Our plan is to monitor the
evolution of the probability densities of the log-likehood ratios
(LLRs) for internal and external pairs of nodes. An internal
pair of nodes consists in two nodes i and j within the same
group. We know that the true value of parity bit for such a pair
is θi,j = 0. An external pair of nodes consists in two nodes
i and j belonging to different groups. The true value of the
parity bit associated to this external pair is θi,j = 1. At stage
t of the iterative algorithm, the LLR densities of external and
internal pairs are, respectively, indicated as P

(t)
in (�̂) and P

(t)
out(�̂).

These densities describe the behavior of the LLRs over an
infinite number of realizations of the stochastic block model.
To monitor the evolution of the LLR densities as functions
of the iteration t of the algorithm, we assume variables to be
independent. This assumption is correct up to t = 3, as the
girth of the underlying Tanner graph is 6. For a larger number
of iterations, variables in the true algorithm become dependent
on each other, and they do not longer obey the distributions
derived under the independence assumption.

For a generic internal pair, the initial value of the LLR will
be a random variable obeying the distribution

P
(t=0)
in (�̂) = δ

(
�̂ − log

pin

pout

)
pin

+ δ

(
�̂ − log

1 − pin

1 − pout

)
(1 − pin),

where δ(x) = 1 if x = 0, and δ(x) = 0, otherwise.
For a generic external pair, the initial value of the LLR is a

random variable obeying the distribution

P
(t=0)
out (�̂) = δ

(
�̂ − log

pin

pout

)
pout

+ δ

(
�̂ − log

1 − pin

1 − pout

)
(1 − pout).

Every pair is connected to a total of 2n − 2 parity checks. If the
pair is internal, then the pair will be connected to n − 2 parity
checks that include other two internal pairs, and n parity checks
that include two external pairs (see Fig. 8). For an external pair
instead, all parity checks necessarily include another external
pair, and one internal pair.

At iteration t � 1, the distribution of the LLR for a generic
internal pair is obtained as the sum of three independent con-

tributions. The first term is a single random variable extracted
from P

(t=0)
in , namely, zin. The second term is given by the sum of

n − 2 random variables. The value of each of these variables is
obtained by first extracting two random variables from P

(t−1)
in ,

namely x
(g)
in and y

(g)
in , and then computing the quantity

q
(g)
in,in = log

1 + tanh
(
x

(g)
in

/
2
)

tanh
(
y

(g)
in

/
2
)

1 − tanh
(
x

(g)
in

/
2
)

tanh
(
y

(g)
in

/
2
) .

The value of the second term is given by

qin,in =
n−2∑
g=1

q
(g)
in,in.

The third term is given by the sum of n random variables,
generated from the sum of two random variables x

(g)
out and y

(g)
out,

extracted at random from the distribution P
(t−1)
out . For a given

pair of random variables, we compute

q
(g)
out,out = log

1 + tanh
(
x

(g)
out

/
2
)

tanh
(
y

(g)
out

/
2
)

1 − tanh
(
x

(g)
out

/
2
)

tanh
(
y

(g)
out

/
2
) .

The value of the third term is finally given by

qout,out =
n∑

g=1

q
(g)
out,out.

As the various quantities are determined independently, the
distribution of the LLR for internal pairs after the t th iteration
is

P
(t)
in (�̂) = P (t=0)(zin)P (t−1)(qin,in)P (t−1)(qout,out)

× δ(�̂ − zin − qin,in − qout,out), (F1)

in

in

out

out
in

FIG. 8. Every internal pair of nodes is involved in two types of
parity-check equations: (i) those formed with other two internal pairs,
and (ii) those formed with two external pairs. Every external pair of
nodes is instead involved in parity-check equations with one internal
and one external pair.
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where P (t=0)(zin), P (t−1)(qin,in), and P (t−1)(qout,out) are, respec-
tively, the probability distributions of the variables zin, qin,in,
and qout,out as defined above.

For external pairs, the computation of the distribution of the
LLRs is very similar. There will be two contributions. The first
is just a random variable extracted from P

(t=0)
out , namely, zout.

The second is computed by extracting two random numbers
x

(g)
in and y

(g)
out, respectively, from the distributions P

(t−1)
in and

P
(t−1)
out . One then evaluates the quantity

q
(g)
in,out = log

1 + tanh
(
x

(g)
in

/
2
)

tanh
(
y

(g)
out

/
2
)

1 − tanh
(
x

(g)
in

/
2
)

tanh
(
y

(g)
out

/
2
) .

The value of the second term is finally given by

qin,out =
2n−2∑
g=1

q
(g)
in,out,

and the distribution of the LLR for external pairs is given by

P
(t)
out(�̂) = P (t=0)(zout)P

(t−1)(qin,out) δ(�̂ − zout − qin,out).

(F2)

1. Approximation for large networks

For N 
 1, we expect that the distributions P (t)(qin,in),
P (t)(qout,out), and P (t)(qin,out) appearing at iterations t � 1 are

well described by normal distributions, so that

P (t)(qin,in) � N
(
qin,in; (n − 2)μ(t)

in,in,
√

n − 2σ
(t)
in,in

)
,

P (t)(qout,out) � N
(
qout,out; nμ

(t)
out,out,

√
nσ

(t)
out,out

)
,

and

P (t)(qin,out) � N
(
qin,out; (2n − 2)μ(t)

in,out,
√

2n − 2σ
(t)
in,out

)
.

We used here N (x; μ,σ ) to indicate that the variable x is
distributed according to a normal distribution with the average
μ and standard deviation σ .

If we define

g(x,y) = log
1 + tanh(x/2) tanh(y/2)

1 − tanh(x/2) tanh(y/2)
,

we have

μ
(t)
in,in =

∫
dx

∫
dy P

(t)
in (x) P

(t)
in (y) g(x,y)

and(
σ

(t)
in,in

)2 + (
μ

(t)
in,in

)2 =
∫

dx

∫
dy P

(t)
in (x) P

(t)
in (y) [g(x,y)]2.

Similar expressions can be written for μ
(t)
out,out, σ

(t)
out,out,

μ
(t)
in,out, and σ

(t)
in,out. The updated values of the distributions

P
(t+1)
in (�̂) and P

(t+1)
out (�̂) for stage t + 1 of the algorithm are

given by

P
(t+1)
in (�̂) = pin N

{
�̂; μ(t)

in + log (pin/pout),σ
(t)
in

} + (1 − pin)N
{
�̂; μ(t)

in + log [(1 − pin)/(1 − pout)],σ
(t)
in

}
(F3)

and

P
(t+1)
out (�̂) = pout N

{
�̂; μ(t)

out + log (pin/pout),σ
(t)
out

} + (1 − pout)N
{
�̂; μ(t)

out + log [(1 − pin)/(1 − pout)],σ
(t)
out

}
, (F4)

where

μ
(t)
in = (n − 2)μ(t)

in,in + nμ
(t)
out,out,(

σ
(t)
in

)2 = (n − 2)
(
σ

(t)
in,in

)2 + n
(
σ

(t)
out,out

)2
,

μ
(t)
out = (2n − 2)μ(t)

in,out,

and (
σ

(t)
out

)2 = (2n − 2)
(
σ

(t)
in,out

)2
.

Equations (F3) and (F4) follow directly from Eqs. (F1) and (F2), as the distributions involved in the convolution are only normal
and delta distributions. Equations (F3) and (F4) allow us to compute the probability of bit error as

p(t)
e = 1

2 (εin + εout), (F5)

where we used the approximation α � 1
2 for sufficiently large values of N , and

εin =
∫ 0

−∞
d�P

(t)
in (�)

and

εout =
∫ +∞

0
d�P

(t)
out(�).

We can further estimate the probability that one randomly chosen parity-check equation is violated as

p(t)
s = 1 − win

[
(1 − εin)3 + 3ε2

in(1 − εin)
] + wout

[
(1 − εin)ε2

out + 2εinεout(1 − εout) + (1 − εin)ε2
out

]
win + wout

, (F6)
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FIG. 9. Density distribution P
(t)
in (�̂) of the log-likelihood ratio for internal pairs (orange), and density distribution P

(t)
out(�̂) of the log-likelihood

ratio for external pairs (blue) for a network with N = 100 nodes, and equally sized groups with n = 50 nodes. We consider (n − 1)pin = 〈kin〉 = 6
and npout = 〈kout〉 = 2. The plot shows how the distributions change as functions of the iteration t of the algorithm: (a) t = 1, (b) t = 2, and
(c) t = 3. Results of numerical simulations (bars) are compared with the normal approximations (lines) of Eqs. (F3) and (F4).

where

win = n(n − 1)(n − 2)

3

and

win = n2(n − 1).

In Figs. 9 and 10, we provide a comparison between theoretical
and numerical estimates of the LLR density distributions.

APPENDIX G: CAPACITY OF STOCHASTIC BLOCK
MODELS WITH MORE THAN TWO GROUPS

So far, we considered the simplest scenario of stochastic
block models composed of only two groups. Under this
assumption, the problem of identifying the memberships of the
groups can be mapped into a decoding task of a linear code.
Writing linear codes that apply to scenarios where the presence
of multiple groups is allowed seems challenging. However, we
can still provide insights to the problem by simply studying the
channel characteristics, and relying on the Shannon theorem
to provide indications about the regime of exact recovery. The
nonconstructive nature of the Shannon theorem itself allows us
to draw conclusions directly from the rate of the code and the
channel features without the need of necessarily specifying

an encoding or decoding protocol. From the graphical point
of view, the situation of multiple groups is identical to the
one of two groups. Still, we can imagine that the encoder
generates a network of disconnected cliques depending on the
memberships of the nodes, and that the channel flips the values
of those bits according to some stochastic rule.

Indicate with Q the total number of groups in the networks,
and with ni the number of nodes in group i. We clearly have
that

Q∑
i=1

ni = N.

The total number of parity bits equal to zero in the transmitted
codeword is

�0 =
Q∑

i=1

ni(ni − 1)

2
= 1

2

Q∑
i=1

n2
i − N

2
.

The total number of parity bits equal to one is instead

�1 = N (N − 1)

2
− �0.

Exactly as in the case of two groups, it is convenient to define

α = �0

�0 + �1
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FIG. 10. Same as in Fig. 9 but for (n − 1)pin = 〈kin〉 = 5 and npout = 〈kout〉 = 3.
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as the relative amount of parity bits equal to zero. The rate of
the code is given in Eq. (9).

For simplicity, let us focus on the case in which the channel
acts on the codeword using the rules of a binary asymmetric
channel [Eq. (B1)]. Under these conditions, everything we
wrote for the case of two groups up to Eq. (C1) still holds.
The fundamental difference here is that α depends on the
size of the Q groups. In principle, the maximization of the
mutual information requires to take derivatives with respect
to Q − 1 variables. The profile of mutual information in this
hyperdimensional space is similar to the one appearing in
Fig. 6, looking flat over a big number of different configu-
rations. This fact allows us to assume that the maximum of the
mutual information is also reached for equally sized groups,
ni = N/Q for all i, so that we can write

�∗
0 = N (N/Q − 1)

2

and

α∗ = N/Q − 1

N − 1
. (G1)

Finally, we can obtain the channel capacity as

C = H2[α∗pin + (1 − α∗)pout] − α∗H2(pin)

− (1 − α∗)H2(pout). (G2)

APPENDIX H: COMPARISON WITH THE EXACT
RECOVERY THRESHOLD

In Refs. [23,25], the authors provided an exact estimate
of the threshold that the parameters of the stochastic block
model must satisfy to have necessary and sufficient conditions
for exact recovery of the modules. We report here only the
results for the symmetric case, where a network with N nodes
is divided into Q groups of size N/Q. Pairs of nodes in the

same group are connected with probability pin, whereas pairs
of nodes in different groups are connected with probability
pout. The condition reads as

(
√

a −
√

b)2 = Q, (H1)

where

a = pinN

log N
and b = poutN

log N
.

As in our analysis we often consider the decodability of the
model as a function of the difference between average internal
and external degrees and fixed average total degree, in the
following we rewrite Eq. (H1) in these terms. We note that

a = Q 〈kin〉
log N

and b = Q 〈kout〉
(Q − 1) log N

.

The solution of Eq. (H1) is

b∗ = c ±
√

2cQ − Q2

2
,

where

c = Q 〈kin〉 + Q/(Q − 1) 〈kout〉
log N

.

The value of a at threshold is

a∗ = c − b∗.

For the case Q = 2, we can write the threshold as

|〈kin〉 − 〈kout〉| = log N

√
2〈k〉

log N
− 1. (H2)

For Q > 2, the value of the mixing parameter [22] for which
perfect recovery is allowed is given by

μ∗ = (Q − 1) log N b∗

〈k〉Q
. (H3)

The condition for exact recovery is found imposing μ∗ = μ.
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