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Comparative analysis on the selection of number of clusters in community detection
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We conduct a comparative analysis on various estimates of the number of clusters in community detection. An
exhaustive comparison requires testing of all possible combinations of frameworks, algorithms, and assessment
criteria. In this paper we focus on the framework based on a stochastic block model, and investigate the
performance of greedy algorithms, statistical inference, and spectral methods. For the assessment criteria, we
consider modularity, map equation, Bethe free energy, prediction errors, and isolated eigenvalues. From the
analysis, the tendency of overfit and underfit that the assessment criteria and algorithms have becomes apparent.
In addition, we propose that the alluvial diagram is a suitable tool to visualize statistical inference results and can
be useful to determine the number of clusters.
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I. INTRODUCTION

Community detection is a coarse graining process for
networks. Whereas the original dataset, given as a network,
possesses information that is quite rich, it is often too micro-
scopic to have its important structures interpreted. For better
interpretability, a community detection algorithm summarizes
(i.e., clustering or partitioning) the dataset by aggregating the
vertices and edges of densely connected components. That
is, the detailed relational information of similar vertices is
discarded, while preserving an important macroscopic struc-
ture. A set of aggregated vertices is regarded as a cluster, or a
community.

A straightforward approach, or a framework, for community
detection is to optimize an objective function that evaluates
the quality of clustering. Another popular approach is based
on statistical inference and considers a generative model of a
network. It is often formulated using the so-called stochastic
block model [1–3] as a generative model, which is a random
graph with a modular structure. Therefore, the community
structure can be inferred by fitting the network to the model.
While these two approaches may seem very different, the
former can sometimes be formulated as a limiting case (zero-
temperature limit in physics terminology) of the latter, and in
this paper it is mainly explained in terms of the latter approach.

In regards to these frameworks, a number of algorithms
have been proposed, such as greedy algorithms [4–6], spectral
methods [7–10], and inference algorithms such as expectation-
maximization (EM) algorithms [11–15] and Monte Carlo
methods [16–18], to name a few. In this paper, the following are
considered: Louvain method [5] and Infomap [6] for the greedy
algorithms, the modularity matrix [8,19] and nonbacktracking
matrix [9] for the matrices in the spectral methods, and the
EM algorithm with belief propagation (BP) [15,20] for the
inference algorithm.

When community detection is performed, the number of
clusters q∗ needs to be determined. In other words, the

complexity of the model, i.e., the model selection, needs to
be specified. This process consists of determining the partition
that describes the modular structure most efficiently, or to eval-
uate whether the obtained partition is statistically significant.
Just as the quality of the q-way partition varies depending
on the very definition of a cluster, the appropriateness of the
number of clusters also varies depending on the principle fol-
lowed. Meanwhile, it is difficult to decide on which principle to
apply, given a dataset. Therefore, it is important to investigate
the typical behavior and biases of each criterion. For example,
some criteria may behave very differently from others in some
cases, or some criteria may be more sensitive to the accuracy
of a particular algorithm. Moreover, the dangers of underfit
and overfit are often not symmetric. In the case of community
detection, it is often safer to underfit than to overfit, because the
former only implies a different level of coarse graining, while
the latter implies the detection of fictitious small clusters.

In this paper, a comparative analysis of various criteria
that estimate q∗ is conducted. This analysis is distinct from
other comparative analyses in the following sense. Whereas the
performance of the community detection completely depends
on the framework (or objective function), algorithm, and
assessment criterion used, it is often the case that a specific
combination of them is employed in a benchmark test. For
example, Infomap, a greedy algorithm for the map equation
[6,21], is a popular algorithm and frequently appears in
benchmark tests. However, when the performance of a certain
objective function or an assessment criterion is compared with
the map equation, it is fair to use a common algorithm. For
this reason, the performance of various assessment criteria
using the same statistical inference algorithm is compared. In
addition, the performance of the same assessment criterion
on the same dataset using different algorithms is investigated.
Therefore, when a criterion is ill behaved, it can be argued
whether it is due to the criterion itself or the algorithm used.

As can be observed below, sometimes, the validation curves
of assessment criteria change very gradually. In such a case,
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it is not easy to determine the plausible value of q∗ from
the assessment criteria, and a finer inspection of the partition
actually obtained is required. For this purpose, a visualization
technique, called the alluvial diagram [22], is proposed as
a suitable tool, not only because of the way the network is
partitioned but also because it allows the significance level to
be evaluated from an inference algorithm.

The remainder of the paper is organized as follows. First,
stochastic block models are defined in Sec. II to set the basic
framework. Second, the algorithms used to determine the
cluster assignments and for the estimate of q∗ in Sec. III are
introduced. Third, the assessment criteria of the number of
clusters q∗ is explained in Sec. IV. Then, in Sec. V, the results
of the comparative analyses are shown. In Sec. VI, how the
alluvial diagram helps determine the number of clusters is
explained. Finally, Sec. VII is devoted to the summary and
discussion.

II. STOCHASTIC BLOCK MODELS

Community detection based on a stochastic block model is
considered to be the basic framework. The sets of vertices and
edges are denoted as V and E, respectively. Their respective
cardinalities are referred to as N and L.

A. Standard stochastic block model

The most standard version of stochastic block models is
constructed as follows. We first consider a set of vertices V

without edges. For each vertex, we randomly specify the cluster
assignment σi ∈ {1, . . . ,q}, where i is the index of a vertex and
the number of clusters q is given as an input. The probability
of the cluster size can also be specified. It is a prior distribution
of the cluster assignments and is expressed by a multinomial
distribution

∏
i γσi

. Then, the edges are generated randomly
according to the vertex pair’s cluster assignment, where the
connection probability is specified by an element of the q × q

affinity matrix ω; the edge probability distribution of a vertex
pair is given by the Bernoulli distribution. Thus, the likelihood
of the stochastic block model is given as

p(A,σ |ω,γ ,q) = p(A|σ ,ω,q)p(σ |γ ,q)

=
∏

i

γσi

∏
i<j

ω
Aij

σiσj

(
1 − ωσiσj

)1−Aij
. (1)

When a higher connection probability is provided for pairs of
vertices with the same cluster assignment (as compared to pairs
of vertices with different cluster assignments), i.e., ωσσ > ωσσ ′

(σ �= σ ′), a set of random graphs with a community structure
can be generated. Generating the stochastic block model is
a forward problem, and community detection is its inverse
problem, i.e., the inference of γ , ω, and σ .

B. Degree-corrected stochastic block model with restricted
model-parameter space

Whereas the standard stochastic block model is very flexi-
ble, it is often not suitable to fit real-world networks, mainly
because it can only have a binomial degree distribution, which
is not true in many datasets. To resolve this problem, the

so-called degree-corrected stochastic block model [3] was
proposed. Following Ref. [3], the Bernoulli distribution for
the edge probability of each vertex pair was approximated with
the Poisson distribution, which is justified when the network is
sparse. In this model, it is assumed that the mean of the Poisson
distribution depends on the degrees of the vertex pair as well as
on the affinity matrix. Hence, for a given affinity matrix ω and
the number of clusters q, the likelihood of the degree-corrected
stochastic block model is given as

p(A,σ |ω,q) = p(A|σ ,ω,q)p(σ |q)

=
∏
i<j

(
diωσiσj

dj

)Aij
e
−diωσi σj

dj , (2)

where di is the degree of vertex i. Here and hereafter, the uni-
form prior distribution for p(σ ) was considered for simplicity.
Moreover, we neglected the existence of self-loops, which is
also justified when the network is sparse. The log likelihood
reads

log p(A,σ |ω) =
∑
i<j

[
Aij log

(
diωσiσj

dj

) − diωσiσj
dj

]
, (3)

where we neglected a constant term.
While the stochastic block model of Eq. (3) is able to

express various modular structures, hereafter, we restrict our
interest to the community structure. The affinity matrix ω is
then restricted to the form

ωσσ ′ =
{
ωin (σ = σ ′),
ωout (σ �= σ ′). (4)

In other words, only whether a vertex pair is assigned to the
same cluster or not is distinguished. This restriction to the
inference algorithm using BP was proposed in Ref. [23]. One
of the reasons why this restriction is employed is because it
can considerably reduce the computational cost, so that perfor-
mance on large networks with many clusters can be evaluated.
Another reason is because some assessment criteria compared
in this paper are specialized to the community structure, and
their generalizations to general modular structures are not
known.

The log likelihood Eq. (3) is then simplified to

log p(A,σ |ω) =
∑
i<j

δσiσj

[
Aij log

ωin

ωout
− (ωin − ωout)didj

]

+
∑
i<j

[Aij log(ωoutdidj ) − ωoutdidj ]. (5)

Note that the second sum does not depend on the cluster
assignment σ . We consider this stochastic block model for
community detection.

III. COMMUNITY DETECTION ALGORITHMS

A. Statistical inference

The goal of community detection is to determine the set of
cluster assignments σ ; it is a hidden variable, and when the
model parameter ω is learned for a given number of clusters
q fitting the network for the stochastic block model is carried
out by maximizing the marginal log likelihood or, equivalently,
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minimizing the free energy:

f (ω,q) = − log
∑

σ

p(A,σ |ω,q). (6)

Unfortunately, this optimization problem is computationally
difficult in general, and a number of approximate methods have
been proposed in the literature. The EM algorithm is employed
in this paper, which is a popular method for fitting the stochastic
block model. To obtain the minimum of the free energy, the EM
algorithm iteratively optimizes the distribution of the hidden
variable σ with a fixed model parameter ω (E step) and the
optimization of ω with a fixed distribution of σ (M step). For
the E step, we use the BP algorithm which will be explained
later in this section. Thus, we obtain the probability distribution
of the cluster assignment for each vertex, such that Eq. (6) is
expected to be minimized. Hereafter, we often omit the number
of clusters q in the argument, which is always given as an input;
we try various values of q for model assessment.

When the affinity matrix ω is fixed as a constant in the E
step, the free energy reads

f (ω,q) = const − log
∑

σ

e2LβQ(σ ), (7)

where

Q(σ ) = 1

2L

∑
i<j

δσiσj

[
Aij − α

didj

2L

]
, (8)

α = 2L

β
(ωin − ωout), β = log

ωin

ωout
(9)

are the modularity function Q(σ ), resolution parameter α [24],
and inverse temperature β, respectively. This indicates that
modularity maximization can be regarded as a special case of
the inference using the stochastic block model; the partition
with the maximum modularity coincides with the result of the
statistical inference when the entropic effect is ignored, or β →
∞. This is known as the maximum a posteriori (MAP) estimate
[25]. The connection between likelihood maximization and
modularity maximization was first discussed in Ref. [26] for
q = 2 in the context of spectral graph partitioning; the above
relation was pointed out in Ref. [23], which discusses a finite
temperature formulation of the modularity maximization. It is
known that β also plays the role of a resolution parameter [27]
that controls the typical scale of clusters.

In Refs. [23,27], α is set to unity and β is treated as an
input parameter, which corresponds to fitting a network with a
fixed affinity matrix. However, it is more natural to learn them
instead. The learning of ωin and ωout can be carried out in a
straightforward manner. They are obtained as the values that
minimize the free energy, Eq. (7). The derivatives with respect
to the model parameters [28] yield

ω̂in =
∑

(i,j )∈E

〈
δσiσj

〉
∑

i<j didj

〈
δσiσj

〉 , (10)

ω̂out =
∑

(i,j )∈E

(
1 − 〈

δσiσj

〉)
∑

i<j didj

(
1 − 〈

δσiσj

〉) , (11)

where δσσ ′ is the Kronecker delta, 〈· · · 〉 is the average with
respect to the current estimate of the posterior distribution

p(σ |A,ω), and the hat notation indicates the estimated quan-
tity. Let nσ = ∑

i 〈δσσi
〉 denote the number of nodes within

cluster σ . As mentioned in Ref. [29], if we assume that
p(σ |A,ω) is the distribution that prevents nσ from fluctuating
significantly, i.e., 〈n2

σ 〉 ≈ 〈nσ 〉2,

∑
i<j

didj

〈
δσiσj

〉 ≈ 1

2

∑
σ

〈∑
i

diδσσi

〉2

. (12)

We also assumed that the overcounting for i = j in the sum is
negligible. Then, Eqs. (10) and (11) can be approximated as

ω̂in = 2

∑
σ

∑
(i,j )∈E

〈
δσσi

δσσj

〉
∑

σ

( ∑
i di

〈
δσσj

〉)2 , (13)

ω̂out = 2
L − ∑

σ

∑
(i,j )∈E

〈
δσσi

δσσj

〉
(2L)2 − ∑

σ

( ∑
i di

〈
δσσj

〉)2 . (14)

Note that the update of model parameters only costs linear
time; therefore, it is not a bottleneck in the algorithm.

To evaluate the probability of cluster assignment for each
vertex, BP is used (see Refs. [13,20,23,30] for details). The
marginal probability ψi

σi
of vertex i’s cluster assignment σi

can be obtained by marginalizing the likelihood Eq. (2). Using
the tree approximation, which is valid for sparse networks, it
can be expressed as

ψi
σi

= 1

Zi

∏
k∈∂i

[∑
σk

ψk→i
σk

eβδσi σk

]

×
∏


/∈i∪∂i

[∑
σ


ψ
→i
σ


e−αβ
di d

2L

δσi σ


]

= 1

Zi

∏
k∈∂i

[
1 + ψk→i

σi
(eβ − 1)

]

×
∏


/∈i∪∂i

[
1 + ψ
→i

σi

(
e−αβ

di d

2L − 1

)]
, (15)

where ∂i denotes the neighboring vertices of i. In Eq. (15),
ψk→i

σi
indicates the cavity bias from vertex k to vertex i, that

is, the marginal probability of k without the marginalization
from i, and Zi is the normalization factor. Assuming that
αβdid
/2L = O(N−1), we can further approximate ψi

σi
and

ψ
i→j
σi

as

ψi
σi

≈ 1

Zi
e− αβ

2L
diθσi

∏
k∈∂i

[
1 + ψk→i

σi
(eβ − 1)

]
, (16)

ψi→j
σi

≈ 1

Zi→j
e− αβ

2L
diθσi

∏
k∈∂i\j

[
1 + ψk→i

σi
(eβ − 1)

]
, (17)

respectively, where θσ ≡ ∑

 d
ψ



σ . The cavity bias ψ

i→j
σi

is
normalized by Zi→j (see Ref. [23] for details). Using these
quantities, we can estimate the elements in Eqs. (13) and (14)
as ∑

i

di

〈
δσσi

〉 =
∑

i

diψ
i
σ = θσ , (18)
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∑
σ

〈
δσσi

δσσj

〉 =
∑

σ

1

Zij
ψi→j

σ diωindjψ
j→i
σ

= ωin
∑

σ ψ
i→j
σ ψ

j→i
σ

(ωin − ωout)
∑

σ ψ
i→j
σ ψ

j→i
σ + ωout

for (i,j ) ∈ E. (19)

It should be noted that the iteration of Eqs. (13), (14), (16),
and (17) does not minimize the free energy Eq. (6) itself,
but minimizes its approximated quantity called the Bethe free
energy. We show the specific form of the Bethe free energy in
Sec. IV A.

The critical values of β for the stochastic block model have
been discussed in Refs. [23,27]. There are three phases of
state, depending on the value of β and the strength of the
community structure: the retrieval phase, paramagnetic phase,
and spin-glass phase. In the retrieval phase, the fixed point of
BP with the minimum Bethe free energy correctly indicates the
community structure. In the paramagnetic phase, BP converges
to the so-called factorized state as the minimum of the Bethe
free energy. In the factorized state, for any vertex i, the marginal
probability distribution of the cluster assignment ψi

σ has a
uniform distribution, ψi

σ = 1/q. In other words, any vertex
has an equal probability of joining any cluster. Therefore, the
resulting partition does not exhibit any community structure.
Finally, the spin-glass phase is the phase in which BP typically
does not converge. This is also the case in which the statistically
significant community structure cannot be retrieved. In the
case of the standard stochastic block model with equal size
clusters, for a given number of clusters q∗, the critical value of
β between the paramagnetic phase and the spin-glass phase
obtained by the stability of the factorized state against a random
perturbation is

β∗ = log

(
q∗

√
c − 1

+ 1

)
, (20)

where c is the average degree. The lower bound estimate of
β that prevents BP from going into the paramagnetic phase is
given by

β0 = log

(
q∗

c − 1
+ 1

)
. (21)

In practice, it cannot be uniquely determined whether BP
belongs to the retrieval phase, paramagnetic phase, or spin-
glass phase, because real-world networks do not precisely
emulate the stochastic block model. However, they work as
the reference values of β to obtain an intuition regarding which
phase BP belongs to. In Ref. [23], it is suggested that β = β∗
should be used as an input, because BP is expected to belong
to the retrieval phase with this value.

The effect due to the absence of model-parameter learning
can be interpreted as follows. Given that the model only distin-
guishes whether a pair of vertices is in the same cluster or not,
the specific values of ωin and ωout may not be so crucial for the
resulting cluster assignment. Conversely, when other statistical
quantities such as likelihood or cross-validation errors are
considered, erroneous model-parameter estimates may cause
a large bias. As we observe in Sec. V, the results of the criteria
that depend only on cluster assignments (e.g., modularity and
minimum description length of the map equation) are not very

sensitive to model-parameter learning, while the criteria that
utilize the model parameters (e.g., the Bethe free energy and
cross-validation errors) are ill behaved without learning.

B. Greedy algorithms

In the previous section, the free energy minimization based
on the stochastic block model has been considered. In the limit
of β → ∞, it reduces to the maximization of the modularity
function Q(σ ) in Eq. (8), or the energy minimization. In
this case, the probability distribution with respect to σ is no
longer considered, and our goal here is to find the best cluster
assignment for each vertex.

While a number of algorithms have been proposed in the
literature, perhaps greedy algorithms, such as the Louvain
method [5], are the most widely used in practice. Another
greedy algorithm for community detection that we analyze is
the Infomap [6], which optimizes the map equation [6] (see
Sec. IV C for the details of the map equation). In such algo-
rithms, we assign a unique cluster label for each vertex at the
beginning, i.e.,q = N , and merge and update their assignments
as referring to the neighboring vertices to achieve a higher or
lower value of the objective function, e.g., Q(σ ). Note that
the number of clusters is also determined automatically during
the optimization process. Although these greedy algorithms
are extremely fast, as we will observe in Sec. V A, they tend
to largely overfit when the algorithm is trapped in a local
extremum of the energy landscape. The situation is very severe
particularly when the landscape is glassy [31].

C. Spectral methods

Other commonly used algorithms are spectral methods. In
this section, the focus is on the case of q = 2 (bisection). Let
us consider the case of modularity maximization. While max-
imizing Q(σ ) is originally a discrete optimization problem,
the assignments σ are relaxed to a real vector x ∈ RN with a
spherical normalization constraint, i.e.,

max
x

Q(x)
∑

i

x2
i = N. (22)

Here, Q(x) = x�Qx and Q is a matrix the element of which
is given as

Qij = Aij − α
didj

2L
. (23)

This matrix is known as the modularity matrix [8,19]. If
Eq. (22) is rewritten using the Lagrange multiplier, an eigen-
value problem is obtained with respect to Q and the leading
eigenvector is expected to be correlated to the optimum
assignments. Although Q is a dense matrix, because it is due
to the rank 1 matrix of the second term in Eq. (23), its leading
eigenvalues and eigenvectors can be computed efficiently using
the power iteration [32].

A more classical version of a spectral method is the one
based on the minimization of an objective function called the
normalized cut [33]. The normalized cut fNcut is defined as,
for σi ∈ {1,2},

fNcut(σ ) ∝
∑

i,j Aij δσi ,1δσj ,2( ∑
i(σi=1) di

)( ∑
j (σj =2) dj

) . (24)
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FIG. 1. Relationships with the modularity function, normalized
cut, and the corresponding spectral methods in the case of bisection.

Analogous to the case of modularity, the continuous relaxation
with the spherical normalization constraint yields the eigen-
value problem with respect to the normalized Laplacian L,
which is defined as

L = I − D−1/2AD−1/2, (25)

where I is the identity matrix and Dk ≡ diag{dk
1 , . . . ,dk

N } (see
Ref. [7] for details).

The optimizations of the normalized cut and modularity
look different. However, it is known that minimizing the nor-
malized cut fNcut(σ ) is equivalent to maximizing modularity
Q(σ ) with a special choice of the resolution parameter α

[34] at the level of discrete optimization. Moreover, when
the problem is relaxed to a continuous optimization, it is
also possible to formulate the modularity maximization as the
eigenvalue problem of the normalized Laplacian [26]; it can be
done by imposing a degree-dependent normalization constraint
instead of the spherical normalization constraint and setting
the resolution parameter α to unity. These relationships are
summarized in Fig. 1.

In general, the leading q eigenvectors are expected to be
correlated to the optimum q-way partition. Thus, to determine
the assignment of each vertex, those eigenvectors have to be
rounded, e.g., using the K-means method. However, the focus
of this paper is only on the eigenvalues, because they are
sufficient to estimate the number of clusters.

While the above two spectral methods are based on energy
minimization, a spectral method related to the Bethe free
energy minimization was proposed in Ref. [9]. The matrix
that appears in this method is called the nonbacktracking
matrix B, and is derived from the linear stability analysis of
the BP algorithm that minimizes the Bethe free energy. The
nonbacktracking matrix B is not a symmetric matrix, and its
specific form is given as

B =
(

0 D − I

−I A

)
. (26)

A symmetric variant of the nonbacktracking matrix is also
proposed in Ref. [10].

In Sec. IV D, we will discuss the properties of the spectra
of the above matrices and their use as the assessment criteria
of the number of clusters.

IV. ASSESSMENT CRITERIA OF THE
NUMBER OF CLUSTERS

In this section, we explain the assessment criteria of the
number of clusters q∗. To determine it using an algorithm in
which q is given as an input, we assess the quality of the
clustering based on a criterion, as we sweep the value of q.
It should be noted that, although the input value of the number
of clusters, namely, the maximum number of clusters that the
vertices can be assigned to, is q, the resulting partition might
have less than q clusters.

A. Bethe free energy

In the present framework of statistical inference, the most
natural assessment is to measure the free energy and observe
its saturation as an increment of the number of clusters q.
When the network is generated by a block model with q∗
clusters, the marginal likelihood will not be increased for
q > q∗. Therefore, we expect that a parsimonious number of
clusters can be selected from the saturation of the free energy.

As mentioned above, the algorithm using BP does not
minimize the free energy itself. Instead, it minimizes the Bethe
free energy as an approximated quantity, and it can be written in
terms of the cavity bias ψ

i→j
σ and affinity matrix ω as follows:

fBethe =− 1

βN

⎛
⎝∑

i

log Zi −
∑

(i,j )∈E

log Zij −
∑

(i,j )/∈E

log Z̃ij

⎞
⎠,

(27)

where

Zi =
∑

σ

e−dihσi

∏
k∈∂i

[∑
σk

ψk→i
σk

dkωσkσi
di

]
, (28)

Zij =
∑
σσ ′

ψi→j
σ diωσσ ′djψ

j→i

σ ′ for (i,j ) ∈ E, (29)

Z̃ij =
∑
σσ ′

ψi→j
σ (1 − diωσσ ′dj )ψj→i

σ ′ for (i,j ) /∈ E, (30)

hσ =
∑

k

dk

∑
σk

ψk
σk

ωσkσ . (31)

Some simple algebra shows that the Bethe free energy here
fBethe is related to the Bethe free energy in Ref. [23] (which
we refer to as f mod

Bethe) as

fBethe = f mod
Bethe + C(ωout), (32)

C(ωout) = − c

2β

(
2Lωout + log ωout + 1

L

∑
i

di log di

)
.

(33)

B. Modularity

While modularity appeared as an objective function with a
fixed q in Sec. III A, it was originally defined as an assessment
criterion of the number of clusters [35]. In modularity, the
strength of a community structure is measured by comparing
the actual network and a randomized network in each cluster.
Although the performance of modularity is not considered state
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of the art, it has been extensively studied and used as a baseline
in many benchmark tests.

Precisely speaking, while the sum is taken over every
vertex pair (i,j ) (i < j ) in Eq. (8), the sum is taken over all
possible combinations of vertices (including the case i = j )
in the original definition, although this does not cause a
qualitative difference unless the self-loops are significant. The
modularity function of Eq. (8) with the partition obtained by
free energy minimization is sometimes distinguished as the
retrieval modularity. However, it is referred to as modularity
in this paper for simplicity. The partition is selected with a
maximum modularity, or the parsimonious one among the
partitions with a high modularity.

From the viewpoint of statistical inference, the modularity
maximization corresponds to a maximum likelihood estimate;
i.e., there is no penalty term. In principle, it can still assess
the number of clusters because the degrees of freedom of the
affinity matrix ω are restricted as in Eq. (4), and thus the model
with a larger q does not contain the model with a smaller q as
a subset. In addition, if we tune the resolution parameter α, the
likelihood varies, and the optimum value q∗ changes.

C. The map equation

Another popular criterion is the map equation [6,21], in
which the strength of the community structure is measured in
terms of the minimum description length of a random walker.
The map equation encodes the moves of a random walker
on a given network using multiple codebooks. Specifically,
it considers a codebook that encodes moves between clusters,
as well as codebooks that encode moves within each cluster.
Given that the codewords of different codebooks can be
overlapped, a proper assignment of clusters will compress the
description length of a random walker. Moreover, by using
the codebooks of superclusters, i.e., the clusters of clusters, its
hierarchical extension can be performed naturally. The map
equation also has an interesting feature in that it allows for
the consideration of flow information, e.g., the directedness of
edges, although we do not address this point in this paper (see
Refs. [6,21] for more details).

The excellent performance of the map equation and its
greedy implementation (Infomap) has been shown in numerous
articles. As with modularity, one can use the minimum descrip-
tion length of the map equation for model assessment only
and perform community detection based on another objective
function. It should be noted that the characterization of a cluster
in the map equation is not equivalent to that of the stochastic
block model. However, when densely connected components
exist in a network, the minimum description length of a random
walker is further compressed by clustering them; thus, it is
expected that an optimal partition in the sense of modularity is
also a good partition in the sense of the map equation.

It is also debatable whether we should consider the hier-
archical nature of the map equation [21]. The map equation
is naturally formulated as a hierarchical clustering, and the
fundamental two-level method can be regarded as a truncation
of the general multilevel method. Nevertheless, we measure
the minimum description length of the two-level method and
compare it with other model assessment criteria, because it
is not always possible to measure the minimum description

FIG. 2. A part of the histogram of the eigenvalues of the modular-
ity matrix for the standard stochastic block model. The network has
N = 2000 with two equally sized planted clusters and an average
degree equal to 6. The dashed line indicates the estimate of the
boundary of the spectral band calculated by the result in Ref. [34].

length in the sense of the multilevel map equation. Whereas the
multilevel map equation assumes a hierarchical structure, for
example, in the case of partitions using the inference algorithm
considered in this paper, each partition with different values
of q is independent and is not constrained to constitute a
hierarchical structure.

D. Spectral band

The spectra of matrices Q, L, and B, in Sec. III C can be
used to estimate the number of clusters. In the case of a uniform
random graph, in the infinite graph size limit, the spectrum
of a corresponding matrix exhibits a nonzero spectral density
within a finite range. In other words, the spectral band can
be observed, as exemplified in Fig. 2; it is often referred to
as the semicircle law [36] in the case of a symmetric matrix.
The spectral band stems purely from the random nature of a
network, and if a characteristic structure in a network exists
the eigenvalues outside of the spectral band, i.e., isolated
eigenvalues, will be observed. As we mentioned in Sec. III C,
because the leading eigenvectors are expected to be correlated
to the optimum partition, the number of statistically significant
clusters can be estimated by counting the isolated eigenvalues.

While it is sometimes possible to evaluate the boundary of
the spectral band by visual inspection, it is not trivial and it is
preferable to have its estimate. The estimate of the boundary of
the spectral band of the modularity matrix Q was first derived
in Ref. [37]; the estimate was then generalized for random
networks with arbitrary expected degrees [38] and arbitrary
degree sequences [39]. These results, however, assume that the
average degree is sufficiently large. A result that is applicable
to sparse networks is derived in Ref. [34]; although it is still a
mean-field result, it yields the estimate for a random network
with an arbitrary degree sequence and it is exact when the
network is regular.

Although the boundary estimate of the spectral band of
the normalized Laplacian L is also possible using the mean-
field approximation [40], it is known that L seriously suffers
from the emergence of localized eigenvectors; those localized
eigenvectors consist of a few elements with very large values
and most of the elements are close to zero. These localized
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eigenvectors are not correlated to the optimum partition and
can deteriorate the estimate of the number of clusters. For this
reason, we do not pursue the assessment using the spectrum of
L in this paper.

On the other hand, the nonbacktracking matrix B tends to
avoid the emergence of the localized eigenvectors, and its
spectral band has a clear boundary at

√
ρ(B) [41], where

ρ(B) is the spectral radius of B. As seen in Sec. V B, the
assessment using the nonbacktracking matrix performs well in
many cases. Note that, however, the nonbacktracking matrix is
not completely free from the localized eigenvectors [42,43].

E. Prediction errors

Finally, we explain the cross-validation estimates of pre-
diction errors, which are also useful to estimate the number of
clusters (see Ref. [15] for the detailed derivations). Although
evaluating cross-validation errors is computationally demand-
ing in general, the leave-one-out cross-validation (LOOCV)
is an exceptional case and the corresponding errors can be
obtained efficiently using the result of BP [15].

We consider four types of cross-validation errors: the Bayes
prediction error, Gibbs prediction error, MAP estimate of the
Gibbs prediction error, and Gibbs training error. We refer to
A\(i,j ) as the adjacency matrix without the knowledge of Aij .
Given A\(i,j ), the cluster assignment probability of i and j is

p(σi,σj |A\(i,j )) = ψi→j
σ ψ

j→i

σ ′ . (34)

Then, the prediction probability p̂(Aij = 1|A\(i,j )) that i and
j are connected is

p̂(Aij = 1|A\(i,j ))

=
∑
σi ,σj

p̂(Aij = 1|σi,σj )p(σi,σj |A\(i,j ))

=
∑
σσ ′

ψi→j
σ diωσσ ′djψ

j→i

σ ′ = Zij . (35)

Note that the two-point partition function Zij is the normal-
ization factor in Eq. (19) and is not equivalent to the two-point
partition function defined in Ref. [23], which does not have a

probabilistic interpretation. The cross-entropy error function
with respect to p̂(Aij |A\(i,j )), which is referred to as the Bayes
prediction error of LOOCV, EBayes, is

EBayes(q) = − 1

L

∑
i<j

{Aij log p̂(Aij = 1|A\(i,j ))

+ (1 − Aij ) log[1 − p̂(Aij = 1|A\(i,j ))]}. (36)

Using the fact that ωσσ ′ = O(N−1), it can be approximated as

EBayes(q) � 1 − 1

L

∑
(i,j )∈E

log Zij , (37)

where we neglected the O(N−1) term. The Bayes prediction
error EBayes should be the appropriate choice for assessing
models in terms of the predictability of edges when the network
is generated by the stochastic block model. However, this is
often not the case. Hence, the Gibbs prediction error EGibbs is
considered, which is a rough estimate of the prediction error
compared to EBayes. While the probability with respect to σi

and σj is marginalized when the cross-entropy error function
is measured in EBayes, a specific choice is made regarding σi

and σj first, and the average is taken later in EGibbs. Thus, we
have

EGibbs(q) � 1 − 1

L

∑
(i,j )∈E

∑
σi ,σj

p(σi,σj |A\(i,j ))

× log[p̂(Aij = 1|σi,σj )]

= 1 − 1

L

∑
(i,j )∈E

∑
σi ,σj

ψi→j
σi

ψj→i
σj

log
(
diωσiσj

dj

)

= −β

L

∑
(i,j )∈E

∑
σ

ψi→j
σ ψj→i

σ − log ωout + const,

(38)

where we again neglected the O(N−1) term. By replacing
ψ

i→j
σ with the delta function that has a peak at argmaxσψ

i→j
σ ,

the MAP estimate of the Gibbs prediction error is obtained,
which is referred to as EMAP.

The Gibbs training error Etraining can be derived in the same
manner. In Etraining, we include the information of Aij for the
probability with respect to σi and σj . Thus, we have

Etraining(q) � 1 − 1

L

∑
(i,j )∈E

∑
σi ,σj

p(σi,σj |A) log[p̂(Aij = 1|σi,σj )] = 1 − 1

L

∑
(i,j )∈E

∑
σi ,σj

ψ
i→j
σi

diωσiσj
djψ

j→i
σj

Zij
log

(
diωσiσj

dj

)

= const − 1

L

∑
(i,j )∈E

ωout log ωout + β[ωout + (α/2L) log ωout]
∑

σ ψ
i→j
σ ψ

j→i
σ

ωout + (αβ/2L)
∑

σ ψ
i→j
σ ψ

j→i
σ

. (39)

Again, the O(N−1) term was neglected.
Note that the complexity of computing the Bethe free energy and the cross-validation errors is considerably reduced by

restricting the parameter space of the stochastic block model. While the stochastic block model required a computation of
O(q2L) in the general case, it is O(L) with the restriction: Eq. (4).
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V. COMPARATIVE ANALYSIS

In this section, a comparative analysis of the assessment
of the number of clusters was conducted using synthetic and
real-world networks. For the synthetic networks, the planted
number of clusters is denoted as qplanted.

A. Assessment using the greedy algorithms

The performance of the greedy algorithms was first ex-
amined on the basis of the standard stochastic block model.
Figures 3(a) and 3(b) show the number of clusters detected
using the Louvain method and the two-level Infomap, re-
spectively. The horizontal axes represent the strength of the
community structure ωout/ωin ≡ ε. The Louvain method is
a hierarchical clustering algorithm that aims to optimize
modularity, while the (two-level) Infomap is a nonhierarchical
clustering algorithm that aims to optimize the map equation.
For the implementation, we used Ref. [44] for the Louvain
method and Ref. [45] for the Infomap.

All instances considered in this section have qplanted = 2.
Given that the stochastic block model is exactly the model
assumed in the inference algorithm, the assessment by the
Bethe free energy and some of the prediction errors are known
to be very accurate [15,46,47], even when the planted modular
structure is very weak.

When the average degree is sufficiently high and the
community structure is strong (i.e., ε ∼ 0), both algorithms
correctly detect two clusters. However, when the networks
are sparse and the community structure is weak (i.e., ε � 0),
those algorithms tend to largely overfit. Moreover, as shown in
Figs. 3(c) and 3(d), the detected number of clusters increases
as the network becomes larger. A nonhierarchical clustering
algorithm for modularity [48,49] and the multilevel Infomap
[21] were also tested. Although the tendency that the hierar-
chical clusterings slightly prevent overfitting was confirmed,
significant differences were not observed.

It should be noted that detecting too many clusters does
not readily imply the failure of the algorithm. For example,
when the result consists of a few large clusters and many very
small clusters, significant clusters can be extracted via a visual
inspection. This is actually the case for instances with strong
community structures. Otherwise, the sizes of clusters can be
broadly distributed, and such a visual inspection may fail. Such
situations are exemplified in Fig. 4 for the Infomap.

As a reference to the comparative analysis of the latter sec-
tions, we list the results of the greedy algorithms on synthetic
and real-world networks in Fig. 5. The descriptions of the
networks can be found in Sec. V B and the references therein.

B. Assessment using the inference algorithm

In this section, the performance of various assessment
criteria based on the statistical inference algorithm that were
explained in Sec. III A is analyzed. First, the performance on
synthetic networks, called the LFR network [50], is analyzed.
The LFR network is a random graph model that has a power-
law degree distribution and, as a planted structure, a power-law
cluster size distribution. The parameters of the LFR networks
considered are listed in Table I. Although the LFR network
is often analyzed as a random graph that emulates typical
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FIG. 3. Numbers of clusters q∗ detected by the (a) Louvain
method and (b) Infomap for instances of the standard stochastic block
model. Each network has two equally sized clusters as a planted
structure, and the networks are generated for various values of ε =
ωout/ωin, i.e., the strength of community structure. The algorithms
were executed 30 times for each network; the resulting number of
clusters fluctuates depending on the initial cluster assignments, and
the shaded regions show the standard deviations from the mean value.
In each case, the stochastic block models of N = 2 000 with the
average degrees c = 6, 12, and 24 are evaluated. The bottom figures
show the N dependence on the estimated number of clusters q∗ for the
(c) Louvain method and (d) Infomap; the planted structure is of two
equally sized clusters with c = 6 and ε = 0.5, and the experimental
procedure is the same as in Figs. 3(a) and 3(b). The error bars indicate
the standard deviations.

real-world networks, in this paper it is not argued whether
the parameter set investigated is “realistic” or not. In fact, it is
not obvious whether the LFR network really emulates typical
real-world networks, because, as can be seen from Fig. 4, a
broad cluster size distribution can be obtained fictitiously.

Figure 6 shows the result for an instance with a strong
community structure (small mixing parameter μ, in terms of
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FIG. 4. Histograms of the cluster size distributions detected by
the Infomap for the same stochastic block models as in Fig. 3 with (a)
c = 12 and ε = 0.1 and (b) c = 12 and ε = 0.5. The algorithm is run
100 times on the same network and the results show their cumulative
frequencies. When the community structure is strong (ε = 0.1), one
of the planted clusters seems to be detected. Conversely, only small
clusters that are broadly distributed are detected when ε = 0.5. Note
that the specific form of the cluster size distribution possibly depends
on the details of the algorithm.

the LFR network). Although the network has vertices with very
large degrees, the cluster sizes are set to be almost equal. For
this network, all the criteria support values close to qplanted,
although the criterion based on the nonbacktracking matrix
slightly overfits.

While the values of the model parameters are learned in
Fig. 6, we show the result for the same network without the
model-parameter learning in Fig. 7. As we can see from Figs. 6
and 7, modularity and the map equation behave similarly in
both cases. As we mentioned at the end of Sec. III A, this
may be due to the fact that the cluster assignment is not very
sensitive to specific values of model parameters, at least when
the network has a strong community structure. Conversely,
the performance of the Bethe free energy and cross-validation
errors change qualitatively, indicating that the learning step
cannot be skipped. Note that skipping the learning step does
not necessarily mean that it is computationally more efficient.

With an incorrect choice of the affinity matrix ω, it will be more
difficult to fit the network. It turns out that BP requires more
sweeps until convergence. Therefore, it is more beneficial to
optimize the model parameters. The rest of the results in this
paper are generated according to the algorithm with model-
parameter learning.

The LFR networks with weak community structures are
shown in Fig. 8. Figures 8(a)–8(c) represent the results for net-
works with narrowly peaked planted cluster size distributions.
Conversely, Figs. 8(d)–8(f) represent the result for networks
with broad planted cluster size distributions. Although it
is difficult to thoroughly examine the effect of cluster size
distribution, we can at least confirm that the performance of the
present algorithm and assessment criteria are not very sensitive
to the cluster size distribution.

In the case of sparse networks such that the average degree
is of O(1), if the planted community structure is too weak,
it becomes fundamentally impossible to retrieve the planted
structure. In other words, the network becomes statistically
impossible to distinguish from a uniform random graph. The
critical strength of the community structure is called the
detectability threshold, or the detectability limit [13,51,52].
In terms of the spectral method, it is the case that the leading
eigenvalues are buried in the spectral band. In terms of other
assessment criteria, the slope of a validation curve becomes
flat, or the value at q = 1 becomes the minimum. In the case
of the stochastic block model with equally sized clusters, this
threshold is given by the value of ε that corresponds to β∗ in
Eq. (20), and the paramagnetic phase will be observed beyond
the detectability threshold.

For the network in Fig. 8(a), all the criteria we consider
behave reasonably, supporting the values close to qplanted. For
the network in Fig. 8(b), other than the Gibbs prediction error
and its MAP estimate, the assessment criteria still support the
values near qplanted. Indeed, in the case of the stochastic block
model, it is known that the Gibbs prediction error tends to
underfit near the detectability threshold [15]. Although the
value of the (information-theoretic) detectability threshold for
the LFR network is not known, the network in Fig. 8(c) may
be beyond the detectability threshold. The Gibbs prediction
error and Bayes prediction error are minimized or saturated
already at q = 1 (not shown in the figure). The Bethe free
energy exhibits a monotonic behavior, while the values of other
criteria behave violently; this implies that the landscapes of the
objective functions are glassy.

More importantly, while we observed in Figs. 3 and 5 that
the estimates by modularity and the map equation largely
overfit when the greedy algorithm is used, the results in
Fig. 8 indicate that those criteria behave reasonably when
statistical inference is used. Therefore, the shortcomings that
we observed in Fig. 3 were not the flaw of the criteria
themselves, but of the greedy algorithms and the MAP estimate
(i.e., β → ∞) framework. In fact, when the assumed model is
correct, it is known that the MAP estimate overfits compared
to the estimate with the optimum inverse temperature β

[23,51,53]. The contribution of this paper is that it confirms
that the overfitting occurs with the greedy algorithms near the
detectability threshold.

While the results in Figs. 8(d) and 8(f) are similar to those in
Figs. 8(a)–8(c), the result in Fig. 8(e) is qualitatively different.
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FIG. 5. Box plots of the estimates of the number of clusters q∗ using the Louvain method (top) and the two-level Infomap (bottom) on the
synthetic and real-world networks that are analyzed in Secs. V B and V C. The algorithms were executed 30 times for each network. Each box
represents the range from the upper quantile to the lower quantile, the line in the box represents the median, whiskers from the box represent
the upper and lower extremes, and circles represent the outliers, which are significantly far from the upper and lower quantiles.

As the input values of q are increased, at some point, BP
converged to the factorized state [54]; as a result, the estimated
value of β jumps, and some prediction errors become constant.
Convergence to the factorized state is a desirable feature of
BP; it implies that BP has reached the detectability threshold
and that there is no significant structure. Note, however, that
it is often difficult to determine whether BP is actually in
the paramagnetic phase or the retrieval phase. Given that the
factorized state always exists as a fixed point of BP in the

TABLE I. Parameters of the LFR networks. All networks have
N � 104. The average degree c, maximum degree dmax, size of the
smallest cluster Nσ

min, and size of the largest cluster Nσ
min are the

realized values, while the mixing parameter μ, minus the exponent
of the degree distribution τ1, and minus the exponent of the planted
cluster size distribution τ2 are the input values. The planted cluster
size distribution is controlled by Nσ

min and Nσ
max, while τ2 is fixed.

A comparative analysis for different values of τ2 would be difficult
because a required graph size N becomes extremely large for a slight
change of τ2. The planted number of clusters qplanted and the estimates
using the modularity matrix q∗

mod and the nonbacktracking matrix q∗
NBT

are indicated in the last three columns.

Figure c dmax μ τ1 τ2 Nσ
min Nσ

max qplanted q∗
mod q∗

NBT

6 and 7 9.9 960 0.1 2 1 991 1064 11 8 15
8(a) 6.5 100 0.3 2 1 633 946 13 12 12
8(b) 6.5 100 0.5 2 1 633 946 13 8 13
8(c) 6.5 100 0.8 2 1 633 946 13 1 1
8(d) 6.5 100 0.3 2 1 110 796 27 21 27
8(e) 6.5 100 0.5 2 1 110 796 27 12 25
8(f) 6.6 98 0.8 2 1 119 965 23 1 1
9 7.4 991 0.3 1.8 1 122 887 26 2 27

retrieval phase, it is possible that BP is trapped in a local
minimum of the Bethe free energy, while the correct initial
state would converge to the global minimum.

As the final example using the LFR network, consider the
case in which the assessment seems to fail because of the
EM algorithm. Consider a network that has a broad degree
distribution as in Figs. 6 and 7, in addition to a weak community
structure and a broad planted cluster size distribution. As
shown in Fig. 9, while the spectrum of the nonbacktracking
matrix exhibits the estimate of q∗ near qplanted, such estimates
cannot be obtained via the other criteria, because BP converges
to the factorized state at q = 12, although the values of the
criteria significantly vary when they reach this value. In this
case, we can hardly conclude that there are no statistically
significant structures beyond q = 12, and it is more natural
to conclude that the BP converged to a local minimum of the
Bethe free energy. Note that, even if we accept the estimate
of q∗ = 27, we cannot obtain a result with 27 clusters; recall
that the input value of q is the maximum number of clusters
allowed, and the actual number of clusters that can be obtained
is much less than 27. Readers might wonder what factor
dominates the performance of the EM algorithm in the LFR
network. Although the degree distribution seems to be an
important factor, because there are many model parameters
in the LFR network, it is difficult to precisely determine
parameter dependencies experimentally. Note that a thorough
investigation of the phase space of a particular model is not the
goal of this paper. Instead, we investigate generic behaviors in
community detection.

Let us next examine the performance of the assessment
criteria on real-world networks. The basic information about
each dataset is listed in Table II and the results of the
assessment by each criterion are shown in Figs. 10(a)–10(d),
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FIG. 6. Assessment of various criteria with respect to given inputs
of q for a LFR network. The top panel indicates the model parameters
α (blue cross) and β (red plus), where the shaded region indicates the
region of β between Eqs. (20) and (21). The middle panel indicates
the Bayes prediction errors EBayes (red circles), Gibbs prediction
errors EGibbs (green triangles), Gibbs training errors Etraining (blue
diamonds), and MAP estimates EMAP of EGibbs (yellow squares).
The bottom panel indicates the modularity (yellow pentagon), map
equation (blue hexagon), and Bethe free energy (gray octagon). In
each panel, the number of clusters selected by the spectral method of
the nonbacktracking matrix is indicated by a vertical dashed line. The
planted number of clusters qplanted is indicated with a filled triangle at
the top of the figure.

11(e)–11(h), 12(i)–12(l), and 13(m)–13(p). For some net-
works, the inference algorithm does converge to the factorized
state at some point as the input value of q is increased; as far as
we investigated, in many cases, the convergence to this trivial
BP fixed point either supports a plausible value of q∗ or does
not affect the assessment.

It is known that the Bethe free energy tends to largely overfit
for real-world networks [13,15] when an affinity matrix of full
degrees of freedom is used. However, with a restricted affinity
matrix, the assessment by the Bethe free energy does not seem
to be very wrong.

Unlike the cases of synthetic networks, the behaviors of the
assessment criteria are often very different from each other. For
example, modularity tends to support a relatively small value

FIG. 7. Result of the same LFR network as Fig. 6. Here, statistical
inference is performed without the model-parameter learning; the
model parameters are fixed to α = 1 and β = β∗.

for q∗, while the map equation tends to support a relatively
large value. Assessment by the Bethe free energy and predic-
tion errors can be close to either of them, and we cannot deter-
mine a similarity tendency. Note again that the inference algo-
rithm does not optimize the minimum description length of the
map equation; the partition is obtained such that the marginal
likelihood is maximized and the minimum description length is
measured only as a criterion for the assessment of the number of
clusters. Another way to utilize the assessment by the minimum
description length is to check whether the resolution limit
[73,74] affects the result. The estimates for the number of
clusters q∗ by modularity and by the map equation can differ
considerably when many small clusters exist, because their
resolution limits are very different [74]. When both modularity
and the map equation support the same number of clusters q∗,
it implies that the network is resolution limit-free [75].

C. Assessment using the spectral methods

Finally, we examine the performance of the assessment of
the number of clusters using the spectral methods that we
explained in Secs. III C and IV D. The results of the estimates
using the modularity matrix q∗

mod and nonbacktracking matrix
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FIG. 8. Assessment of various criteria with respect to given inputs of q for several LFR networks. They are plotted in the same manner as
in Figs. 6 and 7.

q∗
NBT are listed in Tables I and II. The estimates using the

nonbacktracking matrix are also shown in Figs. 6–13 as dashed
lines.

Note that, because the leading eigenvalues can be quickly
computed for sparse networks, the assessment using the
spectral method can be conducted most easily. Overall, the
assessment using the modularity matrix tends to underfit,
while the assessment using the nonbacktracking matrix tends
to overfit, compared to the other criteria. Furthermore, for

real-world networks, it is often the case that the spectral band of
the modularity matrix cannot be clearly observed. Therefore,
in many cases, it is also difficult to visually assess the number
of clusters from the spectral density.

The assessment using the nonbacktracking matrix is often
very accurate in the sense that it coincides with the planted
value qplanted of an LFR network. The analysis with various
values of μ was also analyzed in Ref. [76]. It is difficult to
analyze what exactly causes overfitting in the cases of the real-
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FIG. 9. Assessment of various criteria with respect to given inputs
of q for a LFR network. They are plotted in the same manner as in
Figs. 6–8.

world networks; one of the possibilities is that the community
structure may not be the only structure that contributes to the
eigenvalues outside of the spectral band, and those unknown
structures cause overfitting when we focus on community
detection.

VI. ASSESSMENT THROUGH VISUALIZATION

As we have observed, the validation curves of the criteria
are often gradually saturated, particularly when the community
structure is weak. In such a case, a criterion supports a range
of values for q∗, instead of a single plausible value. Therefore,
a finer inspection is required as a final step, if one wishes to
determine the most plausible value of q∗.

Visualizing how a network is partitioned for each input
value of q can be helpful for the assessment of the number
of clusters. The alluvial diagram [22] is a suitable tool for
this purpose. It was originally introduced as a diagram to
indicate the time evolution of a community structure. Here,
we visualize the change in the partition for different values
of q, rather than the change in the partition over time. In
the alluvial diagram, the results of community detection are
aligned horizontally. For each partition, the set of vertices in the

TABLE II. Estimated number of clusters of real-world networks
using the spectra of the modularity matrix q∗

mod and nonbacktracking
matrix q∗

NBT. Multiedges, self-loops, and the direction and weights of
edges are neglected in all networks.

Dataset N = |V | L = |E| q∗
mod q∗

NBT

Karate club [55] 34 78 1 2
Dolphins [56] 62 159 2 2
Les Miserables [57] 77 254 2 4
Football [58] 115 613 10 10
Political books [19] 105 441 2 3
Network science [8] 379 914 4 21
C. elegans [59] 453 2 025 1 5
Political blogs [60] 1 222 16 714 3 8
Protein [61–63] 2 738 6 007 1 14
Power grid [64] 4 941 6 594 10 25
Facebook ego [65] 4 039 88 234 15 55
Chess [63,66,67] 7 115 55 779 22 45
U.S. airports [68] 7 976 15 677 7 17
ca-HepTh [69] 8 638 24 806 33 82
Enron [70,71] 33 696 180 811 9 93
Epinions [72] 75 888 405 739 6 202

same cluster is expressed as a vertical bundle. Then, the same
vertices in different partitions are smoothly connected. The
alluvial diagram can be generated at Ref. [77] using .smap files.

The alluvial diagram also uses color tone to express the
significance of the cluster assignment; the vertices with in-
significant assignments are expressed by faint colors. We assess
that the cluster assignment of vertex i is not significant if
max ψi

σ is less than a threshold. Here, we regard max ψi
σ > 0.9

as a significant assignment.
The alluvial diagrams of four real-world networks are

shown in Fig. 14. As we can see from the political books and
political blogs networks, the actual partition may be kept the
same as we increase the input value of q. We can confirm that
the partition with q = 3 stably exists in the political books
network and the partition with q = 4 is also consistent with
the partitions with fewer clusters; i.e., it is a refinement of
the partition with q = 3, and the highlighted clusters in the
middle belong to different clusters in the partition with q = 2.
For the political blogs network, although modularity and the
map equation support q = 3 or 4, in the end, we can confirm
that the dominant structure does not change from the partition
with q = 2.

In the case of the protein network, for any choice of q, only
a fraction of vertices belong to a specific cluster significantly.
In other words, the network does not have a global community
structure. Whereas the vertices with insignificant assignments
exhibit a randomlike behavior, the vertices with significant as-
signments roughly exhibit a hierarchical structure. According
to the Gibbs prediction error EGibbs and its MAP estimate EMAP

in Fig. 12(i), the partitions with q = 3 or 4 are supported.
Although we cannot clearly see a qualitative difference in
the alluvial diagram, if we look carefully, from the partition
with q � 5, we can observe that a small fraction of vertices
with significant assignments start to exhibit a nonhierarchical
structure.

022315-13



TATSURO KAWAMOTO AND YOSHIYUKI KABASHIMA PHYSICAL REVIEW E 97, 022315 (2018)

FIG. 10. Assessment of various criteria with respect to given inputs of q for several real-world networks. They are plotted in the same
manner as in Figs. 6–9. The shaded parts in the cross-validation error plot indicate the standard errors.
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FIG. 11. Assessment of various criteria with respect to given inputs of q for several real-world networks. They are plotted in the same
manner as in Figs. 6–9. The shaded parts in the cross-validation error plot indicate the standard errors.
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FIG. 12. Assessment of various criteria with respect to given inputs of q for several real-world networks. They are plotted in the same
manner as in Figs. 6–9. The shaded parts in the cross-validation error plot indicate the standard errors.
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FIG. 13. Assessment of various criteria with respect to given inputs of q for several real-world networks. They are plotted in the same
manner as in Figs. 6–9. The shaded parts in the cross-validation error plot indicate the standard errors.
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Number of clusters q*

Number of clusters q*

FIG. 14. Alluvial diagrams of the political books, political blogs,
protein, and U.S. airport networks. Some clusters are highlighted.

The way the U.S. airports network is partitioned is also
different from other networks. When we focus on the vertices
with significant assignments, the resulting partitions do not
constitute a hierarchical structure for small values of q, while
they roughly do for large values of q. As various assessment
criteria support the range of 5 � q∗ � 8, it seems to be
plausible to select q∗ in this range.

VII. SUMMARY AND DISCUSSION

We conducted a comparative analysis on the assessment
of the number of clusters in community detection. Although
we examined the performance of various algorithms and
assessment criteria, an exhaustive analysis requires all possible
combinations of the frameworks, algorithms, and assessment
criteria. For example, an important missing part is the Monte
Carlo method [16–18]. The Monte Carlo method usually
incorporates the prior probability distribution with respect to
the affinity matrix ω; it plays the role of a penalty in the
assessment of the number of clusters. Therefore, a comparative
analysis including the Monte Carlo method would not only be
a comparison of different algorithms but also a comparison of
different frameworks. In a broader sense, we should note that
community detection also possesses some other fundamental
issues as discussed in Ref. [78].

We confirmed that the assessment using the EM algorithm
with BP and the corresponding prediction errors also provide
plausible estimates in various synthetic and real-world net-
works, while the greedy algorithms tend to largely overfit.
Note that it is not trivial that the BP algorithm performs
reasonably for real-world networks, because the emergence of
the so-called hard phase [13] may deteriorate the performance
when the planted number of clusters is large. Furthermore, the
EM algorithm may be trapped in a local minimum depending
on the choice of the initial condition of the model parameters.

We also observed that the estimate of q∗ using the mod-
ularity matrix tends to underfit, while the estimate using the
nonbacktracking matrix tends to overfit. To the best of our
knowledge, the assessment using the boundary of the spectral
band of the modularity matrix has not been investigated in the
literature.

Finally, we proposed the utilization of the alluvial diagram
for the assessment of q∗. Although there is the obvious issue
that it is not applicable to the networks with a very large q∗,
when it is not the case, the alluvial diagram is very useful,
particularly when the network does not clearly have a global
community structure.

For the LFR networks and real-world networks, we do not
know the number of clusters that are statistically significant.
It may not coincide with the planted number of clusters or
the number of clusters in the metadata. Therefore, we rely
on the consistency among various criteria and algorithms for
the plausibility of assessment. The tendency of overfit and
underfit that we investigated in this paper represents the relative
performance among the criteria and algorithms. Although there
is no ground truth in a real-world network, estimating the
number of clusters is a practical problem. At the end of the day,
a practitioner selects a certain value (or a set of values) as q∗.

The code for the assessment using the modularity matrix is
available at Ref. [32]. The code for the assessment using the
other criteria in this paper, which can also generate .smap files,
is available at Ref. [79].

ACKNOWLEDGMENTS

T.K. thanks J.-G. Young for useful comments. This work
was supported by Japan Society for the Promotion of Science
KAKENHI Grants No. 26011023 (T.K.) and No. 25120013
(Y.K.).

022315-18



COMPARATIVE ANALYSIS ON THE SELECTION OF … PHYSICAL REVIEW E 97, 022315 (2018)

[1] P. W. Holland, K. B. Laskey, and S. Leinhardt, Soc. Networks
5, 109 (1983).

[2] Y. J. Wang and G. Y. Wong, J. Am. Stat. Assoc. 82, 8 (1987).
[3] B. Karrer and M. E. J. Newman, Phys. Rev. E 83, 016107

(2011).
[4] S. Fortunato, Phys. Rep. 486, 75 (2010).
[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,

J. Stat. Mech.: Theor. Exp. (2008) P10008.
[6] M. Rosvall and C. Bergstrom, Proc. Natl. Acad. Sci. USA 105,

1118 (2008).
[7] U. Luxburg, Stat. Comput. 17, 395 (2007).
[8] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[9] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L.

Zdeborová, and P. Zhang, Proc. Natl. Acad. Sci. USA 110, 20935
(2013).

[10] A. Saade, F. Krzakala, and L. Zdeborová, in Proceedings
of the 27th International Conference on Neural Information
Processing Systems - Volume 1 (MIT, Cambridge, MA, 2014),
NIPS’14, pp. 406–414.

[11] J. J. Daudin, F. Picard, and S. Robin, Stat. Comput. 18, 173
(2008).

[12] P. Latouche, E. Birmelé, and C. Ambroise, Statistical Modelling
12, 93 (2012).

[13] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Phys. Rev.
E 84, 066106 (2011).

[14] K. Hayashi, T. Konishi, and T. Kawamoto, arXiv:1602.02256
(2016).

[15] T. Kawamoto and Y. Kabashima, Sci. Rep. 7, 3327 (2017).
[16] K. Nowicki and T. A. B. Snijders, J. Am. Stat. Assoc. 96, 1077

(2001).
[17] T. P. Peixoto, Phys. Rev. E 89, 012804 (2014).
[18] M. E. J. Newman and G. Reinert, Phys. Rev. Lett. 117, 078301

(2016).
[19] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577

(2006).
[20] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Phys. Rev.

Lett. 107, 065701 (2011).
[21] M. Rosvall and C. T. Bergstrom, PloS One 6, e18209 (2011).
[22] M. Rosvall and C. T. Bergstrom, PLoS One 5, 1 (2010).
[23] P. Zhang and C. Moore, Proc. Natl. Acad. Sci. USA 111, 18144

(2014).
[24] J. Reichardt and S. Bornholdt, Phys. Rev. E 74, 016110 (2006).
[25] H. Nishimori, Statistical Physics of Spin Glasses and Informa-

tion Processing: An Introduction (Oxford University, New York,
2001).

[26] M. E. J. Newman, Phys. Rev. E 88, 042822 (2013).
[27] C. Schülke and F. Ricci-Tersenghi, Phys. Rev. E 92, 042804

(2015).
[28] A formal derivation of the EM algorithm is the one using the

variational expression, e.g., Ref. [15].
[29] X. Zhang, T. Martin, and M. E. J. Newman, Phys. Rev. E 91,

032803 (2015).
[30] M. Mézard and A. Montanari, Information, Physics, and Com-

putation (Oxford University, New York, 2009).
[31] B. H. Good, Y.-A. de Montjoye, and A. Clauset, Phys. Rev. E

81, 046106 (2010).
[32] https://github.com/tatsuro-kawamoto/modularity_eigenvalues.
[33] J. Shi and J. Malik, IEEE Trans. Pattern Anal. Mach. Intell. 22,

888 (2000).

[34] T. Kawamoto and Y. Kabashima, Eur. Phys. Lett. 112, 40007
(2015).

[35] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).
[36] M. L. Mehta, Random Matrices, 3rd ed. (Elsevier, Amsterdam,

2004).
[37] R. R. Nadakuditi and M. E. J. Newman, Phys. Rev. Lett. 108,

188701 (2012).
[38] R. R. Nadakuditi and M. E. J. Newman, Phys. Rev. E 87, 012803

(2013).
[39] X. Zhang, R. R. Nadakuditi, and M. E. J. Newman, Phys. Rev.

E 89, 042816 (2014).
[40] T. Kawamoto and Y. Kabashima, Phys. Rev. E 91, 062803

(2015).
[41] A. Saade, F. Krzakala, and L. Zdeborov, Europhys. Lett. 107,

50005 (2014).
[42] T. Kawamoto, J. Stat. Mech.: Theor. Exp. (2016) 023404.
[43] R. Pastor-Satorras and C. Castellano, Sci. Rep. 6, 18847

(2016).
[44] https://github.com/vtraag/louvain-igraph.
[45] http://igraph.org/python/doc/igraph.Graph-class.html#commu-

nity_infomap.
[46] E. Mossel, J. Neeman, and A. Sly, Probab. Theory Relat. Fields

162, 431 (2014).
[47] L. Massoulié, Community Detection Thresholds and the Weak

Ramanujan Property, in Proceedings of the 46th Annual ACM
Symposium on Theory of Computing (STOC’14) (ACM, New
York, NY, 2014), pp. 694–703.

[48] A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,
066111 (2004).

[49] http://igraph.org/python/doc/igraph.Graph-class.html#commu-
nity_fastgreedy.

[50] A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 056117
(2009).

[51] C. Moore, arXiv:1702.00467 (2017).
[52] Precisely speaking, the algorithmic detectability threshold that

a certain algorithm fails to retrieve the planted structure is
different from the information-theoretic detectability threshold
that it is fundamentally impossible to retrieve the planted
structure.

[53] T. P. Peixoto, arXiv:1705.10225 (2017).
[54] Of course, this can also be confirmed directly by observing the

marginal distributions themselves.
[55] W. W. Zachary, Journal of Anthropological Research 33, 452

(1977).
[56] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,

and S. M. Dawson, Behav. Ecol. Sociobiol. 54, 396 (2003).
[57] D. E. Knuth, The Stanford GraphBase: A Platform for Combina-

torial Computing (Addison-Wesley, Reading, MA, 1993), Vol.
37.

[58] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA
99, 7821 (2002).

[59] J. Duch and A. Arenas, Phys. Rev. E 72, 027104 (2005).
[60] L. A. Adamic and N. Glance, The Political Blogosphere and the

2004 U.S. Election: Divided They Blog, in Proceedings of the
Third International Workshop on Link Discovery (ACM, New
York, NY, 2005), pp. 36–43.

[61] J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A.
Dricot, N. Li, G. F. Berriz, F. D. Gibbons, M. Dreze, and N.
Ayivi-Guedehoussou, Nature 437, 1173 (2005).

022315-19

https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1080/01621459.1987.10478385
https://doi.org/10.1080/01621459.1987.10478385
https://doi.org/10.1080/01621459.1987.10478385
https://doi.org/10.1080/01621459.1987.10478385
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.1007/s11222-007-9046-7
https://doi.org/10.1007/s11222-007-9046-7
https://doi.org/10.1007/s11222-007-9046-7
https://doi.org/10.1007/s11222-007-9046-7
https://doi.org/10.1177/1471082X1001200105
https://doi.org/10.1177/1471082X1001200105
https://doi.org/10.1177/1471082X1001200105
https://doi.org/10.1177/1471082X1001200105
https://doi.org/10.1103/PhysRevE.84.066106
https://doi.org/10.1103/PhysRevE.84.066106
https://doi.org/10.1103/PhysRevE.84.066106
https://doi.org/10.1103/PhysRevE.84.066106
http://arxiv.org/abs/arXiv:1602.02256
https://doi.org/10.1038/s41598-017-03623-x
https://doi.org/10.1038/s41598-017-03623-x
https://doi.org/10.1038/s41598-017-03623-x
https://doi.org/10.1038/s41598-017-03623-x
https://doi.org/10.1198/016214501753208735
https://doi.org/10.1198/016214501753208735
https://doi.org/10.1198/016214501753208735
https://doi.org/10.1198/016214501753208735
https://doi.org/10.1103/PhysRevE.89.012804
https://doi.org/10.1103/PhysRevE.89.012804
https://doi.org/10.1103/PhysRevE.89.012804
https://doi.org/10.1103/PhysRevE.89.012804
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1371/journal.pone.0018209
https://doi.org/10.1371/journal.pone.0018209
https://doi.org/10.1371/journal.pone.0018209
https://doi.org/10.1371/journal.pone.0018209
https://doi.org/10.1371/journal.pone.0008694
https://doi.org/10.1371/journal.pone.0008694
https://doi.org/10.1371/journal.pone.0008694
https://doi.org/10.1371/journal.pone.0008694
https://doi.org/10.1073/pnas.1409770111
https://doi.org/10.1073/pnas.1409770111
https://doi.org/10.1073/pnas.1409770111
https://doi.org/10.1073/pnas.1409770111
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.88.042822
https://doi.org/10.1103/PhysRevE.88.042822
https://doi.org/10.1103/PhysRevE.88.042822
https://doi.org/10.1103/PhysRevE.88.042822
https://doi.org/10.1103/PhysRevE.92.042804
https://doi.org/10.1103/PhysRevE.92.042804
https://doi.org/10.1103/PhysRevE.92.042804
https://doi.org/10.1103/PhysRevE.92.042804
https://doi.org/10.1103/PhysRevE.91.032803
https://doi.org/10.1103/PhysRevE.91.032803
https://doi.org/10.1103/PhysRevE.91.032803
https://doi.org/10.1103/PhysRevE.91.032803
https://doi.org/10.1103/PhysRevE.81.046106
https://doi.org/10.1103/PhysRevE.81.046106
https://doi.org/10.1103/PhysRevE.81.046106
https://doi.org/10.1103/PhysRevE.81.046106
https://github.com/tatsuro-kawamoto/modularity_eigenvalues
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1209/0295-5075/112/40007
https://doi.org/10.1209/0295-5075/112/40007
https://doi.org/10.1209/0295-5075/112/40007
https://doi.org/10.1209/0295-5075/112/40007
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevLett.108.188701
https://doi.org/10.1103/PhysRevLett.108.188701
https://doi.org/10.1103/PhysRevLett.108.188701
https://doi.org/10.1103/PhysRevLett.108.188701
https://doi.org/10.1103/PhysRevE.87.012803
https://doi.org/10.1103/PhysRevE.87.012803
https://doi.org/10.1103/PhysRevE.87.012803
https://doi.org/10.1103/PhysRevE.87.012803
https://doi.org/10.1103/PhysRevE.89.042816
https://doi.org/10.1103/PhysRevE.89.042816
https://doi.org/10.1103/PhysRevE.89.042816
https://doi.org/10.1103/PhysRevE.89.042816
https://doi.org/10.1103/PhysRevE.91.062803
https://doi.org/10.1103/PhysRevE.91.062803
https://doi.org/10.1103/PhysRevE.91.062803
https://doi.org/10.1103/PhysRevE.91.062803
https://doi.org/10.1209/0295-5075/107/50005
https://doi.org/10.1209/0295-5075/107/50005
https://doi.org/10.1209/0295-5075/107/50005
https://doi.org/10.1209/0295-5075/107/50005
https://doi.org/10.1088/1742-5468/2016/02/023404
https://doi.org/10.1088/1742-5468/2016/02/023404
https://doi.org/10.1088/1742-5468/2016/02/023404
https://doi.org/10.1038/srep18847
https://doi.org/10.1038/srep18847
https://doi.org/10.1038/srep18847
https://doi.org/10.1038/srep18847
https://github.com/vtraag/louvain-igraph
http://igraph.org/python/doc/igraph.Graph-class.htmlcommunityinfomap
https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
http://igraph.org/python/doc/igraph.Graph-class.html#community_fastgreedy
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
http://arxiv.org/abs/arXiv:1702.00467
http://arxiv.org/abs/arXiv:1705.10225
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1103/PhysRevE.72.027104
https://doi.org/10.1103/PhysRevE.72.027104
https://doi.org/10.1103/PhysRevE.72.027104
https://doi.org/10.1103/PhysRevE.72.027104
https://doi.org/10.1038/nature04209
https://doi.org/10.1038/nature04209
https://doi.org/10.1038/nature04209
https://doi.org/10.1038/nature04209


TATSURO KAWAMOTO AND YOSHIYUKI KABASHIMA PHYSICAL REVIEW E 97, 022315 (2018)

[62] Human protein (vidal) network dataset—KONECT (2016),
http://konect.uni-koblenz.de/networks/maayan-vidal.

[63] J. Kunegis, in Proceedings of the 22nd International Conference
on World Wide Web, WWW ’13 Companion (ACM, New York,
2013), pp. 1343–1350, http://userpages.uni-koblenz.de/kunegis/
paper/kunegis-koblenz-network-collection.pdf.

[64] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).
[65] J. Leskovec and J. J. Mcauley, in Advances in Neural Information

Processing Systems 25, edited by F. Pereira, C. J. C. Burges, L.
Bottou, and K. Q. Weinberger (Curran Associates, Inc., Nevada,
2012), pp. 539–547.

[66] Kaggle, Chess ratings—Elo versus the rest of the world,
https://www.kaggle.com/c/chess/data/ (2010).

[67] Chess network dataset—KONECT (2016), http://konect.uni-
koblenz.de/networks/chess.

[68] T. Opsahl, F. Agneessens, and J. Skvoretz, Soc. Networks 32,
245 (2010).

[69] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Trans. Knowl.
Discov. Data 1 (2007).

[70] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
Internet Math. 6, 29 (2009).

[71] B. Klimt and Y. Yang, Introducing the Enron Corpus, in Con-
ference on Email and Anti-Spam, Mountain View, CA, USA
(2004), https://www.researchgate.net/publication/220271805_
Introducing_the_Enron_Corpus.

[72] M. Richardson, R. Agrawal, and P. Domingos, Trust Man-
agement for the Semantic Web (Springer, Berlin, 2003),
pp. 351–368.

[73] S. Fortunato and M. Barthélemy, Proc. Natl. Acad. Sci. USA
104, 36 (2007).

[74] T. Kawamoto and M. Rosvall, Phys. Rev. E 91, 012809
(2015).

[75] Although the word “resolution limit-free” is sometimes
used for an algorithm, it seems more appropriate to say
that a network is resolution limit-free for a given set of
algorithms.

[76] R. K. Darst, Z. Nussinov, and S. Fortunato, Phys. Rev. E 89,
032809 (2014).

[77] http://www.mapequation.org/.
[78] L. Peel, D. B. Larremore, and A. Clauset, Sci. Adv. 3, e1602548

(2017).
[79] https://github.com/tatsuro-kawamoto/graphBIX.

022315-20

http://konect.uni-koblenz.de/networks/maayan-vidal
http://userpages.uni-koblenz.de/kunegis/paper/kunegis-koblenz-network-collection.pdf
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://www.kaggle.com/c/chess/data/
http://konect.uni-koblenz.de/networks/chess
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1080/15427951.2009.10129177
https://www.researchgate.net/publication/220271805_Introducing_the_Enron_Corpus
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1103/PhysRevE.91.012809
https://doi.org/10.1103/PhysRevE.91.012809
https://doi.org/10.1103/PhysRevE.91.012809
https://doi.org/10.1103/PhysRevE.91.012809
https://doi.org/10.1103/PhysRevE.89.032809
https://doi.org/10.1103/PhysRevE.89.032809
https://doi.org/10.1103/PhysRevE.89.032809
https://doi.org/10.1103/PhysRevE.89.032809
http://www.mapequation.org/
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://github.com/tatsuro-kawamoto/graphBIX



