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Percolation theory characterizing the robustness of a network has applications ranging from biology, to epidemic
spreading, and complex infrastructures. Percolation theory, however, only concerns the average response of a
network to random damage of its nodes while in real finite networks, fluctuations around this average behavior
are observable. Consequently, for finite networks, there is an urgent need to evaluate the risk of collapse in
response to rare configurations of the initial damage. Here, we build a large deviation theory of percolation
characterizing the response of a sparse network to rare events. This general theory includes the second-order
phase transition observed typically for random configurations of the initial damage, but reveals also discontinuous
transitions corresponding to rare configurations of the initial damage for which the size of the giant component is
suppressed.
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I. INTRODUCTION

Percolation theory [1–6] plays a pivotal role in charac-
terizing the robustness of a network as it sheds light on the
fundamental structural properties that determine its response
when a fraction of nodes is initially damaged. Therefore
percolation theory is a fundamental critical phenomenon that
permeates statistical mechanics as well as network science
[7–9], having profound implications in different contexts,
ranging from ecological networks to infrastructures.

Despite the fact that the percolation transition is second or-
der, cascades of failure events that abruptly dismantle networks
are actually occurring in real systems, with major examples
ranging from large electric blackouts to the sudden collapse
of ecological systems. In order to explain how abrupt phase
transitions could result from percolation, recently, generalized
percolation problems including percolation in interdependent
multilayer networks [10–16], and explosive percolation [17–
20] that retards the percolation transition, have been proposed.
It has been shown that in interdependent multilayer networks,
discontinuous phase transitions are the rule [10–16]. For explo-
sive percolation it has been proved that the original Achiloptas
process [17–20] yields a steep but continuous transition,
despite some of its modifications are currently believed to
yield genuinely discontinuous transitions [21–23]. It is to be
noted that this interest in discontinuous percolation transitions
has triggered further research in the statistical mechanics of
networks. In fact, discontinuous phase transitions have been
observed also in the explosive synchronization of single and
multilayer networks [24–26].

Simple node percolation [3–6] has been one of the most
investigated critical phenomena on networks. It determines
the response of the network to a random initial damage.
Since belonging to the giant component is often considered
a prerequisite for the node to be functional, all the nodes
that are no longer in the giant component are assumed to
fail as a consequence of the initial damage. Therefore char-
acterizing the percolation transition on a single network is

widely considered as a simple yet powerful way to evaluate
the robustness of a network. Despite recent attention has been
drawn to the characterization of extremal configurations of
the initial damage that most efficiently dismantle complex
networks [27–29], so far the vast majority of scientific research
concerns the typical scenario characterized by the well-known
continuous second-order phase transition [3–6].

In infinite networks, percolation is known to be self-
averaging, i.e., fluctuations from the typical behavior are
vanishing. However, in finite real networks, rare events are
observable, and it is of fundamental importance to have a com-
plete theoretical framework for characterizing the response of
the network also to rare configurations of the initial damage.
Here, we address this problem by investigating the large
deviations [30] of percolation on sparse networks. We show
that percolation theory in single networks includes both contin-
uous and discontinuous phase transitions as long as we consider
also rare events. The entire phase diagram of percolation is
uncovered using naturally defined thermodynamic quantities
including the free energy, the entropy, and the specific heat
of percolation. The continuous phase transition dominating
the typical behavior is derived in the context of this more
general theoretical approach. Additionally, we observe that
rare configurations of the damage yield discontinuous phase
transitions, whereas the imposed bias on the configurations
of the initial damage tends to suppress the size of the giant
component. These results shed light on possible mechanisms
responsible for abrupt phase transitions [31] and might play a
crucial role for determining the early warning signals of these
transitions.

It is well known that a percolation transition can be studied
by investigating the Potts model in the limit in which the
spins can be in q → 1 states [32,33]. Interestingly, the Potts
formalism has been also used to explore the large deviation
of the number of clusters in random and complex networks
[34,35]. Our approach is rather distinct from these previous
studies because we are not concerned with the probability
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of observing a certain number of clusters, but instead we
focus on the probability of the initial damage configurations
that yield a given size of the giant component. We note
here that while the number of clusters does not determine
the properties of the percolation transition, the size of the
giant component is nothing else than the order parameter of
percolation and therefore it is the key quantity determining the
transition.

Our approach, based on a locally treelike approximation,
uses a message passing algorithm, specifically, belief propaga-
tion (BP) [36–39]. Message passing algorithms are becoming
increasingly relevant in the context of complex networks and
have been recently widely used for percolation [15,16,40],
epidemic spreading [41–43], and network control [44,45].
The proposed belief propagation algorithm reveals the large
deviation of percolation and characterizes its phase diagram
on single network realizations including real network data sets
and single instances of random network ensembles. Here, we
apply this theoretical framework both to real data sets of food
webs and to uncorrelated network ensembles.

The paper is organized as follows: In Sec. II we describe
the large deviation approach to percolation, in Sec. III we
provide the detailed belief propagation equations that solve the
large deviation properties of percolation on single networks,
and in Sec. IV we characterize the equations determining the
large deviation of percolation in network ensembles. In Sec.
V we provide analytical evidence of the discontinuous phase
transition observed for regular networks as soon as the giant
component is suppressed, and we study the large deviation
properties of percolation on Poisson networks and real food
webs using the BP algorithm. Finally, in Sec. VI we provide
the conclusions.

II. THE LARGE DEVIATION APPROACH
TO PERCOLATION

A. Message passing algorithm on single
realization of damage

Let us consider a given locally treelike network of N nodes
where each node i = 1,2, . . . ,N is either damaged (xi = 0)
or undamaged (xi = 1). In this case it is well known that
the following message passing algorithm is able to determine
whether a node belongs (ρi = 1) or does not belong (ρi = 0)
to the giant component. Specifically, the message passing
algorithm consists of a set of recursive equations written for
the messages σi→j that each node i sends to a neighbor node
j of the network. (Note that for each interaction between node
i and node j , there are two distinct messages σi→j and σj→i .)
The message passing equations read

σi→j = xi

⎡
⎣1 −

∏
�∈N(i)\j

(1 − σ�→i)

⎤
⎦, (1)

where N (i) indicates the set of neighbors of node i. The
messages σi→j , where ρi is given by

ρi = xi

⎡
⎣1 −

∏
j∈N(i)

(1 − σj→i)

⎤
⎦. (2)

FIG. 1. Different realizations of the initial damage are shown here
to be more or less damaging for a network. (a) shows an initial damage
of a connected network affecting exclusively two out of the N = 8
nodes of the network (blue nodes indicate damaged nodes and green
nodes indicate undamaged nodes). (b) shows that this initial damage
is very disruptive for the network and results in a giant component
of size R = 1. (c) shows another initial damage configuration of the
same network which affects only two nodes of the network. In this
case, (d) shows that the effect of the damage is reduced and most
of the network remains connected, resulting in a giant component
R = 6.

Finally, the size of the giant component of the network R,
resulting after the inflicted initial damage {xi}i=1,2,...,N , is
given by

R =
N∑

i=1

ρi. (3)

Therefore different realizations of the initial damage can
yield, in general, giant components of different sizes (see the
schematic discussion in Fig. 1).

In the following, we will indicate with σ the set of all
messages and with σ i the set of all messages starting or ending
at node i, i.e.,

σ = {σi→j }i∈{1,2,...,N};j∈N(i),

σ i = {σi→j ,σj→i}j∈N(i). (4)

Additionally, we will indicate with x the configuration of the
initial damage, i.e.,

x = {xi}i∈{1,2,...,N}. (5)

B. Random realization of the damage and typical behavior

Here, we are concerned with realizations of the initial
damage x where each node is damaged with probability 1 − p,
i.e., each configuration x is drawn from a distribution

P̃ (x) =
N∏

i=1

pxi (1 − p)1−xi . (6)

Usually, in order to predict the expected size of the giant
component R̂ given by

R̂ =
∑

x

P̃ (x)R, (7)
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the original message passing algorithm is averaged over the
distribution P̃ (x). Given the locally treelike structure of the
network, this procedure generates a different message passing
algorithm determined by the set of messages

σ̂i→j =
∑

x

P̃ (x)σi→j , (8)

satisfying

σ̂i→j = p

⎡
⎣1 −

∏
�∈N(i)\j

(1 − σ̂�→i)

⎤
⎦. (9)

These messages determine the probability

ρ̂i =
∑

x

P̃ (x)ρi (10)

that node i is in the giant component, which is given by

ρ̂i = p

⎡
⎣1 −

∏
�∈N(i)

(1 − σ̂�→i)

⎤
⎦. (11)

Finally, the expected size of the giant component R̂ is given
by

R̂ =
N∑

i=1

ρ̂i . (12)

C. Large deviations of percolation

Here, we are interested in going beyond the typical scenario
by characterizing the probability π (R) that a given configu-
ration of the initial damage yields a giant component of size
R, i.e.,

π (R) =
∑

x

P̃ (x)δ(R,R), (13)

where δ(m,n) is the Kronecker delta. For any given value of p,
and for large network sizes N � 1, the probability π (R) will
follow the large deviation scaling [30]

π (R) ∼ e−NI (R), (14)

where I (R) � 0 is called the rate function. This expression
indicates that for any given value of p, the deviations from
the most likely size of the giant component are exponentially
suppressed. Additionally, this expression implies that on an
infinite network, the percolation transition is self-averaging,

and that all networks will yield almost surely the same giant
component R = R̂ for which I (R) takes its minimum value
I (R̂). In order to find I (R), let us introduce the partition
function Z = Z(ω),

Z =
∑

x

P̃ (x)e−ωR. (15)

Using the definition of π (R) given by Eq. (13), it can be easily
shown that Z is the generating function of π (R) as Z can be
written as

Z =
∑
R

π (R)e−ωR. (16)

By indicating with F the corresponding free energy and with
f the free-energy density given by

ωF = ωNf = − log(Z), (17)

it is immediate to show that ωf (ω) is the Legendre-Fenchel
transform of the rate function I (R) [30]. In particular, we have
that ωf (ω) can be expressed as

ωf (ω) = inf
R

[
I (R) + ω

R

N

]
. (18)

Additionally, as long ωf (ω) is differentiable, the Legendre-
Fenchel transform of ωf (ω) fully determines I (R), given by
the convex function

I (R) = sup
ω

[
ωf (ω) − ω

R

N

]
. (19)

Therefore, as long as ωf (ω) is differentiable, by studying
the free energy ωf (ω) of the percolation problem, the large
deviation of the size of the giant component can be fully
established and the rate function I (R) is convex. However,
when I (R) is nonconvex, ωf (ω) is not differentiable and
the Legendre-Fenchel transform of ωf (ω) only provides the
convex envelope of I (R) [30].

D. Gibbs measure over messages

In order to study the partition function Z, we make a change
of variables and instead of considering a Gibbs measure over
configurations of the initial damage, we consider the Gibbs
measure P (σ ) over the set σ of all messages. The probability
P (σ ) allows us to determine the most likely distribution of the
messages corresponding to a given size of the giant component
R. The properties of the large deviations of percolation are
studied by introducing a Lagrangian multiplier ω modulating
the average size of the giant componentR. Therefore the Gibbs
measure P (σ ) is given by

P (σ ) = 1

Z

∑
x

e−ωRP̃ (x)χ (σ ,x), (20)

where the function χ (σ ,x) enforces the message passing
Eq. (1), i.e.,

χ (σ ,x) =
N∏

i=1

∏
j∈N(i)

δ

⎛
⎝σi→j ,xi

⎡
⎣1 −

∏
�∈N(i)\j

(1 − σ�→i)

⎤
⎦

⎞
⎠.
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Here, Z is the partition function of the problem, and it can be
easily shown that it reduces to Z defined in Eq. (16), i.e.,

Z =
∑

σ

∑
x

e−ωRP̃ (x)χ (x,σ ) =
∑
R

π (R)e−ωR. (21)

The role of ω in determining the Gibbs measure P (σ ) is
equivalent to the one of temperature in a canonical ensemble.
Since for each node only two options are possible—either a
node belongs (ρi = 1) or does not (ρi = 0) belong to the giant
component—this problem can be interpreted as a statistical
mechanics problem of a two-level system. Therefore it is
possible to investigate the role of both positive and negative
values of ω.

For ω < 0, the Gibbs measure weighs more the buffering
configurations of the initial damage, resulting in a giant
component larger than a typical one. On the contrary, for
ω > 0, the Gibbs measure weighs more the aggravating con-
figurations of the initial damage, resulting in a giant component
smaller than a typical one. For ω = 0 we recover the typical
scenario.

From Eq. (20) it follows that P (σ ) can be expressed as

P (σ ) = 1

Z

N∏
i=1

ψi(σ i), (22)

where the set of constraints ψi(σ i) for i = 1,2, . . . ,N defined
over all the messages σ i starting or ending with node i read

ψi(σ i) =
⎡
⎣(1 − p)

∏
j∈N(i)

δ(σi→j ,0)

+pe−ωρ̂i

∏
j∈N(i)

δ

⎛
⎝σi→j ,1 −

∏
�∈N(i)\j

(1 − σ�→i)

⎞
⎠

⎤
⎦,

(23)

where δ(m,n) indicates the Kronecker delta and ρ̂i is given by

ρ̂i =
⎡
⎣1 −

∏
j∈N(i)

(1 − σj→i)

⎤
⎦. (24)

Given Eq. (22), it follows that the partition function Z can be
also written as

Z =
∑

σ

N∏
i=1

ψi(σ i). (25)

From this theoretical framework it is possible to derive
naturally the following thermodynamic quantities for perco-
lation: energy R, free energy F , entropy S, and specific heat
C. Specifically, the energy R is the average size of the giant
component of the network, the free energy F is proportional
to the logarithm of the partition function Z with ωF (ω)/N ,
indicating the Legendre-Fenchel transform of the rate function
I (R), the entropy S determines the logarithm of the typical
number of message configurations that yield a given size of

TABLE I. The thermodynamic quantities of percolation (energy
R, free energy F , entropy S, and specific heat C) are listed together
with their mathematical expression in terms of the probability P (σ )
and its associated partition function Z.

Thermodynamic quantities Mathematical relations

Energy R R = − ∂ ln Z

∂ω

Free energy F ωF = − ln Z

Entropy S S = − ∑
σ P (σ ) ln P (σ )

Specific heat C C = ω2 ∂2 ln Z

∂ω2

the giant component R, and the specific heat C is proportional
to the variance of the giant component for given values of p

and ω (see Table I).
The Gibbs measure and the corresponding thermodynamic

quantities can be calculated in the locally treelike approxi-
mation using belief propagation (BP) for any given locally
treelike network, representing either a real network data set or
a single instance of a random network model. Moreover, the
BP equations can be also averaged over network ensembles
with degree distribution P (k) characterizing the nature of the
phase transition (see the next two sections).

III. LARGE DEVIATION THEORY OF PERCOLATION
ON SINGLE NETWORKS

1. Belief propagation equations

The Gibbs distribution P (σ ) can be expressed explicitly on
a locally treelike network using the belief propagation (BP)
method [36–39] by finding the messages P̂i→j (σi→j ,σj→i)
that each node i sends to the generic neighbor node j . These
messages satisfy the following recursive BP equations,

P̂i→j (σi→j ,σj→i)

= 1

Ci→j

∑
σ i

ψi(σ i)
∏

�∈N(i)\j
P̂�→i(σ�→i ,σi→�),

where Ci→j are normalization constants enforcing the normal-
ization condition∑

σi→j =0,1

∑
σj→i=0,1

P̂i→j (σi→j ,σj→i) = 1. (26)

In the Bethe approximation, valid on locally treelike networks,
the probability distribution P (σ ) is given by

P (σ ) =
N∏

i=1

Pi(σ i)

⎛
⎝∏

〈i,j〉
Pij (σi→j ,σj→i)

⎞
⎠

−1

, (27)

where Pi(σ i) and Pij (σi→j ,σj→i) indicate the marginal distri-
bution of nodes and links and are given by

Pij (σi→j ,σj→i) = 1

Cij

P̂i→j (σi→j ,σj→i)P̂j→i(σj→i ,σi→j ),

Pi(σ i) = 1

Ci

ψi(σ i)
∏

j∈N(i)

P̂j→i(σj→i ,σi→j ), (28)
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with Ci and Cij indicating normalization constants. The BP equations can be written explicitly as

P̂i→j (0,0) = 1

Ci→j

⎡
⎣(1 − p)

∏
�∈N(i)\j

[P̂�→i(0,0) + P̂�→i(1,0)] + p
∏

�∈N(i)\j
P̂�→i(0,0)

⎤
⎦,

P̂i→j (0,1) = 1

Ci→j

⎡
⎣(1 − p)

∏
�∈N(i)\j

[P̂�→i(0,0) + P̂�→i(1,0)] + pe−ω
∏

�∈N(i)\j
P̂�→i(0,1)

⎤
⎦,

P̂i→j (1,1) = 1

Ci→j

pe−ω

⎡
⎣ ∏

�∈N(i)\j
[P̂�→i(0,1) + P̂�→i(1,1)] −

∏
�∈N(i)\j

P̂�→i(0,1)

⎤
⎦,

P̂i→j (1,0) = 1

Ci→j

pe−ω

⎧⎨
⎩

∑
�∈N(i)

P̂�→i(1,0)
∏

�′∈N(i)\j,�
P̂�′→i(0,1) +

∏
�∈N(i)\j

[P̂�→i(0,1) + P�→i(1,1)]

−
∏

�∈N(i)\j
P̂�→i(0,1) −

∑
�∈N(i)

P̂�→i(1,1)
∏

�′∈N(i)\j
P̂�→i(0,1)

⎫⎬
⎭, (29)

if the degree ki of node i is greater than one (i.e., ki > 1), whereas if the degree of node i is one (ki = 1), the messages are given
by P̂i→j (0,0) = P̂i→j (0,1) = 1/2 and P̂i→j (1,0) = P̂i→j (1,1) = 0.

By solving this set of recursive equations on a given single network realization, using Eqs. (27)–(29), it is therefore possible
to determine the distribution P (σ ) in the Bethe approximation as long as the network is locally treelike.

2. Free energy

The free energy of the problem can be found by minimizing the Gibbs free energy F given by

ωF =
∑

σ

P (σ ) ln

(
P (σ )

ψ(σ )

)
, (30)

where ψ(σ ) indicates the constraints

ψ(σ ) =
N∏

i=1

ψi(σ i). (31)

Indeed, the Gibbs free energy F is minimal when calculated over the probability distribution P (σ ) given by Eq. (22) when
ωF = − ln Z. By considering the Bethe approximation for the distribution P (σ ), Eq. (27), it is straightforward to see that the
free energy can be expressed as

ωF =
∑
〈i,j〉

log(Cij ) −
N∑

i=1

log(Ci), (32)

where the constants Cij ,Ci can be found directly in terms of the messages P̂i→j (a,b), with a,b ∈ {0,1}. Indeed, we have

Cij = [P̂i→j (0,0)P̂j→i(0,0) + P̂i→j (0,1)P̂j→i(1,0) + P̂j→i(1,0)P̂j→i(0,1) + P̂i→j (1,1)P̂j→i(1,1)],

Ci = (1 − p)
∏

�∈N(i)

[P̂�→i(0,0) + P̂�→i(1,0)] + p
∏

�∈N(i)

P̂�→i(0.0) + pe−ω

⎧⎨
⎩

∑
�∈N(i)

P̂�→i(1,0)
∏

�′∈N(i)\�
P̂�′→i(0,1)+

+
∏

�∈N(i)

[P̂�→i(0,1) + P̂�→i(1,1)] −
∏

�∈N(i)

P̂�→i(0,1) −
∑

�∈N(i)

P̂�→i(1,1)
∏

�′∈N(i)

P̂�→i(0,1)

⎫⎬
⎭. (33)
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3. Energy and specific heat

The role of the energy is played by the average size of the
giant component R given by

R =
∑

σ

RP (σ ) = −∂ ln Z

∂ω
. (34)

By solving the BP equations and calculating R it is possible
to observe that the system undergoes a phase transition from
a nonpercolating phase where R = 0 to a percolating phase
where R > 0. The set of critical points in which the transition
occurs is indicated by the values (ωc,pc) of the parameters ω

and p.
The specific heat C is naturally defined as

C

ω2
= −∂R

∂ω
, (35)

where this quantity has the explicit interpretation as the
variance in the size of giant component, i.e.,

C

ω2
=

(∑
σ

R2P (σ )

)
−

(∑
σ

RP (σ )

)2

.

Both R and C/ω2 can be derived from the message passing
algorithm. Indeed, we have

R =
∑

i

ri , (36)

C

ω2
=

N∑
i=1

ri(1 − ri), (37)

where

ri =
∑

σ

ρiP (σ ), (38)

indicating the probability that node i is in the giant component
is given by

ri = zi

Ci

, (39)

with

zi =pe−ω

⎧⎨
⎩

∏
�∈N(i)

[P̂�→i(0,1) + P̂�→i(1,1)]−
∏

�∈N(i)

P̂�→i(0,1)

+
∑

�∈N(i)

[P̂�→i(1,0) − P̂�→i(1,1)]
∏

�′∈N(i)

P̂�→i(0,1)

⎫⎬
⎭.

(40)

Note that the quantity C/ω2 given by Eq. (37) can be also
interpreted as the fraction of nodes that given two random
realizations of the initial damage are found in the giant
component in one realization but not in the other. This quantity
has been recently proposed [29] to study the fluctuations of
the giant component. Here, we show that this quantity can be
naturally interpreted as the variance of the giant component,
and it is related to the specific heat of percolation C.

4. Entropy

The entropy S of the distribution is given by

S = −
∑

σ

P (σ ) ln P (σ ), (41)

where P (σ ) is given by the Gibbs measure (22). From the
expression of the Gibbs measure P (σ ) it follows that the
entropy is related to the free energy by the equation

S = ωR + H − ωF, (42)

where

H =
N∑

i=1

Hi, (43)

and

Hi = −
∑
σ i

Pi(σ i) ln [ψi(σ i)]. (44)

The quantity Hi can be expressed explicitly as a function of
the messages as

Hi = − (1 − p)
∏

�∈N(i)[P̂�→i(0,0) + P̂�→i(1,0)]

Ci

ln(1 − p)

−
[
1− (1 − p)

∏
�∈N(i)[P̂�→i(0,0) + P̂�→i(1,0)]

Ci

]
ln p.

(45)

5. The typical scenario (ω = 0)

The BP equations corresponding to ω = 0 reduce to the
well-known equations for the percolation transition character-
izing the typical scenario. In fact, the BP equations (29) have
the solution

P̂i→j (0,0) = P̂i→j (0,1),
(46)

P̂i→j (1,1) = P̂i→j (1,0).

As a function of p we observe a phase transition between a
nonpercolating phase with R = 0, where the solution is

P̂i→j (0,1) = P̂i→j (0,0) = 1/2,
(47)

P̂i→j (1,1) = P̂i→j (1,0) = 0,

and a percolating phase with R > 0 where the solution of the
BP equation is always of the type given by Eqs. (46) but departs
from Eqs. (47). By inserting the general solution Eq. (46) in
the BP equations, and adopting the variables

σ̂i→j = P̂i→j (1,1) + P̂i→j (1,0), (48)

we recover the well-known message passing equations for the
typical scenario of the percolation transition [37,40],

σ̂i→j = p

⎛
⎝1 −

∏
�∈N(i)\j

(1 − σ̂�→i)

⎞
⎠. (49)
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In this case the probability ri that a node belongs to the giant
component reads

ρ̂i = p

⎛
⎝1 −

∏
�∈N(i)

(1 − σ̂�→i)

⎞
⎠. (50)

The thermodynamic quantities are given by

R =
N∑

i=1

ρ̂i ,

C

ω2
=

N∑
i=1

ρ̂i(1 − ρ̂i),

(51)
F = 0,

S = −(1 − p) ln(1 − p) − p ln p.

IV. LARGE DEVIATION THEORY OF PERCOLATION
ON RANDOM NETWORKS

A. Equations on random network ensemble

The BP equations can be studied over a random network with
degree distribution P (k). To this end we write the equations
for the average messages,

ŷτ = P̂i→j (τ ), (52)

where τ = (a,b) with a,b = 0,1 and where · · · indicates the
average over an ensemble of random networks with degree
distribution P (k). Since the variables (y00,y01,y11,y10) are not
independent but are related by the identity

ŷ10 = 1 − y00 − y01 − y11,

the equations for the three independent variables (y00,y01,y11)
read

ŷ00 =
∑

k

k

〈k〉P (k)

[
(1 − p)(1 − ŷ01 − ŷ11)k−1 + pŷk−1

00

]
dk

,

ŷ01 =
∑

k

k

〈k〉P (k)

[
(1− p)(1 − ŷ01 − ŷ11)k−1 + pe−ωŷk−1

01

]
dk

,

ŷ11 =
∑

k

k

〈k〉P (k)
pe−ω

[
(ŷ01 + ŷ11)k−1 − ŷk−1

01

]
dk

, (53)

with dk given by

dk = 2(1 − p)(1 − ŷ01 − ŷ11)k−1 + pŷk−1
00

+pe−ω
{
2(ŷ01 + ŷ11)k−1 − ŷk−1

01

+(k − 1)[1 − y00 − ŷ01 − 2ŷ11]ŷk−2
01

}
. (54)

The fraction of nodes of degree k that are in the giant
component ρk is given by

ρk = zk

Ck

, (55)

where

zk = pe−ω
[
(ŷ01 + ŷ11)k − ŷk

01

+ k(1 − ŷ00 − ŷ01 − 2ŷ11)ŷk−1
01

]
,

Ck = (1 − p)(1 − ŷ01 − ŷ11)k + pŷk
00 + zk. (56)

The fraction of nodes in the giant component r = R/N and
the normalized specific heat c = C/N are given in terms
of ρk as

r =
∑

k

P (k)ρk,

c

ω2
=

∑
k

P (k)ρk(1 − ρk). (57)

Finally, the free-energy density f = F/N and normalized
entropy s = S/N are given respectively by

ωf (ω) = 〈k〉
2

ln
[
ŷ2

00 + 2ŷ01(1 − ŷ00 − ŷ01 − ŷ11) + ŷ2
11

]
−

∑
k

P (k) ln Ck, (58)

s = −ωf (ω) + ωr +
∑

k

P (k)hk,

where Ck is given by Eq. (56) and hk is given by

hk = −(1 − p)
(1 − ŷ01 − ŷ11)k

Ck

ln(1 − p)

−
(

1 − (1 − p)(1 − ŷ01 − ŷ11)k

Ck

)
ln p. (59)

B. Transition on the random ensemble

The nature of the percolation transition can be explored by
linearizing Eqs. (53) close to the solution ŷ� = (ŷ�

00,ŷ
�
01,ŷ

�
11).

In this way we get a linear system of equations that reads

ŷ − ŷ� = Ĵ[ŷ − ŷ�], (60)

where the 3 × 3 Jacobian matrix Ĵ has elements

Ĵα,β = ∂ŷα

∂ŷβ

∣∣∣∣
ŷ=ŷ�

, (61)

with α,β ∈ {00,01,11}.
This system of equations becomes unstable when the

eigenvalue �̂Ĵ with maximum real part satisfies

Re[�̂Ĵ ] = 1. (62)

Therefore this is the condition determining, together with
Eqs. (53), the percolation transition.

In the typical scenario, ω = 0, we get that this equation
studied as a function of p yields the well-known continuous
percolation transition describing the onset of the instability of
the trivial solution ŷ� = (1/2,1/2,0) at

p
〈k(k − 1)〉

〈k〉 = 1. (63)
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FIG. 2. The line of critical points (ωc,pc) [(a)] and value Rc of the
size of the giant component at the transition vs ωc [(b)] are shown for
a regular network with degree distribution P (k) = δ(k,z) and z = 3
(blue circles) and z = 5 (green diamonds). For ωc > 0, the transition
becomes discontinuous, i.e., Rc > 0.

In particular, the 3 × 3 Jacobian matrix J at ŷ� = (1/2,1/2,0)
is given by

J =

⎛
⎜⎜⎝

p
〈k(k−1)〉

〈k〉 0 0

0 p
〈k(k−1)〉

〈k〉 0

0 0 p
〈k(k−1)〉

〈k〉

⎞
⎟⎟⎠. (64)

As a function of ω we have a line of critical points. These points
correspond to a continuous phase transition whereas Eqs. (53)
and (62) are satisfied at the trivial solution where R = 0. On
the contrary, the transition is discontinuous and hybrid with a

square root singularity when the system of equations including
Eqs. (53) and (62) is satisfied at a nontrivial solution consistent
with a nonzero size of the giant component R > 0.

V. APPLICATION TO NETWORK ENSEMBLE
AND REAL NETWORKS

A. Analytical results on regular networks

In any given network ensemble we have shown that the
proposed theoretical framework for fixed value ω = 0 predicts
the well-known second-order phase transition as a function of
p describing the typical percolation scenario.

In order to investigate the nature of the transition for
ω 	= 0, we have numerically solved the system of equations
determining the nature of the transition [Eqs. (53) and (62)]
in the specific case of a regular network where the degree
distribution is given by P (k) = δ(k,z). In this way, we are able
to determine the phase diagram of these networks. This phase
diagram reveals that ω = 0, p = 〈k〉

〈k(k−1)〉 , ŷ� = (1/2,1/2,0)
separate the line of continuous phase transitions from the line
of discontinuous hybrid phase transitions. In Fig. 2 we show
the line of critical points (ωc,pc) for the percolation transition
and the corresponding critical value Rc of the size of the giant
component. The value Rc = 0 observed for ωc � 0 indicates a
continuous phase transition, while the values Rc > 0 observed
for ωc > 0 clearly indicate discontinuous and hybrid phase
transitions. Therefore the continuous percolation transition
only characterizes the typical scenario and the configurations
corresponding to ω < 0, but if the percolation transition is
retarded (ω > 0), the transition becomes discontinuous.
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=-0.1
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= 0.5
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R
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p=0.7
p=0.6
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p=0.4

(a)

(b)

FIG. 3. The large deviations of properties of percolation in a Poisson network with N = 100 nodes and average degree z = 3 are shown
here to include discontinuous phase transition and nonconvex rate functions. (a) shows the fraction of nodes in the giant component R/N as a
function of the probability that each node is not initially damaged p for different values of ω. For ω � 0, a continuous percolation transition is
observed, and for ω > 0, a discontinuous percolation transition is observed. (b) shows the rate function I (R) (symbols) for different values of
p calculated on the same network by simulating 2 × 105 realizations of the initial damage for each value of p. Solid lines in (b) represent the
Legendre-Fenchel transform of ωF (ω)/N which provides the convex envelope of the rate function I (R).
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FIG. 4. The phase diagram of percolation for a Poisson network with average degree 〈k〉 = 3 and N = 100 nodes is revealed by plotting
the corresponding thermodynamic properties. The thermodynamic quantities for a single realization of a Poisson network with N = 100 nodes
and average degree 〈k〉 = 3 are shown in the plane (p,ω). Here, R/N indicates the fraction of nodes in the giant component, F indicates the
free energy, C indicates the specific heat with C/ω2 given by the variance of the size of the giant component, and S indicates the entropy
corresponding to a given point (p,ω) of the phase diagram.

B. BP results on Poisson networks and real networks

All our numerical results of the BP algorithm on single
sparse random networks and on real data sets suggest that

the discontinuous phase transition for ω > 0 is observed
generally. Here, we consider the case of a single instance of
a Poisson network on which we have run the BP algorithm.
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FIG. 5. The size of the giant component R as a function of p for different values of ω is shown for the (a) Ythan Estuary and the (b) Silwood
Park food webs [46]. We observe that for ω > 0, the percolation transition is discontinuous, while for ω = 0, we obtain the typical scenario
of percolation characterized by a continuous phase transition. The nonconvex rate function I (R) evaluated numerically over 2 × 105 initial
realizations of the random damage is shown for the (c) Ythan Estuary and the (d) Silwood Park food webs and different values of p (symbols).
The convex envelope of I (R) provided by the Legendre-Fenchel transform of ωF (ω)/N is shown with solid lines for the same values of p

[note that for improving the clarity of the figure we have omitted to plot the linear part of the convex envelope for p = 0.24 and 0.28 in (c) and
for p = 0.20 and 0.24 in (d)].
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Figure 3(a) shows the predicted size of the giant component
R as a function of p and ω for a Poisson network with
N = 100 nodes and average degree 〈k〉 = 3. For ω > 0, the
giant component R has a jump from a zero value R = 0 to
a nonzero value R > 0. Correspondingly, the rate function
I (R) is nonconvex, providing further evidence that the free
energy F is nondifferentiable. In Fig. 3(b) we show the rate
function I (R) evaluated numerically by simulating a large
number of initial damage configurations and we compare it
to the Legendre-Fenchel transform of the free energy, finding
very good agreement.

This investigation reveals that the observed discontinuity
in the percolation problem is caused by the fact that the
rate function I (R) is not convex and has a local minimum
for R = 0 also when the expected typical size of the giant
component takes positive values R̂ > 0. Therefore the rare
configurations of the damage include configurations that are
damaging a finite network much more than typically expected.
Moreover, the observed discontinuity is an indication that
these configurations of the initial damage are actually more
frequent than what it might have been expected for a convex
rate function.

Additionally, the BP algorithm allows us to characterize the
entire phase diagram of percolation using the thermodynamics
quantities R,F,C,S (see Fig. 4), fully determining the statisti-
cal mechanics properties of the percolation transition.

Finally, our theoretical approach can also be used to charac-
terize the robustness of real data sets against rare configurations
of the random damage. In Fig. 5 we consider two real food
webs, the Ythan Estuary (with N = 135 nodes) and the
Silwood Park (with N = 154 nodes) food webs [46], and we
show numerical evidence for a discontinuous phase transition
and nonconvexity of the rate function I (R).

VI. CONCLUSIONS

In conclusion, we have developed a large deviation theory
for percolation on sparse networks. We show evidence that
percolation theory, when extended to treat also the response
to rare configurations of the initial damage, includes both
continuous and discontinuous phase transitions. This result
sheds light on the hidden fragility of networks and their risk
of a sudden collapse and could be especially useful for under-
standing mechanisms to avoid the catastrophic dismantling of
real networks. The present large deviation study of percolation
considers exclusively node percolation on single networks.
However, in the future, the outlined methodology could be
extended to study the fluctuations of generalized percolation
phase transitions, such as percolation in interdependent multi-
layer networks, where also the typical scenario is characterized
by a discontinuous phase transition.
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