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Impact of network topology on self-organized criticality
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The general mechanisms behind self-organized criticality (SOC) are still unknown. Several microscopic and
mean-field theory approaches have been suggested, but they do not explain the dependence of the exponents on
the underlying network topology of the SOC system. Here, we first report the phenomena that in the Bak-Tang-
Wiesenfeld (BTW) model, sites inside an avalanche area largely return to their original state after the passing of
an avalanche, forming, effectively, critically arranged clusters of sites. Then, we hypothesize that SOC relies on
the formation process of these clusters, and present a model of such formation. For low-dimensional networks,
we show theoretically and in simulation that the exponent of the cluster-size distribution is proportional to the
ratio of the fractal dimension of the cluster boundary and the dimensionality of the network. For the BTW model,
in our simulations, the exponent of the avalanche-area distribution matched approximately our prediction based
on this ratio for two-dimensional networks, but deviated for higher dimensions. We hypothesize a transition from
cluster formation to the mean-field theory process with increasing dimensionality. This work sheds light onto the
mechanisms behind SOC, particularly, the impact of the network topology.

DOI: 10.1103/PhysRevE.97.022313

I. INTRODUCTION

Complex systems of interacting components are widespread
in nature and manmade structures—see, e.g., tectonic plates
and power grids. In some of those systems, scale-invariant
fluctuations have been observed that occur spontaneously
without the need to carefully tune a control parameter like,
e.g., the temperature [1–6]. Examples of these fluctuations
are earthquakes [6], avalanches in a sand pile [1], power
outages [4], or avalanches of neural spikes [2]. Since these
systems apparently self-organize to generate scale-invariant
fluctuations, this phenomenon has been termed self-organized
criticality (SOC).

Typically, SOC occurs in systems with threshold dynamics
and an external driving force, e.g., the addition of new sand
grains [5]. However, the precise characteristics that guarantee
SOC are still unknown. The occurrence of SOC has practical
implications because scale-invariant fluctuations imply power-
law distributed event sizes, which means that extraordinarily
large events occur orders of magnitude more likely than equally
sized events from a normal distribution—important when you
consider, e.g., power outages.

The most common model of SOC and the first to introduce
the concept has been the Bak-Tang-Wiesenfeld (BTW) model
[1], which is a cellular automaton on a lattice and a simplified
version of a sandpile—see Sec. II. The avalanches from this
model are power-law distributed. Bak et al. already showed
a dependence of the exponent of the power law on the
dimensionality of the lattice, but a theoretical explanation of
this dependence is still missing.

One of the most common theoretical explanations of the
power-law distribution in the BTW model is the mean-field
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theory [5,7–10]. This theory predicts, in agreement with
experiments, the slope of the power law to be 1.5 for lattices
in six or more dimensions. For lower dimensions, however,
particularly, <5, the experimental results deviate from the
theoretical value [10].

Here, we present a hypothesis for the mechanism of SOC
and an explanation of the exponents of the BTW model in lower
dimensions. After introducing the BTW model, we first report
a discovery of a new property of avalanches in the model:
in lower dimensions, after the passing of an avalanche, the
sites or nodes in the interior of the avalanche resume their
original state before the avalanche. These nodes form what we
call a critical cluster. Next, we introduce a simplified model
describing the formation process of these critical clusters. This
formation process converges to yield approximately power-law
distributed cluster sizes. In theory, we establish a link between
the fractal dimension of the boundary of the clusters and the
exponent of their size distribution. Then, we verify this link
in simulation. Lastly, we evaluate the same fractal dimension
for the critical clusters in the BTW model and find that we
can predict the exponent of the cluster-size distribution within
3% for the two-dimensional (2D) square lattice and random
geometric graph. In higher dimensions, the predictions diverge.
Apparently, when increasing the dimensionality, we observe a
transition between cluster formation and mean-field theory.

II. BTW MODEL

The BTW model describes the flow of sand grains on a
network [1]. This model has been originally defined on square
and cubic lattices, but it can be generalized to arbitrary graphs
[11]. Here, we consider this generalized version, also referred
to as the Abelian sandpile model.

Assume a graph of nodes i that each contain xi amount of
grains. The Abelian sandpile model consists of a slow and a
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FIG. 1. BTW model leaves most of the interior of an avalanche unchanged, two typical avalanches (a) and (b) and the corresponding
differences xt+1

i − xt
i , where xt

i is the state of node i before and xt+1
i after the avalanche, (c) and (d).

fast process. The slow process adds one grain to a random node
i, xi → xi + 1 (slow external driving force). The fast process
computes the propagation of an avalanche, as described in the
following. If a node is above threshold xi > zi , where zi is the
degree of node i, the node topples and sheds one grain to each
of its zi neighbors,

xi(t + 1) = xi(t) − zi, (1)

∀j ∈ Ni : xj (t + 1) = xj (t) + 1, (2)

where Ni is the set of nodes that share an edge with node
i (here, we consider only undirected graphs). This toppling
may result in a neighbor to be above threshold, making this
neighbor also shed its grains according to the above equations.
This repeated shedding can result in a cascade of events, an
avalanche of grain topplings. Once an avalanche is complete,
i.e., all nodes are at or below threshold, the slow process
proceeds by adding another grain. After an initial phase of
self-organization (cooling), avalanches occur with sizes that
follow a power law distribution.

III. CRITICAL CLUSTERS

In the BTW model, during an avalanche, each node may
topple multiple times. At the end of this process, we found that,
interestingly, most nodes inside the avalanche area assume the
same state as they had before the avalanche (Fig. 1). Changes
to the states typically happen only at the boundary of an
avalanche, while their interior reverts back to the state before
the avalanche (even though all nodes inside an avalanche did
topple at least once).

In a simulation of the BTW model, we computed the fraction
of nodes in an avalanche that reverted back to their original state
before the avalanche. We allowed for sufficient cooling time
to reach SOC (see also Sec. VII). For a square lattice with
side length L = 1024, 87.518 ± 0.005% of nodes regained
their original state after one avalanche (mean ± std, n = 4).
This number increased with the size of the lattice because for
larger clusters the boundary is smaller relative to the area.
For example, for smaller lattices, we found the fraction to
be 60.6 ± 0.1% for L = 50, 69.8 ± 0.1% for L = 100, and
76.6 ± 0.3% for L = 200.

We call the set of nodes in an avalanche that revert back
to their original state a critical cluster because, apparently,
they are carefully arranged to allow the avalanche to happen
and still retain their property after the avalanche. Our critical
cluster is different from a cluster of path-connected critical
nodes that are just below the toppling threshold; such a cluster
would also topple entirely but would change its state. Many
nodes are actually near their toppling threshold. Across a
2D lattice, as part of our analysis, we observed an uneven
distribution of state values, xi , with the following probabilities:
p = 0.0738 ± 0.0001 for x = 1, p = 0.1742 ± 0.0002 for
x = 2, p = 0.3065 ± 0.0002 for x = 3, and p = 0.4455 ±
0.0002 for x = 4 (mean ± std, n = 4); here, L = 1024 (see
Discussion for the relevance of these numbers).

The formation of critical clusters is dependent on the
dimensionality of the lattice. We simulated lattices of
different dimensions with a side length L = [10242/d ], where
d is the dimensionality. With increasing dimensionality, the
fraction of unchanged nodes decreased: cubic lattice, 43.57 ±
0.05%; 4D lattice, 1.967 ± 0.007%; 5D lattice, 0.0112 ±
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FIG. 2. Size distribution of the unchanged nodes in an avalanche is a power law (with exponential cutoff) for lattices of two, three, and four
dimensions, but decays exponentially for five dimensions: log-log plot (a), dotted lines show power-law fits: semilog plot (b), dotted line shows
exponential fit.

0.0001%. The fraction dropped to near zero for five di-
mensions. With five dimensions, the size distribution of the
unchanged clusters became exponential (Fig. 2), and the
probability for unchanged nodes dropped to almost zero for
higher dimensions, 2 × 10−5 ± 10−5% for a 6D lattice, not
forming any cluster of more than one node.

Due to the stability of the critical clusters, we hypothesize
that they are a key element in describing the dynamic equilib-
rium of SOC in lower dimensions. Apparently, there exists a
formation process controlling the size of these clusters. In the
following, we present a simplified model of cluster formation.

IV. CLUSTER-FORMATION MODEL

The cluster-formation model describes the self-organization
of a cluster-size distribution. It starts with a fixed number of
clusters and then iterates merging and splitting of clusters,
preserving the total number of clusters. Figure 3(a) illustrates
the process in 1D. The model uses N nodes arranged along
a line. These N nodes are divided into nc connected clusters
(all nodes in one cluster are path connected). In one iteration
step, one node at a cluster boundary is chosen at random with
uniform probability and the corresponding cluster is merged
with its neighboring cluster. Given the resulting set of clusters,
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FIG. 3. Cluster formation iterates merging and splitting of clusters (a). Splitting uses two recursive breadth-first walks (solid and dashed
arrows) starting from a random location (b). Iterating merge and split results in a distribution of clusters as shown, e.g., in panel (c). This iteration
converges to a distribution of cluster sizes (d), here, for a cubic lattice with N = 4096 and nc = 400 (the formation process was repeated 500
times to obtain sufficient statistics).
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FIG. 4. Results for the cluster-formation model, showing cluster boundary versus cluster size (a), (c) and the corresponding cluster-size
distribution (b), (d) for six different network types. Dotted lines in (a), (c) show power-law fits to the data and dotted lines in (b), (d) theoretical
values in the same range of cluster-size values as for the power-law fits.

a new node is chosen at random with uniform probability and
the corresponding cluster is split into two components at the
location of the node (if a cluster with only one node is chosen,
the selection is repeated).

For arbitrary graphs, we use the same merge operation
as above. To split a cluster, a node from the entire graph is
chosen randomly (uniform probability) such that the node
has two neighboring nodes within the same cluster. These
two neighboring nodes then become the starting directions for
splitting the cluster. In a breadth-first search, we traverse the
cluster simultaneously in two directions, splitting it into two
components, e.g., solid and dashed arrows in Fig. 3(b). This
process ensures that a path-connected cluster is split into two
path-connected components.

To obtain the initial set of nc clusters, we start with a single
cluster and apply the above split operation until we reach
nc clusters. Then, the merging and splitting operations are
repeated for a given number of iteration steps.

The split-merge iteration converges to a cluster-size dis-
tribution, which typically follows a power law for a range
of cluster sizes [Fig. 3(d)]. Figure 3(c) shows a snapshot
of a cluster distribution on a random geometric graph after
convergence. The size distribution converges, but the clusters
themselves are still dynamic.

V. THEORY OF CLUSTER FORMATION

The goal of our theoretical evaluation of the cluster-
formation model is to derive a functional relationship between

the slope of the cluster-size distribution, n(s), and the underly-
ing network structure. Here, n(s) is the number of clusters of
size s. In the formation process, we consider the following four
probabilities: the probability that a merge operation increases
the number of clusters of size s, p+

m(s), the probability that a
merge operation decreases this number, p−

m(s), the probability
that a split operation increases this number, p+

s (s), and the
probability that a split operation decreases this number, p−

s (s).
At equilibrium, these probabilities need to fulfill the master
equation,

p+
m(s) − p−

m(s) + p+
s (s) − p−

s (s)
!= 0 ∀s. (3)

For solving the master equation, our first approximation
is that p+

m(s) and p−
s (s) cancel each other out, i.e., p+

m(s) =
p−

s (s). For larger cluster sizes, the appearance of a cluster
due to merging dominates the appearance due to splitting
and the disappearance of a cluster due to splitting dominates
the disappearance due to merging: so, to balance the master
equation, p+

m(s) has to compensate p−
s (s) and has to be at

least approximately equal for a range of s values (in the
one-dimensional case, this relationship turns out to be exact).

In the following, we consider only these two probabilities.
The probabilityp−

s (s) is the probability that a uniformly chosen
random node falls on a cluster of size s, i.e., p−

s (s) = n(s)s
N

.
The probability for merging two clusters is an integral

over the combinations of cluster sizes x and s − x. For each of
the two clusters, the probability to get selected is proportional
to the boundary of the cluster because the size of the boundary
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FIG. 5. BTW results: boundary of critical clusters versus their area (a) and slope of avalanche-area distribution (b); here, L = [10242/d ].
Dotted lines show power-law functions fitted to the data.

is the number of possible merge points. So, we obtain

p+
m(s) = c

s−1∑
1

n(x)xβn(s − x)(s − x)β

≈ c

∫ s−0.5

0.5
n(x)xβn(s − x)(s − x)βdx, (4)

where c is a constant and β = dB

d
with dB the fractal dimension

of the boundary and d the dimensionality of the space that the
graph is embedded in. xβ is proportional to the number of
surface points when x is the number of points in the volume
enclosed by the surface, e.g., for a sphere β = 2/3.

For the approximate solution of the master equation, we
need to solve

p+
m(s)

!= p−
s (s) = n(s)s

N
. (5)

Here, we use the ansatz n(s) = as−τ with τ � 1. For p+
m(s),

we obtain

p+
m(s) = ca2

∫ s−0.5

0.5
x−τ xβ(s − x)−τ (s − x)βdx

= ca2
∫ s−0.5

0.5
x−τ+β(s − x)−τ+βdx. (6)

After substituting x = ys, the dependence on s is more visible,

p+
m(s) = ca2

∫ 1− 1
2s

1
2s

y−τ+βs−τ+β(s − ys)−τ+βs dy

= ca2s1−2τ+2β

∫ 1− 1
2s

1
2s

[y(1 − y)]−τ+βdy. (7)

We want to show that the last integral is approximately constant
as a function of s for a reasonable range of parameters.
For convenience, we set α = −τ + β, which is not positive
because β � 1. For sufficiently large s, the values near the
limits of the integral contribute the most, and we approximate∫ 1− 1

2s

1
2s

[y(1 − y)]αdy

≈
∫ 1− 1

2s

1
2s

yα + (1 − y)αdy

= 1

1 + α

[(
1 − 1

2s

)1+α

−
(

1

2s

)1+α

−
(

1

2s

)1+α

+
(

1 − 1

2s

)1+α
]
. (8)

For sufficiently large s, the last expression can be further
approximated as∫ 1− 1

2s

1
2s

[y(1 − y)]αdy ≈ 2

1 + α
[1 − (2s)−1−α]. (9)

This expression is approximately constant for sufficiently large
s if α > −1. That is, we expect our analysis to hold if the slope
τ of n(s) is sufficiently shallow.

Given these approximations, the probability for merging is

p+
m(s) ≈ c′s1−2τ+2β, (10)

where c′ is a constant. Using this expression in the master
equation (5), we obtain for the exponents

1 − 2τ + 2β = 1 − τ (11)
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FIG. 6. Avalanche area distribution for the random geometric
graph and Erdős-Renyí network; here, N = 10242. Dotted lines show
power-law functions fitted to the data.
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FIG. 7. BTW results on the random geometric graph: boundary of critical clusters versus their size (a) and slope of the size distribution (b);
here, N = 10242. Dotted lines show power-law functions fitted to the data.

and, solving for τ , our final result

τ = 2
dB

d
. (12)

The slope of the cluster-size distribution is directly related to
the fractal dimension of the cluster boundary. In the following,
we test this relationship in simulation. The above condition
α > −1 is equivalent to dB

d
< 1. So, we expect the simulation

results to differ from our theoretical approximation when the
dimensionality of the boundary approaches the dimensionality
of the embedding space, e.g., for Erdős-Renyí networks, dB =
d. For one-dimensional graphs, τ would be zero according
to the above equation and our ansatz would be violated.
The 1D case, however, can be solved exactly, giving n(s) =
n2

c/N exp(−snc/N ).
The fractal dimension, dB , is lower bounded by d − 1.

So, τ is lower bounded by τ = 2 d−1
d

, which increases with
increasing dimensionality d. That is, in higher-dimensional
spaces, the exponent τ is larger and clusters tend to be smaller.

VI. CLUSTER-FORMATION RESULTS

In simulation, we evaluated the cluster-formation model
and compared size distributions with the above theoretical
result. We tested the relationship between slope τ and fractal
dimension dB/d on six networks: hexagonal lattice, cubic
lattice, 4D lattice, random geometric graph (RGG) in a plane,
RGG inside a sphere, and Erdős-Renyí (ER) network, each
with N = 4096 nodes. The number of clusters had to be chosen
carefully because it relates to the normalization constant of the
power-law distribution. We chose nc = 200 for the hexagonal
lattice, nc = 400 for the cubic one, nc = 1200 for the 4D one,
nc = 200 for the RGG in a plane, nc = 400 for the RGG in a
sphere, and nc = 2500 for the ER network.

For the cluster formation, we iterated the above split and
merge operations 20 000 times to ensure convergence to a

cluster-size distribution. Moreover, to obtain better cluster-
size statistics, this formation process was repeated 100 times,
except 200 times for the hexagonal lattice (because the overall
number of resulting clusters was lower) and 500 times for
the ER network, which produced only a few larger clusters.
For each network type, the resulting clusters were combined
into one distribution, from which the fractal dimensions, dB/d,
were computed from a power-law fit to the cluster boundary
versus size relationship. The overall process was repeated four
times, each with a different random initialization of the random
networks.

Figures 4(a) and 4(c) show one power-law fit for each net-
work type. Across the four runs, the slopes varied only slightly:
the dB/d values for the six networks were 0.5536 ± 0.0016 for
hexagonal lattice, 0.7689 ± 0.0020 for cubic lattice, 0.8627 ±
0.0003 for 4D lattice, 0.5165 ± 0.0022 for RGG in plane,
0.6850 ± 0.0057 for RGG in sphere, and 0.9710 ± 0.0007 for
ER (mean ± std, n = 4). Based on these values, we computed
the theoretical slope, τ , according to (12). As a result, the theory
matched well the simulated cluster-size distributions over
the same range for which dB/d was approximately constant
(Fig. 4). As expected, our theoretical approximation deviated
from the ER-network result.

VII. BTW-MODEL RESULTS

On the BTW model, we evaluated the relationship between
fractal dimension and slope of the critical-cluster distribution
and compared with the avalanche-area distribution. Here,
the fractal dimension was computed on the boundary of the
critical clusters as defined in Sec. III. We used six types of
networks: 2D, 3D, 4D, and 5D lattices, RGG in plane, and
ER network, each having N nodes. The lattices and the RGG
had open boundaries, i.e., grains passing the boundaries of the
hypercubes were lost. For ER, we used dissipation to remove

TABLE I. Fractal dimension dB/d in the BTW model for different networks (mean ± std, n = 4).

Network RGG 2D 3D 4D

N = 5122 0.6025 ± 0.0013 0.6171 ± 0.0003 0.7628 ± 0.0003 0.8919 ± 0.0010
N = 10242 0.6056 ± 0.0016 0.6177 ± 0.0003 0.7645 ± 0.0001 0.8991 ± 0.0003
N = ∞ 0.6335 ± 0.0174 0.6233 ± 0.0035
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TABLE II. Slopes, τc, of critical-cluster distribution for different networks (mean ± std, n = 4).

Network RGG 2D 3D 4D

N = 5122 0.978 ± 0.004 1.0609 ± 0.0006 1.219 ± 0.006 1.80 ± 0.02
N = 10242 1.010 ± 0.004 1.0835 ± 0.0006 1.224 ± 0.006 1.54 ± 0.02
N = ∞ 1.30 ± 0.05 1.286 ± 0.007

grains; i.e., with a small probability (100/N ), a toppling grain
did not transfer to a neighboring node and instead got removed.

We ran experiments on two network sizes, N = 5122 and
N = 10242, rounding the side lengths of the lattices to the
nearest integer, e.g., L = [10242/3] for a 3D lattice. Each node
was randomly initialized uniformly in the integer interval from
1 to z, where z is the toppling threshold. In each simulation run,
we iterated 10 000 000 additions of one grain. For analysis, we
omitted the first N iterations, allowing for sufficient cooling
time to reach the SOC state. To obtain errors, experiments were
repeated four times (recomputing the random graphs in each
experiment).

Qualitatively, the results matched the ones for our cluster-
formation model (Fig. 5). The fractal-dimension ratio dB/d

increased with dimension of the lattice, and the slope of
the avalanche-area distribution also increased with increasing
dB/d. On the ER network, the avalanche-area distribution was
steeper compared to the RGG (Fig. 6).

On the RGG, critical clusters formed as on the 2D square
lattice. Different from the square lattice, though, the slopes of
the cluster and boundary size distributions were slightly curved
(Fig. 7). The slope of the probability distribution of cluster
sizes curved in a way that was consistent with our cluster-
formation hypothesis: the slope was steeper for sizes at which
the boundary curve was steeper too. We evaluated the slope at
a near straight section (dotted lines in Fig. 7), using the same
cluster-size interval for both boundary and probability curves
(the corresponding numerical values of the slopes are shown
Tables I and II).

We evaluated the fractal dimensions dB/d (Table I) and
the exponents of the distributions for the critical-cluster size,
τc, and the avalanche area, τa (Tables II and III). The fractal
dimensions and critical-cluster slopes could be evaluated only
for dimensions smaller than five (see Sec. III). The slopes
increased with increasing dimensionality of the embedding
space of the network. Across different network sizes, the fractal
dimensions varied less compared to the slopes. For the 2D
lattice and RGG, we also estimated slopes at infinite lattice
size, as described in [12], and applied the same method for the
fractal dimensions. The same extrapolation, however, does not
hold for higher dimensions.

As a result, for dB/d at N = ∞, according to the cluster-
formation hypothesis, the expected slopes were 1.247 ± 0.007

and 1.27 ± 0.03 for the 2D lattice and RGG, respectively. In
comparison, for the estimated slopes at infinity, we obtained
for the 2D lattice τc = 1.286 ± 0.007 and τa = 1.301 ± 0.006
([12] reported τa = 1.33 ± 0.01) and for RGG τc = 1.30 ±
0.05 and τa = 1.37 ± 0.03. These errors are only statistical and
do not take into account systematic errors when extrapolating
to infinity due to the uncertain dependence on N .

For the 2D networks, the estimates based on the cluster-
formation hypothesis were close to the experimental values of
τc. For the cubic and 4D lattices, the theoretically expected
slopes would be larger than the mean-field value of 1.5, while
they are known to be smaller [10]. So apparently, our theory
deviates with increasing dimensionality, and the slopes instead
approach the mean-field value—see Discussion.

VIII. DISCUSSION

We discovered a phenomenon in the BTW model for
low dimensions, and based on this phenomenon suggested
a mechanism behind the self-organized critical fluctuations.
This mechanism approximately predicted the exponent of the
avalanche-area distribution on networks embedded in two
dimensions.

In low dimensions, critical clusters of nodes formed in the
BTW model that enabled the propagation of an avalanche and,
at the same time, remained unchanged by the passing of the
avalanche. This formation is, apparently, restricted to networks
embedded in two, three, or four dimensions. The critical
clusters disappeared in six or more dimensions, and there was
a transition between four and six dimensions. This transition
coincides with the lower boundary of the dimensionality for
which the mean-field theory correctly predicts the exponent of
the avalanche-size distribution [10].

The mean-field theory assumes or implies that the state
values of the nodes are distributed with equal probability [5].
In contrast, in our experiments, we found that this distribution
is skewed towards values near the toppling threshold for
lattices in lower dimensions. So, the inability of the mean-
field theory to explain exponents in low dimensions is to be
expected. Moreover, interestingly, the probability of a node
at critical value (0.446 in our experiments with a 2D lattice)
is lower than the percolation threshold (about 0.593 for site
percolation in a 2D lattice [13]). So, path-connected clusters of

TABLE III. Slopes, τa , of avalanche-area distribution for different networks (mean ± std, n = 4).

Network RGG 2D 3D 4D 5D ER

N = 5122 1.135 ± 0.003 1.1174 ± 0.0007 1.358 ± 0.003 1.515 ± 0.007 1.673 ± 0.018 1.495 ± 0.005
N = 10242 1.159 ± 0.002 1.1358 ± 0.0004 1.348 ± 0.003 1.496 ± 0.003 1.637 ± 0.002 1.485 ± 0.008
N = ∞ 1.37 ± 0.03 1.301 ± 0.006
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nodes at critical value cannot explain the observed power-law
distributed avalanches on their own. There has to be another
mechanism or another configuration of critical clusters, which
we appear to have found.

We demonstrated that a simple split-and-merge
operation of clusters of nodes in a network can explain
the dependence of the exponent on the dimensionality of the
space that the network is embedded in. In a higher-dimensional
space, the magnitude of the exponent is larger, i.e., clusters
tend to be smaller. Qualitatively, the same behavior has been
observed in the BTW model [10].

Theoretically, analyzing our cluster-formation model, we
found a direct relationship between the exponent of the cluster-
size distribution and the ratio of the fractal dimension of the
cluster boundary and the dimensionality of the embedding
space. This relationship holds for sufficiently small ratios,
dB/d < 0.9. Based on the same relationship, we could ap-
proximately predict the exponent of the distribution of critical
clusters in the 2D BTW model (1.247 vs 1.286) and in the
Abelian sandpile model on a random geometric graph (1.27
vs 1.30). For the RGG, the difference between prediction
and experiment was within the error bounds, but for the 2D
lattice, there remained a systematic difference that was not
explained by our statistical errors. This difference might arise
from the uncertain extrapolation to infinite lattice size or the
oversimplification of our cluster-formation process. In the
BTW model, critical clusters may split into more than two
parts or may form by combining more than two clusters.

The exponents of the critical clusters were close to those
for the avalanche area distribution, but slightly different: in
two to three dimensions, they were slightly smaller. The critical
clusters are a subset of an avalanche area, and the percentage of
this subset increases with increasing avalanche area (in lower
dimensions), skewing the exponents to lower values.

Our predictions for the exponents of the BTW model do
deviate from experimental results for higher-dimensional lat-
tices. Based on the fractal dimensions, values above 1.5 would
be expected, but the mean-field theory bounds these values to
1.5. So, we hypothesize that with increasing dimensionality,
there is a transition between the cluster-formation process and
the critical branching process [5] of the mean-field theory
(Fig. 8). According to this hypothesis, a network embedded in
an infinite dimensional space, e.g., an Erdős-Renyí network,
will have an exponent of 1.5, which matches our experimental
value for ER.
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FIG. 8. Notional transition between cluster-formation dynamics
and mean-field theory depending on the fractal dimension of clusters.

Our study provided insights into the mechanism of self-
organized criticality. Particularly, it sheds light into the depen-
dence on the network topology on top of which an SOC process
is carried out. Moreover, we illustrated that likely no common
mechanism exists that explains all phenomena attributed to
SOC. Even within one model, the Abelian sandpile, we can,
apparently, observe a transition between mechanisms when
changing the network topology. Finding concrete mechanisms
behind SOC phenomena will help us to strengthen the def-
inition of SOC, understand where it occurs, and exploit it
for application. More work is required to solidify if cluster
formation is indeed the dominate process for BTW models
in low dimensions and to which other SOC phenomena it
applies.

ACKNOWLEDGMENTS

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) and Space and
Naval Warfare Systems Center Pacific (SSC Pacific) under
Contract No. N66001-15-C-4020. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of
DARPA or SSC Pacific.

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
(1987).

[2] J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167
(2003).

[3] B. Gutenberg and C. F. Richter, Bull. Seismol. Soc. Am. 46, 105
(1956).

[4] H. Hoffmann and D. W. Payton, Chaos Solitons Fractals 67, 87
(2014).

[5] H. J. Jensen, Self-Organized Criticality: Emergent Complex Be-
havior in Physical and Biological Systems, Cambridge Lecture
Notes in Physics (Cambridge University Press, Cambridge, UK,
1998).

[6] Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev. Lett.
68, 1244 (1992).

[7] K. Christensen and Z. Olami, Phys. Rev. E 48, 3361 (1993).
[8] S. A. Janowsky and C. A. Laberge, J. Phys. A: Math. Gen. 26,

L973 (1993).
[9] S. Zapperi, K. B. Lauritsen, and H. E. Stanley, Phys. Rev. Lett.

75, 4071 (1995).
[10] A. Chessa, E. Marinari, A. Vespignani, and S. Zapperi, Phys.

Rev. E 57, R6241 (1998).
[11] D. Dhar, Phys. Rev. Lett. 64, 1613 (1990).
[12] S. Lübeck and K. D. Usadel, Phys. Rev. E 55, 4095 (1997).
[13] J. L. Jacobsen, J. Phys. A: Math. Theor. 47, 135001 (2014).

022313-8

https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
http://www.jneurosci.org/content/23/35/11167.abstract
https://doi.org/10.1016/j.chaos.2014.06.011
https://doi.org/10.1016/j.chaos.2014.06.011
https://doi.org/10.1016/j.chaos.2014.06.011
https://doi.org/10.1016/j.chaos.2014.06.011
https://doi.org/10.1103/PhysRevLett.68.1244
https://doi.org/10.1103/PhysRevLett.68.1244
https://doi.org/10.1103/PhysRevLett.68.1244
https://doi.org/10.1103/PhysRevLett.68.1244
https://doi.org/10.1103/PhysRevE.48.3361
https://doi.org/10.1103/PhysRevE.48.3361
https://doi.org/10.1103/PhysRevE.48.3361
https://doi.org/10.1103/PhysRevE.48.3361
https://doi.org/10.1088/0305-4470/26/19/001
https://doi.org/10.1088/0305-4470/26/19/001
https://doi.org/10.1088/0305-4470/26/19/001
https://doi.org/10.1088/0305-4470/26/19/001
https://doi.org/10.1103/PhysRevLett.75.4071
https://doi.org/10.1103/PhysRevLett.75.4071
https://doi.org/10.1103/PhysRevLett.75.4071
https://doi.org/10.1103/PhysRevLett.75.4071
https://doi.org/10.1103/PhysRevE.57.R6241
https://doi.org/10.1103/PhysRevE.57.R6241
https://doi.org/10.1103/PhysRevE.57.R6241
https://doi.org/10.1103/PhysRevE.57.R6241
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1103/PhysRevE.55.4095
https://doi.org/10.1103/PhysRevE.55.4095
https://doi.org/10.1103/PhysRevE.55.4095
https://doi.org/10.1103/PhysRevE.55.4095
https://doi.org/10.1088/1751-8113/47/13/135001
https://doi.org/10.1088/1751-8113/47/13/135001
https://doi.org/10.1088/1751-8113/47/13/135001
https://doi.org/10.1088/1751-8113/47/13/135001



