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Phase diagram of restricted Boltzmann machines and generalized Hopfield networks
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Restricted Boltzmann machines are described by the Gibbs measure of a bipartite spin glass, which in turn can
be seen as a generalized Hopfield network. This equivalence allows us to characterize the state of these systems
in terms of their retrieval capabilities, both at low and high load, of pure states. We study the paramagnetic-spin
glass and the spin glass-retrieval phase transitions, as the pattern (i.e., weight) distribution and spin (i.e., unit)
priors vary smoothly from Gaussian real variables to Boolean discrete variables. Our analysis shows that the
presence of a retrieval phase is robust and not peculiar to the standard Hopfield model with Boolean patterns.
The retrieval region becomes larger when the pattern entries and retrieval units get more peaked and, conversely,
when the hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at
low load retrieval always exists below some critical temperature, for every pattern distribution ranging from the
Boolean to the Gaussian case.
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I. INTRODUCTION

The genesis of modern Artificial Intelligence (AI) can be
traced quite far back in time. Beyond the pioneering and histor-
ical contributions around the beginning of the last century, the
most celebrated milestones are the neuron model of McCulloch
and Pitts [1], the Rosenblatt perceptron [2], and the Hebb
learning rule [3]. The latter was, in turn, exploited by Hopfield
many years later to write his famous paper on neural networks
from the connectionist perspective [4]. There has been a
growing stream of studies of neural networks ever since, with
the subject attracting the interest of various communities, from
biology to signal processing and information theory [5–8].
The physics angle on the topic is mainly represented by the
statistical mechanics of spin glasses [9]. In particular, problems
of great biological and technological relevance, such as the ca-
pability to learn or retrieve memories, find a simple formulation
in a genuine statistical mechanics language [4–7,11–13].

However, the models used to implement these two crucial
features of neural networks—learning and retrieval—often
start from quite different assumptions. For instance, in modern
machine-learning approaches such as deep learning [8,10],
network weights are normally taken as real, enabling the use of
gradient descent for learning and inference. On the other side,
the standard theory of pattern retrieval, as exemplified by the
Amit-Gutfreund-Sompolinsky analysis of associative neural
networks [11,12], assumes Boolean patterns. Nevertheless, the
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two most utilized models for machine learning and retrieval,
i.e., restricted Boltzmann machines (RBMs) and associative
Hopfield networks are known to be equivalent [14–18]. Their
relation is easily understood from the point of view of bipartite
spin glasses: on the one hand, the Gibbs measure of such
systems is the same as the one of Restricted Boltzmann
Machines, while on the other hand, bipartite spin glasses
constitute a class of disordered systems in which the Hopfield
model for neural networks can be embedded.

For this reason we analyze in this paper spin glasses defined
on a bipartite network. We study the retrieval in these networks
while varying both spin or unit priors and pattern or weight
distributions continuously between the Boolean and the real
Gaussian limits. We show that the presence of a ferromagnetic
region of retrieval is not peculiar to the standard Hopfield
model, but occurs also in the case of continuous units and
weights when these take the form of a Gaussian “softening”
of Boolean variables. Moreover, while retrieval disappears
for Gaussian weights at high load, in the low-load limit our
generalized Hopfield networks always have a retrieval phase
throughout the entire range of pattern distributions, ranging
from the Boolean to the Gaussian cases. This implies a degree
of robustness in the machine-learning setup, where weights
evolve on real axes and one usually works at low load, i.e.,
with a small number of features, to avoid overfitting [10,19].

A. Generalized Hopfield models and restricted
Boltzmann machines

The Hopfield model introduced in Ref. [4] is a celebrated
paradigm for neural networks in which the neurons are rep-
resented by N spins, taking values ±1. The energy function
of the system is defined in terms of p so-called patterns,
denoted by ξμ, μ = 1, . . . ,p. It is natural to take the patterns
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FIG. 1. Three equivalent architectures of neural networks: in a restricted Boltzmann machine (RBM) (consisting of N1 = 5 σ variables and
N2 = 3 τ variables in the figure) the role of hidden and visible units can be exchanged and marginalizing over the hidden units one obtains two
dual generalized Holpfield models (GHMs), where the visible layer of the RBM constitutes the network and the hidden layer determines the
interaction.

to be N -dimensional random vectors with independent and
identically distributed components, which makes the Hopfield
model a spin glass. Given an instance of the patterns, the
Hamiltonian and the Gibbs measure of this system are

HN,p(σ |ξ ) := −
p∑

μ=1

Nm2
μ, GN,p(σ |ξ ) := e−βHN,p(σ |ξ )

Eσ e−βHN,p(σ |ξ ) ,

(1)
where β > 0 is the inverse temperature, β = 1/T , Eσ denotes
the statistical expectation with respect to the spin configura-
tions in {−1,1}N , and

mμ := 1

N

N∑
i=1

ξ
μ

i σi

are the pattern overlaps, or Mattis magnetizations [20]. Intu-
itively, the spin configurations selected by this Hamiltonian
have the best possible overlap with the quenched patterns. In
particular when the Gibbs average of mμ is nonzero for some
μ we say that this pattern is being retrieved. For a short but
comprehensive summary of the main known results on this
model we refer to Section II B of Ref. [16].

A generalization of the Hopfield model is obtained by
replacing m2 in Eq. (1) with a generic even function u(m):

HN,p(σ |ξ ) = −
p∑

μ=1

u(
√

Nmμ). (2)

It is physically interesting, but not necessary, to consider
convex u [2,5,7,21–23]. Any convex, even and smooth u

can be expressed as the cumulant generating function of a
sub-Gaussian symmetric probability distribution with unit
variance [24]. Interpreting the random variables with this
distribution as ancillary spins, we obtain a correspondence
between generalized Hopfield models and bipartite spin-glass
models. The latter are defined as follows: consider a bipartite
system, with one part containing N1 spins denoted σ and
the other N2 spins written as τ . Also, let N = N1 + N2,
α = N2/N and define the partition function

ZN1,N2 (β; ξ ) = Eσ,τ exp

⎛
⎝√

β

N

N1∑
i=1

N2∑
μ=1

ξ
μ

i σiτμ

⎞
⎠. (3)

Setting u(x) = lnEτ1e
xτ1 , the cumulant-generating function of

the random variable τ1, and marginalizing over all τ , we clearly

obtain the partition function of a generalized Hopfield model
with interaction u, as claimed. Therefore, we can think of the
ξ

μ

i as patterns, each entry being independently drawn from
Pξ (ξμ

i ). On the other hand, Eq. (3) can be viewed as a restricted
Boltzmann machine, where a layer of visible units σ interacts
with a layer of hidden units τ through the weights ξ (see Fig. 1).

The standard Hopfield model is recovered when the ξ and
the σ are binary and the τμ are Gaussian variables, but we study
in this paper a much larger class of priors Pσ (σi), Pτ (τμ), and
Pξ (ξμ

i ). This corresponds in the generalized Hopfield model to
varying the pattern distribution, the spin prior and the form of
the interaction u.

Here we investigate the general phase diagram, especially
with regards to the existence of a retrieval phase (focusing on
single pattern retrieval) and its interplay with the spin-glass
phase. Similar models of RBMs with generic priors have
recently been studied using belief propagation and related
methods in Refs. [16–18,25].

B. Model and RS equations

We shall use random variables that interpolate between
Gaussian and binary distributions. Let � ∈ [0,1], g ∼ N (0,1),
and ε be a symmetric random variable taking values ±1. We
define ζ as

ζ (�) =
√

�g + √
1 − �ε,

and we denote by D(�) its probability distribution. Of course,
E[ζ ] = 0 and E[ζ 2] = 1 for all �.

Throughout we will draw both the patterns and the spins
from D(�), i.e., ξ

μ

i ∼ D(�ξ ), σi ∼ D(�σ ), and τμ ∼ D(�τ )
for �ξ,�σ ,�τ ∈ [0,1]. It will be useful to define the shorthand
δ = √

1 − �ξ .
To allow for retrieval phases in our analysis, we assume

there are some numbers �1 and �2 of condensed patterns with
pattern overlaps or Mattis magnetizations,

mμ(σ ) = 1

N1

N1∑
i=1

ξ
μ

i σi, μ = 1, . . . ,�2, (4)

ni(τ ) = 1

N2

N2∑
μ=1

ξ
μ

i τμ, i = 1, . . . ,�1, (5)
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of order unity. We consider, for the sake of simplicity, the
possible retrieval of a single pattern, i.e., (�1,�2) = (1,0) or
(0,1); this is known as a pure-state ansatz. The general case of
mixed states is a straightforward generalization [6] and can be
considered a finer characterization of the retrieval region we are
going to describe. On the other hand, the possible presence of
frozen but disordered states (spin glass region) can be described
by introducing the overlaps,

q(σ a,σ b) = 1

N1

N1∑
i=1

σa
i σ b

i , r(τ a,τ b) = 1

N2

N2∑
μ=1

τ a
μτ b

μ, (6)

between two configurations (σ a,τ a) and (σ b,τ b) sampled from
the Gibbs measure with the same pattern realisation, and
the self-overlaps Q(σ ) and R(τ ) in the case a = b. From a
fairly standard replica calculation and the replica symmetry
assumption (see Appendix A for more details), one gets that
in the thermodynamic limit the Gibbs averages of the order
parameters converge to the solutions of the following system:

m = 〈ξ 〈σ 〉σ |z,ξ 〉z,ξ , (7)

n = 〈ξ 〈τ 〉τ |η,ξ 〉η,ξ , (8)

q = 〈〈σ 〉2
σ |z,ξ

〉
z,ξ

, (9)

r = 〈〈τ 〉2
τ |η,ξ

〉
η,ξ

, (10)

Q = 〈〈σ 2〉σ |z,ξ 〉z,ξ , (11)

R = 〈〈τ 2〉τ |η,ξ 〉η,ξ . (12)

Here z and η are standard Gaussian random variables, while ξ is
sampled from Pξ . The distributions of σ and τ being averaged
over are proportional to, respectively,

Pσ (σ )eβ(1−α)�τ mξσ+√
βαr zσ+βα(R−r)σ 2/2, (13)

Pτ (τ )eβα�σ nξτ+√
β(1−α)q ητ+β(1−α)(Q−q)τ 2/2. (14)

These equations are valid also for more general spin priors
Pσ (σ ) and Pτ (τ ), provided one then defines �σ (and similarly
�τ ) as the high-field response of the spins, in the sense that
the average of σ over Pσ (σ )ehσ approaches �σh for large h.

We will repeatedly need averages over the distribution
Eqs. (13) and (14). Taking the first as an example, the prior
as defined is Pσ (σ ) ∝ ∑

ε exp[−(σ − ε
√

1 − �σ )2/(2�σ )].
Thus, the distribution Eq. (13) of σ has the generic form

Z−1
σ

∑
ε

e−σ 2/(2γσ )+(φσ ε+hσ )σ , (15)

where we have set φσ = √
1 − �σ/�σ and

γ −1
σ = �−1

σ − βα(R − r),

hσ = β(1 − α)�τmξ +
√

βαr z. (16)

Averages over the distribution Eq. (15) then follow from the
effective single-spin partition function

Zσ =
∫

dσ
∑

ε

e−σ 2/(2γσ )+(φσ ε+hσ )σ ∝
∑

ε

eγσ (φσ ε+hσ )2/2,

(17)

giving

〈σ 〉σ |z,ξ = ∂hσ
ln Zσ =

∑
ε γσ (φσ ε + hσ )eγσ (φσ ε+hσ )2/2∑

ε eγσ (φσ ε+hσ )2/2

(18)

= γσhσ + γσφσ tanh(γσφσhσ ). (19)

The average of σ 2 can similarly be found from

〈σ 2〉σ |z,ξ − 〈σ 〉2
σ |z,ξ = ∂2

hσ
ln Zσ = ∂hσ

〈σ 〉σ |z,ξ

= γσ + γ 2
σ φ2

σ [1 − tanh2(γσφσhσ )],

(20)

hence

〈σ 2〉σ |z,ξ = γσ + γ 2
σ

(
h2

σ + φ2
σ

) + 2γ 2
σ φσhσ tanh(γσφσhσ ).

(21)

Analogous results hold for the averages of τ over the distribu-
tion Eq. (14).

The RBM and equivalent Hopfield model defined above
generalizes a number of existing models that are included as
special cases. For �σ = 0, �τ = 1, and �ξ = 0, we recover
the standard Hopfield model, while if �ξ = 1, then we have
the analog Hopfield model studied in Refs. [15,26,27] (see also
Ref. [28] for the associated Mattis model). For �σ = �τ = 0
we recover the bipartite Sherrington-Kirkpatrick (SK) model
studied in Refs. [29,30]. In this case it is known that the
thermodynamics is not affected by the pattern distribution
[31]. Throughout this paper we consider only fully connected
networks: results on the sparse case restricted to the Hopfield
model can be found in Refs. [32–34].

C. Summary and further comments

The aim of this paper is to study the phase diagram of
restricted Boltzmann machines with generic priors and pattern
or weight distributions as defined above. In general, one
expects three phases: a high-temperature (or paramagnetic)
phase, in which the free energy equals its annealed bound and
all the order parameters are zero; a glassy phase, where all
pattern overlaps are still zero but replica symmetry breaking
(RSB) is expected; and finally a retrieval phase, in which the
overlap still has a glassy structure, but now one or more pattern
overlaps have nonzero mean values. The precise organization
of the thermodynamic states is unknown in the glassy and
retrieval regions. In particular, while in the glassy phase it is
supposed to be similar to the one of the SK model [9,23], the
understanding of the retrieval phase remains severely limited
[6,23,35] and represents an open challenge for theoretical and
mathematical physics.

Throughout the paper the starting point for our analysis
will be Eqs. (7)–(12). We will study them analytically and
numerically in the various regimes.

The high-temperature transition is well understood by exact
methods for the standard Hopfield model [6,35], for the
analog Hopfield model 14,26,27], and for the bipartite SK
model [29]. Moving beyond these special cases, in Sec. II
we give a theoretical prediction for the transition of the order
parameter q as the distributions of the priors and patterns
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vary. We will see that the transition is independent of the
particular pattern distribution. We find explicit expressions
for the transition line for �σ = 0 (one layer made of ±1
spins) and (with totally different methods in Appendix B) for
�σ = �τ = 1. The remaining intermediate cases are studied
by numerically solving the self-consistency Eqs. (7)–(12) for
the order parameters.

Next we analyze the retrieval region considering the re-
trieval of one single pattern. A simple argument shows that
no retrieval is possible for �σ = �τ = 0: retrieval requires
giving up an O(N ) amount of entropy in the σ -system. This is
worthwhile only if we can gain an extensive amount of energy.
The pattern being retrieved gives a field of O(

√
N ) acting on a

τ spin, so the response of it needs to be also O(
√

N ) to get an
overall O(N ) energy gain. This is impossible for binary τ , but
is possible for τ with a Gaussian tail, for which the cumulant
generating function grows quadratically at infinity. Hence, we
always consider �τ > 0.

In Sec. III we look at the low-load regime in which α = 0,1.
It turns out that the transitions in m and the replica overlap q

occur at the same temperature T = �τ , and both transitions are
continuous (as is known to be correct for the standard Hopfield
model [6,35]). First we concern ourselves with binary spins
�σ = 0, then we analyze �σ > 0, where it turns out that we
need to add an appropriate spherical cutoff.

In Sec. IV we study numerically the retrieval transition at
high load, i.e., α ∈ (0,1), so that the number of patterns is
proportional to the system size. First we vary separately �τ and
�ξ while keeping �σ = 0 fixed. At �τ = 1 we see absence of
retrieval in this analog Hopfield model (�ξ = 1), as expected
from Ref. [27]. An analysis at T = 0 shows, furthermore, that
the most efficient retrieval is given by the standard Hopfield
model.

Moving on to �σ > 0 we find that the model is well-defined
only for high temperature. However, it is interesting that while
for �σ = �τ = 1 (Gaussian bipartite model) the divergence
of the partition function coincides with the glassy transition,
in the intermediate cases there is still a region of retrieval in
the phase diagram. Finally, when we regularize the model,
again with a spherical cutoff, we observe a standard retrieval
phase, with a reentrant behavior of the transition line. The latter
would suggest a RSB scenario, as in the standard Hopfield
model [36].

In Appendix A we derive Eqs. (7)–(12) and in Appendix B
we briefly analyze the Gaussian bipartite spin glass via Leg-
endre duality, a method introduced for the spherical spin glass
in Ref. [37].

The model we analyze is, for �σ , a neural network with
soft spins. Soft-spin networks were introduced at an early stage
of the development of the field by Hopfield in Ref. [38], but
were not much studied in the sequel. From the (bipartite) spin-
glass perspective, soft spins (spherical or Gaussian) permit
analytic methods to be more easily applied, compared to the
more commonly studied binary ±1 spins. Indeed, there is a
substantial number of results in the literature. In Refs. [39] and
[40] (see also Ref. [23]) two similar models of spherical neural
networks are introduced, with spherical spins and quadratic
(-like) interactions. The authors find the free energy to be
RS and no retrieval region. However, in Ref. [39] it is noted
that retrieval appears when a quartic term is added to the

Hamiltonian. More recently in Ref. [41] a spherical spin-glass
model was considered with random interaction given by a
Wishart random matrix, which is closely related with the work
in Refs. [23,39,40]. The authors find the free energy (which
one can argue to be RS by comparison with the Wigner matrix
case [37,42,43]) and its fluctuations for all temperatures. No
retrieval is observed. Finally, a spherical bipartite spin glass is
analyzed in Ref. [44] for high temperatures, far from the critical
point, and the authors find the free energy in a variational
form. Interestingly enough, for this model our analysis yields
the same paramagnetic or spin-glass transition line as for the
bipartite SK model, and no retrieval (see the Secs. IV C, IV D,
and Appendix B).

As for the RSB scenario there are only a few re-
sults for bipartite models. To the best of our knowledge
these are limited to 1RSB for the standard Hopfield model
(see Refs. [6,45]) and to a partial mathematical investigation
of the bipartite (in fact, multipartite) SK model [30,46]. There-
fore, we will restrict ourselves only to RS approximations,
where needed.

II. TRANSITION TO THE SPIN-GLASS PHASE

At very high temperature (β = 0) the distribution Eqs. (13)
and (14) have no external effective fields and the thermo-
dynamic state is completely random, with order parameters
m = n = q = r = 0. Lowering the temperature, a spin-glass
transition to a frozen but disordered state takes place, creating
nonzero overlaps q and r while m and n remain zero. Assuming
this transition is continuous, we can linearize Eqs. (9) and (10)
for small q and r:

q ∼ βαr〈σ 2〉2
0 + o(r), (22)

r ∼ β(1 − α)q〈τ 2〉2
0 + o(q). (23)

Here 〈 〉0 denotes the expectation value with respect to Eqs. (13)
and (14) with q = r = 0 (in particular without the random
field). The resulting transition criterion is

1 = β2α(1 − α)〈σ 2〉2
0〈τ 2〉2

0 = β2α(1 − α)Q2R2, (24)

where, using Eqs. (11) and (12), Q and R are the solutions of

Q = 〈σ 2〉0 = Z−1
σ Eσ σ 2eβαRσ 2/2, (25)

R = 〈τ 2〉0 = Z−1
τ Eτ τ

2eβ(1−α)Qτ 2/2. (26)

This result does not depend on the particular pattern distribu-
tion Pξ (ξ ) (see also Ref. [47]), but it does clearly involve the
spin priors. With these priors fixed, the transition takes place
at an inverse temperature βc(α) > 0 that is a function of α. For
β < βc(α) one finds that the self overlaps are the solutions of

Q = (
1 − βα�2

σ R
)
/(1 − βα�σ R)2, (27)

R = (
1 − β(1 − α)�2

τQ
)
/(1 − β(1 − α)�τQ)2. (28)

The relation Eq. (27) can be derived directly from Eq. (21) with
γ −1

σ = �−1
σ − βαR and hσ = 0, and similarly for Eq. (28).

Solving Eqs. (27) and (28) together with Eq. (24), Tc(α) =
1/βc(α) satisfies
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FIG. 2. Paramagnetic (P)–spin-glass (SG) transition line Tc(α) for
different spin priors. The values of the relevant parameters, �τ and
�σ , can be read off from each curve as �τ = Tc(0) and �σ = Tc(1).
The two continuous lines (lower, �σ = �τ = 0, bipartite SK; upper,
�σ = �τ = 1, bipartite Gaussian) are completely symmetric with
respect to exchange of the two network layers, i.e., the transformation
α → 1 − α. In the middle the Hopfield critical line, �σ = 0, �τ = 1.

(i) limα→0 Tc(α) = �τ , limα→1 Tc(α) = �σ ,
(ii) lim�σ →0 Tc(α) = 1

2 (2(1 − α)�τ + √
α(1 − α)

+ [α(1 − α) + 4�τ (1 − �τ )(1 − α)
√

α(1 − α)]1/2),
and of course the symmetric expression for �τ → 0, which is
obtained by replacing in (ii) �τ by �σ and α by 1 − α.

Relation (ii) recovers a number of known special cases.
For �σ = �τ = 0, one gets the critical line of the bipartite
SK model Tc = √

α(1 − α) as found in Ref. [29] (see also
Ref. [30]). When �σ = 0 and �τ = 1, one has the standard
Hopfield model and finds Tc = 1 − α + √

α(1 − α) [12,15].
The case of both Gaussian priors (�σ = �τ = 1) can be
found independently using the Legendre duality between the
Gaussian bipartite spin-glass model and the spherical Hopfield
model studied in Refs. [39–41]; see Appendix B. The general
bimodal case can be analyzed numerically; the results are
shown in Fig. 2.

III. TRANSITION TO RETRIEVAL I: LOW LOAD

In the low-load regime the size of one layer is negligible with
respect to the total size of the system, N1 	 N or N2 	 N ,
corresponding, respectively, to α = 1 or α = 0. In this case it is
possible to obtain Eq. (7) without any RS approximation since
the model becomes a generalized ferromagnet. This can be
studied in terms of the pattern overlaps only without the need
to consider q and r [6,35]. Focusing on α = 0 and linearizing
Eq. (7) in m we get

m = β�τm + O(m3),

which shows a bifurcation at T = �τ . As is known in special
cases, it therefore remains true for generic �σ , �τ , and �ξ

that the spin-glass and low-load retrieval transitions occur at
the same temperature.

We next consider the strength of retrieval at temperatures
below the transition: the inner average of Eq. (7) is, using

Eq. (19) with γσ = �σ ,

〈σ 〉σ |ξ = �σβ�τmξ +
√

1 − �σ tanh(
√

1 − �σβ�τmξ ).

To carry out the remaining average over ξ , which by assump-
tion is drawn from the bimodal distribution D(�ξ ) with peaks
at ±δ = ±√

1 − �ξ , we set (see Sec. I B) ξ = δε + √
�ξg. As

〈σ 〉σ |ξ is odd in ξ , the two possible values of ε = ±1 give the
same contribution to 〈ξ 〈σ 〉σ |ξ 〉 and we have to average only
over g. After an integration by parts, this gives

m = fβ,�(m), (29)

with

fβ,�(m)

= β�σ �τm +
√

1 − �σ {δ t̄(β
√

1 − �σ�τδ m,
√

v)

+β
√

1 − �σ�τ�ξm[1 − t2(β
√

1 − �σ�τδ m,
√

v)]}.
(30)

Here have introduced the abbreviations

t̄(a,b) = 〈tanh(a + b g)〉g, t2(a,b) = 〈tanh2(a + b g)〉g,
(31)

where the averages are over a zero mean, unit variance
Gaussian random variable g. We have also defined

v = β2(1 − �σ )�2
τ�ξm

2. (32)

For binary spins (�σ = 0), |σ | = 1 and so fβ,�(m) =
〈ξ 〈σ 〉σ |ξ 〉 is bounded (between −〈|ξ |〉 and +〈|ξ |〉). This en-
sures that a nontrivial solution m of Eq. (29) always exists
below the retrieval transition. The zero temperature limit of
m can be found explicitly: for β → ∞, 〈σ 〉σ |ξ → sgn(mξ ) so
fβ,�(m) → sgn(m)〈ξ sgn(ξ )〉, and therefore m → ±〈|ξ |〉 with

〈|ξ |〉 =
√

2�ξ

π
e−δ2/(2�ξ ) + δ erf

(
δ√
2�ξ

)
. (33)

For generic soft spins (�σ > 0), on the other hand, fβ,�(m)
is no longer bounded but grows as β�σ �τm for large
|m|. The spontaneous magnetization, which is the solution of
m = fβ,�(m), therefore diverges at Tc = �σ�τ as temperature
is lowered; see Fig. 3. For lower T the model is ill-defined as we
are going to see in more detail in the next section, thus we need
to regularize the spin distribution in at least one network layer.

To fix the choice of regularization we note that for a large
system, every rotationally invariant weight on the vector of
σ -spins is equivalent to a rigid constraint at some fixed radius.
Without loss of generality we therefore regularize by multiply-
ing the σ -prior by the spherical constraint δ(N − ∑N

i=1 σ 2
i ).

The resulting prior still depends on �σ ; at �σ = 1 it is a
uniform distribution on the sphere and we obtain the spherical
Hopfield model studied in Refs. [39–41]. At �σ = 0, on the
other hand, the regularization constraint is redundant and we
recover the standard Hopfield model. One can now analyze the
regularized model using similar replica computations to those
above. The only difference is an extra Gaussian factor e−ωσ 2/2

in the effective σ -spin distribution. Here ω is a Lagrange
multiplier that is determined from the spherical constraint
Q = 1. It changes the variance of the two Gaussian peaks from
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FIG. 3. Soft bipartite model at low load (α = 0): for a generic pat-
tern distribution (here δ = 0.5) a spontaneous magnetization appears
at T = �τ , diverging at T = �σ �τ .

�σ to γσ = (�−1
σ + ω)−1. Accordingly, instead of fβ,� in Eq.

(30) one obtains a modified function

fβ,�,γσ
(m) = βγσ�τm + γσφσ {δ t̄(βγσφσ�τ δ m,

√
v)

+βγσ φσ�τ�ξm[1 − t2(. . .)]}, (34)

where the arguments of t2 are the same as for t̄ . Note that the
first term of Eq. (30) has become βγσ�τm and all occurrences
of

√
1 − �σ = �σφσ have been replaced by γσφσ . Accord-

ingly, also v now has the more general form

v = β2γ 2
σ φ2

σ�2
τ�ξm

2. (35)

The value of ω or equivalently γσ is defined from the con-
dition Q = 〈σ 2〉σ,ξ = 1, where Q can be worked out using

Eq. (21) as

Q = γσ + γ 2
σ

(
β2�2

τm
2 + φ2

σ

) + 2βγ 2
σ φσ�τ δ m t̄(. . .)

+ 2β2γ 3
σ φ2

σ�2
τ�ξm

2[1 − t̄2( . . .)]. (36)

The last two terms are proportional to the last two terms in
Eq. (34), and hence to (1 − βγσ�τ )m; if one traces back
through the derivation this comes from the fact that both results
are proportional to 〈hσ tanh(γσφσhσ )〉. With this simplification
one obtains the equivalent expression

Q = γσ + γ 2
σ φ2

σ + βγσ �τm
2(2 − βγσ �τ ) = 1. (37)

For �σ → 0, one has γσ ≈ �σ , which vanishes as �σ → 0,
while γσφσ = √

1 − �σγσ /�σ → 1. For this limiting case of
Boolean σ -spins the constraint Eq. (37) is therefore automat-
ically satisfied as expected. More generally, while Eq. (34)
suggests the asymptotic behavior fβ,�,γσ

(m) ≈ βγσ�τm for
m → ∞, this first term is not the leading contribution because
γσ ∼ 1/m2 for large m. Instead, the last two terms in Eq. (34)
dominate, giving a nonzero constant asymptote. Near m = 0,
on the other hand,fβ,�,γσ

(m) goes asβ�τ (γσ + γ 2
σ φ2

σ )m. From
Eq. (37), γσ + γ 2

σ φ2
σ = 1 + O(m2), thus the ferromagnetic

transition remains at Tc = �τ in the model with the spherical
constraint. (One easily checks that γσ + γ 2

σ φ2
σ = 1 implies as

the physical solution γσ = �σ , so that the regularizer ω in-
creases smoothly from zero at the transition.) For temperatures
below Tc, one generally has to find m numerically. Results
are shown in Fig. 4. As expected for a regularized model, m

remains finite at all T . In the low-temperature limit it always
reaches its maximum value m → 1. One can easily check this
from Eqs. (34) and (37): the latter implies for m = 1 that
βγσ�τ → 1 (see the lower plots in Fig. 4). Hence, the first term
on the right-hand side of Eq. (34) also approaches unity as it
should from m = fβ,�,γσ

(m) while the other terms in Eq. (34)
vanish in the limit.

IV. TRANSITION TO RETRIEVAL II: HIGH LOAD

Now we study the entire phase diagram of the model, in particular with regards to the presence and stability of a retrieval
region. We now use the full definition of γσ and hσ from Eq. (16), along with the analogous definition for γτ :

γ −1
σ = �−1

σ − βα(R − r), γ −1
τ = �−1

τ − β(1 − α)(Q − q),

hσ = β(1 − α)�τmξ +
√

βαr z. (38)

Furthermore, we abbreviate the variance of the Gaussian part of γσφσhσ as

v = β2(1 − α)2γ 2
σ φ2

σ�2
τ�ξm

2 + βαγ 2
σ φ2

σ r, (39)

where compared to Eq. (32) we again have the replacement of
√

1 − �σ by γσφσ , and otherwise the incorporation of the
α-dependence and the new term proportional to r . Then, taking the averages with respect to ξ and z we have, using Eqs. (19) and
(21) and integrating by parts where appropriate,

m = 〈ξ 〈σ 〉σ |z,ξ 〉z,ξ

= β(1 − α)γσ�τm + γσφσ {δ t̄[β(1 − α)γσφσ�τ δ m,
√

v] + β(1 − α)γσφσ�τ�ξm[1 − t2(. . .)]},

q = 〈〈σ 〉2
σ |z,ξ

〉
z,ξ

= 〈[γσhσ + γσφσ tanh(γσφσhσ )]2〉z,ξ

= β2(1 − α)2γ 2
σ �2

τm
2 + βαγ 2

σ r + γ 2
σ φ2

σ t2(. . .) + 2β(1 − α)γ 2
σ φσ�τ δ m t̄(. . .) + 2γσ v[1 − t2(. . .)]
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FIG. 4. Soft model with spherical constraint at low load (α = 0). Spontaneous magnetization still occurs at T = �τ increasing until T = 0.
Left panels δ = 1, right panels δ = 0. As �σ → 0, m approaches the value Eq. (33) at low T . But at any �σ > 0, m eventually peels off from
this asymptote to reach m = 1 for T → 0. Lower panels show the behavior of γσ : it tends to zero linearly at low temperature, γσ ≈ T/�τ ,
while for T ≥ �τ , γσ = �σ .

= β(1 − α)γσ�τ (2 − β(1 − α)�τγσ )m2 + βαγ 2
σ

(
1 + 2γσφ2

σ

)
r + γ 2

σ φ2
σ (1 − 2βαγσ r)t2(. . .),

Q = 〈〈σ 2〉σ |z,ξ 〉z,ξ = q + γσ + γ 2
σ φ2

σ [1 − t2(. . .)],

where all tanh averages t̄ and t2 are evaluated for the same pa-
rameters, as given in the equation for m. In the final expression
for q we have eliminated the t̄ term using the expression for m.
Repeating the same argument for the effective distribution of
the τ spins, we get the equations for the other order parameters
simply by exchanging labels appropriately and replacing α

with 1 − α, bearing in mind also that the corresponding
magnetization parameter is n = 0. This gives the following
additional equations:

r = β(1 − α)γ 2
τ

(
1 + 2γτφ

2
τ

)
q + γ 2

τ φ2
τ [1 − 2β(1 − α)γτq]t̄2

× [0,γτφτ

√
β(1 − α)q], (40)

R = r + γτ + γ 2
τ φ2

τ {1 − t2[0,γτφτ

√
β(1 − α)q]}. (41)

A. One Boolean layer

In the case where the σ -spins are Boolean, �σ = 0, the
saddle-point Eqs. (40) simplify considerably. From Eq. (38),
one has as before γσ ≈ �σ → 0 and γσφσ → 1. This leads to

m = δ t̄[β(1 − α)�τδ m,
√

v] + β(1−α)�τ�ξm[1−t2(. . .)],

(42)

q = t2(. . .), (43)

where after inserting Eq. (40) for r the Gaussian field variance
can be written as v = β2(1 − α)2V with

V = �2
τ�ξm

2 + α

1 − α
γ 2

τ

(
1 + 2γτφ

2
τ

)
q

+ α

1 − α
γ 2

τ φ2
τ {[β(1 − α)]−1

− 2γτq}t2[0,γτφτ

√
β(1 − α)q]. (44)

Solutions of Eq. (42) are shown in Fig. 5. Starting from
the standard Hopfield phase diagram (�ξ = 0 and �τ = 1)
the retrieval region gradually disappears with decreasing �ξ

or increasing �τ . In the first case it shifts toward the T axis, as
the critical temperature for α = 0 is independent of �ξ . In the
second case, both the retrieval and spin-glass transition lines
shift toward the α axis, as the critical α at T = 0 is independent
of �τ as we will see shortly.

B. Zero-temperature limit

Useful insight into the �σ = 0 case can be obtained by
further specializing to the limit T → 0 (i.e., β → ∞). In this
scenario,

t̄(βa,βb) → 〈sgn(a + bη)〉 = erf(a/
√

2b), (45)

and, putting w = β(a + bg),

β[1 − t̄2(βa,βb)]

= β

∫
dw√
2πβb

exp[−(w−βa)2/(2β2b2)][1− tanh2(w)]

→
∫

dw√
2πb

exp[−a2/(2b2)][1 − tanh2(w)]

=
√

2√
πb

exp[−a2/(2b2)]. (46)

If we set v = β2(1 − α)2V as before and then apply the above
large-β identities in the Eq. (42) for m we get

m = δ erf(�τδ m/
√

2V ) + �τ�ξm

√
2√

πV
s

× exp(−�2
τ δ

2 m2/2V ). (47)
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FIG. 5. Phase diagrams with one Boolean layer (�σ = 0), showing the paramagnetic (P), spin-glass (SG), and retrieval (R) regions. Left
panel: (T ,α) phase diagram for �τ = 1 and different values of δ. The retrieval transition line moves toward the T axis as δ decreases while the
critical temperature at α = 0 remains fixed. Right panel: phase diagram for δ = 1 and different values of �τ . Both transition lines move toward
the α axis as �τ decreases while now the critical load at T = 0 is fixed.

Equation (43) for q has a limit in terms of C = β(1 − α)
(1 − q):

C =
√

2√
πv

exp
( − �2

τ δ
2m2/2V

)
. (48)

Finally, for V in Eq. (44) the zero-temperature limit is simple
as t2(0,βb) → 1 and q → 1, giving

V = �2
τ�ξm

2 + α

1 − α
γ 2

τ = �2
τ�ξm

2+ α

1−α
(�−1

τ −C)−2.

(49)

One can reduce these three equations to a single one for x =
�τm/

√
2V , which reads

x = Fδ,α(x),

Fδ,α(x) =
δ erf(δx) − 2√

π
xδ2e−δ2x2

[2α + 2(1 − δ2)(δ erf(δx) − 2√
π
xδ2e−δ2x2 )2]1/2

,

(50)

We leave the derivation of this result to the end of this section.
One sees that Fδ,α(x) is strictly increasing, starting from zero
and approaching δ/

√
2α + 2(1 − δ2)δ2 for large x (Fig. 6).

Note also that �τ has no effect on the value of x and only
affects the coefficient in the linear relation between x and m.

For fixed δ, a first-order phase transition occurs in the
self-consistency condition Eq. (50) as α increases. The tran-
sition value αc(δ) is largest for δ = 1 and decreases to
zero quite rapidly as δ → 0; see Fig. 7. For α < αc(δ) a
nonzero solution of Eq. (50) exists, with x (thus m) grow-
ing as α decreases. In particular, as α → 0, x = Fδ,α(x) →
1/

√
2(1 − δ2) = 1/

√
2�ξ . In this low-load limit one then

recovers for m Eq. (33) as we show below.
We remark that since for any 0 < α < 1, Fδ,a(x) → 0 as

δ → 0, one also has m → 0 (with a first-order phase transition;
see Fig. 7). For α = 0, on the other hand, we see from Eq. (47)
that m → √

2/π as δ → 0, which is consistent with the data
shown in Fig. 7. Thus, the Hopfield model retrieves Gaussian
patterns only for α = 0, but not at high load.

We close this section by outlining the derivation of Eq. (50).
Bearing in mind δ = √

1 − �ξ , Eq. (47) for m becomes

m = δ erf(δ x) + (1 − δ2)
2√
π

xe−δ2x2
, (51)

while for C one gets

C = 2√
π

x

�τm
exp(−δ2x2). (52)

Thus,

V = �2
τ (1 − δ2)m2 + α

1 − α

[
�−1

τ − 2x/(
√

π�τm)

× exp(−δ2x2)
]−2

= �2
τm

2

{
1 − δ2 + α

1 − α
[m − (2/

√
π )x exp(−δ2x2)]−2

}

= �2
τm

2

{
1 − δ2 + α

1 − α
[δ erf(δx) − (2/

√
π )δ2x

× exp(−δ2x2)]−2

}
. (53)

Now we set

Fδ,α(x) =
{

2(1 − δ2) + 2(1 − α)

×
[
δ erf(δx) − 2√

π
xδ2e−δ2x2

]−2}−1/2

, (54)

and we readily get Eq. (50).

C. Soft models

Models with both Gaussian spins are typically ill-defined
at low temperature, due to the occurrence of negative
eigenvalues in the interaction matrix. In the fully Gaussian
model (�σ = �τ = 1) the line where the partition func-
tion diverges coincides exactly with the paramagnetic to
spin-glass transition. In this case, the distributions P (σ |z,ξ )
and P (τ |η,ξ ) of Eqs. (13) and (14) are, respectively,
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FIG. 6. Plot of Fδ,α(x). It tends uniformly to zero as δ → 0 at fixed α (left panel), while it approaches 1/
√

2(1 − δ2) as α → 0 at fixed δ

(right panel).

proportional to

eβ(1−α)�τ mξσ+√
βαrzσ− 1

2 [1−βα(R−r)]σ 2
, (55)

eβα�σ nξτ+√
β(1−α)qτη− 1

2 [1−β(1−α)(Q−q)]τ 2
. (56)

Both these distributions are therefore Gaussian with variances
�σ , �τ , defined by �−1

σ = 1 − βα(R − r) and �−1
τ = 1 −

β(1 − α)(Q − q). The equations for R and Q read

Q = 〈〈σ 2〉σ |z,ξ 〉z,ξ = q + �σ , (57)

R = 〈〈τ 2〉τ |η〉η,ξ = r + �τ . (58)

Thus,

�σ = 1

1 − βα�τ

,

�τ = 1

1 − β(1 − α)�σ

, (59)

and one has to study the equation I(�σ ) = �σ , where

I(�σ ) = 1 − β(1 − α)�σ

1 − βα − β(1 − α)�σ

. (60)

The function I(x) is a hyperbola diverging at x = (1 −
βα)/β(1 − α); see Fig. 8. It is positive only for x below this
value, so this is the range we need to consider as �σ > 0. For
small β one has a solution near �σ = 1, which increases with
β. At some β̂c, I(x) becomes tangent to x and for still larger
β there are no intersections. After some calculations using Eq.
(60) one finds for the threshold β̂c

1 = β̂2
c α(1−α)�2

σ

(
1

1 − β(1 − α)�σ

)2

= β̂2
c α(1 − α)�2

σ�2
τ , (61)

which exactly coincides with the paramagnetic / spin glass
transition temperature Eq. (24) as anticipated.

We note that we can compute the divergence of the partition
function of the model also directly, by diagonalizing the

FIG. 7. Left panel: magnetization vs. α for different values of δ; at αc(δ) a first-order phase transition occurs. The low-load pattern overlap

m(α = 0; δ) tends to
√

2
π

as δ → 0. Right panel: αc(δ) plotted versus 1 − δ: αc(1) = 0.12 . . ., while rapidly αc(δ) → 0 as δ → 0.
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FIG. 8. I(x) vs. x for different values of β. At β̂c, I(x) is tangent
to x.

interaction matrix (i.e., the weight matrix):

ZN (β,α; ξ ) = Eσ,τ exp

⎛
⎝√

β

N

N1∑
i=1

N2∑
μ=1

ξ
μ

i σiτμ

⎞
⎠

= Eσ exp

⎛
⎝ β

2N

N1∑
i,j=1

N2∑
μ=1

ξ
μ

i ξ
μ

j σiσj

⎞
⎠

= Eσ exp

⎛
⎝βα

2

N1∑
i,j=1

Mijσiσj

⎞
⎠. (62)

Here M = 1
N2

ξξT is a Wishart matrix so its empirical
eigenvalue spectrum converges to the Marchenko-Pastur dis-
tribution for large N1, which is nonzero only between
(1 ± √

(1 − α)/α)
2
. Using a suitable orthogonal transfor-

mation on the spin variables we can diagonalise M, so
that

ZN (β,α; ξ ) = Eσ exp

(
βα

2

N1∑
i

λiσ
2
i

)
.

This is well-defined as long as maxi [β(1 − α)λi] < 1. Using
the largest eigenvalue from Marchenko-Pastur, maxi λi =
(1 + √

(1 − α)/α)2 for large N , we get for the critical
temperature

Tc(α) = (
√

α + √
1 − α)2.

It can be checked that the spin-glass transition line numerically
computed in Sec. II coincides with T = Tc(α). In the general
case 0 < �σ ,�τ < 1 we simply remark that (recall that the g

are N (0,1) and ε = ±1)

N1∑
i=1

N2∑
μ=1

ξ
μ

i σiτμ

=
√

(1 − �σ )(1 − �τ )
N1∑
i=1

N2∑
μ=1

ξ
μ

i εiεμ (63)

+ [
√

�τ (1 − �σ ) +
√

�σ (1 − �τ )]
N1∑
i=1

N2∑
μ=1

ξ
μ

i giεμ

(64)

+
√

�σ�τ

N1∑
i=1

N2∑
μ=1

ξ
μ

i gigμ. (65)

Of course, the first two terms have well-defined thermodynam-
ical properties for all T , so we just need to rescale Tc as

Tc(α) = �σ �τ (
√

α + √
1 − α)2. (66)

When α ∈ {0,1} we recover the result obtained at low load,
where a divergence in m appears at Tc = �σ�τ (see Fig. 3);
Eq. (66) generalizes this result to high load. Note that this
critical temperature is in general lower than the one for the
paramagnetic to spin-glass transition: they coincide only in
the fully Gaussian case, while in all other cases the system first
enters the ordered phase before encountering the singularity as
T is lowered.

D. Spherical constraints

As before we can remove the singularity in the partition
function by adding the spherical constraint δ(N − ∑N

i=1 σ 2
i ) to

the σ -prior. Equations (40) remain valid with the replacement

γ −1
σ = �−1

σ − βα(R − r) + ω,

with ω ≥ 0 (or directly γσ , see also Sec. III) satisfying

Q = q + γσ + γ 2
σ φ2

σ [1 − t2(β(1 − α)γσφσ�τ δm,
√

v)] = 1.

(67)

For binary σ , i.e., �σ → 0, one has γσφσ → 1 and the
constraint Eq. (67) is automatically satisfied. For Gaussian σ

(�σ = 1), on the other hand, φσ = 0, and hence γσ = 1 − q.
Starting from the low-load solution α = 0 and increasing α,

it is possible to find numerically the solution of the Eqs. (40)
and the constraint Eq. (67). The results, presented in Fig. 9,
indicate that the retrieval region is robust also in the high-load
regime, disappearing as �σ → 1. The retrieval transition line
exhibits re-entrant behavior as in the standard Hopfield model,
which might point to underlying RSB effects [36].

In principle one can ask further what happens in a model
where both layers have a spherical constraint. In this case we
simply need to put an additional Gaussian factor e−ωτ τ

2/2 into
the effective τ -spin distribution, where the additional Lagrange
multiplier ωτ can be found by fixing the radius R = 1. As
a consequence, the paramagnetic to spin-glass transition line
Eq. (24) becomes

β2α(1 − α)Q2R2 = β2α(1 − α) = 1. (68)

This is valid for the bipartite SK model (�σ = �τ = 0) but also
for generic �σ and �τ . As Tc = √

α(1 − α) → 0 for α→0
and retrieval is expected only below the paramagnetic to
spin-glass transition, this indicates that the double spherical
constraint removes the possibility of a retrieval phase, even
for low load. What is happening is that the high-field response
�τ is weakened and becomes γ 0

τ = �τ/(1 + �τωτ ). More-
over, Eq. (40) still apply if we replace �τ by γ 0

τ and set
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FIG. 9. Phase diagram with the paramagnetic (P), spin-glass (SG), and retrieval (R) regions of the soft model with a spherical constraint on
the σ layer for different �σ and fixed �τ = δ = 1. The area of the retrieval region shrinks exponentially as �σ is increased from 0.

γ −1
τ = �−1

τ − β(1 − α)(1 − q) + ωτ . In the paramagnetic
regime γσ and γτ satisfy

Q = γσ + γ 2
σ φ2

σ = 1 → γσ = �σ ,

R = γτ + γ 2
τ φ2

τ = 1 → γτ = �τ , (69)

while q = 0, giving for the response γ 0
τ = 1/(γ −1

τ + β(1 −
α)) = [�−1

τ + β(1 − α)]−1. This is not sufficient for retrieval,
not even at low load (α = 0) where βγ 0

τ =β�τ/(1 + β�τ )<1
and the critical temperature is T = 0 (β → ∞). Intuitively,
because of the spherical cutoff the tail of the hidden units
is simply not sufficient to give, after marginalizing out the
visible units, an appropriate function u (see Sec. I A) to
get spontaneous magnetization in the low-load ferromagnetic
model.

V. CONCLUSIONS AND OUTLOOK

In this paper we have investigated the phase diagram
of restricted Boltzmann machines with different unit and
weight distributions, ranging from centered (real) Gaussian to
Boolean variables. We highlighted the retrieval capabilities of
these networks, using their duality with generalized Hopfield
models.

Our analysis is mainly based on the study of the self-
consistency relations for the order parameters and offers a
nearly complete description of the properties of these systems.
For this rather large class of models we have drawn the
phase diagram, which is made up of three phases, namely
paramagnetic, spin-glass, and retrieval, and studied the phase
transitions between them.

We stress that, while in associative neural networks patterns
are often restricted to the binary case, there is at present
much research activity in the area of Boltzmann machines
with real weights. Our analysis shows that retrieval is pos-
sible at high load for any pattern distribution interpolating
between Boolean and Gaussian statistics. In the Gaussian case
high-load retrieval fails but is recovered even here at low
load.

A complete analysis of the paramagnetic–spin-glass tran-
sition and the spin-glass–retrieval transition is very useful for

the study of modern deep neural networks, where the crucial
learning phase is often initiated with a step of unsupervised
learning using restricted Boltzmann machines [8,10]. A first
attempt to link the properties of the phase diagram to the
challenges of training a restricted Boltzmann machine from
data and extracting statistically relevant features can be found
in Ref. [48].
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APPENDIX A: DERIVATION OF EQUATIONS (7)–(12)

Consider a bipartite system with N1 σ -spins and N2 τ -spins,
N = N1 + N2, α = N2/N and partition function

ZN (β,α; ξ ) = Eσ,τ exp

⎛
⎝√

β

N

N1∑
i=1

N2∑
μ=1

ξ
μ

i σiτμ

⎞
⎠, (A1)

with the expectation being over generic spin distributions
Pσ (σ ) and Pτ (τ ). We assume there are �1 = O(1) condensed
patterns associated with the first �1 σ -variables and similarly
�2 condensed patterns associated with the first �2 τ -variables,
and two families of overlaps

mμ(σ ) = 1

N1

N1∑
i=�1

ξ
μ

i σi, ni(τ ) = 1

N2

N2∑
μ=�2

ξ
μ

i τμ, (A2)

and

qαβ = 1

N1

N1∑
i=�1

σα
i σ

β

i rαβ = 1

N2

N2∑
μ=�2

τα
μτβ

μ . (A3)
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Then (all sums over non-condensed patterns start from i = l1 + 1 and μ = l2 + 1 but we drop the +1 to save space)

ZN (β,α; ξ ) = Eσ,τ exp

⎛
⎝√

β

N

�1∑
i=1

N2∑
μ=�2

ξ
μ

i σiτμ +
√

β

N

�2∑
μ=1

N1∑
i=�1

ξ
μ

i σiτμ

⎞
⎠ exp

⎛
⎝√

β

N

N1∑
i=�1

N2∑
μ=�2

ξ
μ

i σiτμ +
√

β

N

�1∑
i=1

�2∑
μ=1

ξ
μ

i σiτμ

⎞
⎠

∼ Eσ,τ exp

⎛
⎝N2

√
β

N

�1∑
i=1

ni(τ )σi + N1

√
β

N

�2∑
μ=1

mμ(σ )τμ +
√

β

N

N1∑
i=�1

N2∑
μ=�2

ξ
μ

i σiτμ

⎞
⎠, (A4)

where we have neglected the last, nonextensive, term of Eq. (A4). Constraining the values of the overlaps we get

ZN =
∫

{dmμ,dm̂μ,dni,dn̂i} exp

⎡
⎣−iN

⎛
⎝ �1∑

i=1

nin̂i +
�2∑

μ=1

mμm̂μ

⎞
⎠

⎤
⎦Eσ,τ exp

⎛
⎝N2

√
β

N

�1∑
i=1

niσi + N1

√
β

N

∑
μ<�2

mμτμ

⎞
⎠

×Eσ,τ exp

⎛
⎝ i

α

�1∑
i=1

n̂i

N2∑
μ=�2

ξ
μ

i τμ + i

1 − α

�2∑
μ=1

m̂μ

N1∑
i=�1

ξ
μ

i σi +
√

β

N

N1∑
i=�1

N2∑
μ=�2

ξ
μ

i σiτμ

⎞
⎠. (A5)

We recall the definition of �σ,τ and uσ,τ from the Introduction: uσ,τ is the cumulant generating function of Pσ,τ , to wit
uσ,τ (h) = lnEPσ,τ

[ehx] and

lim
N→∞

1

N
uσ,τ (

√
Nx) = �σ,τ x

2

2
. (A6)

Then the terms in the second line of Eq. (A5) become

Eσ,τ exp

⎛
⎝N2

√
β

N

�1∑
i=1

niσi + N1

√
β

N

∑
μ=1l2

mμτμ

⎞
⎠ = exp

⎡
⎣βN

2

⎛
⎝α2�σ

�1∑
i=1

n2
i + (1 − α)2�τ

�2∑
μ=1

m2
μ

⎞
⎠

⎤
⎦, (A7)

while, after introducing replicas and averaging over the disorder, the last term in Eq. (A5) gives (with uξ the cumulant generating
function associated with the patterns)

Eξ exp

⎛
⎝√

β

N

n∑
α=1

N1∑
i=�1

N2∑
μ=�2

ξ
μ

i σ α
i τ α

μ

⎞
⎠ = exp

⎡
⎣ N1∑

i=�1

N2∑
μ=�2

uξ

(√
β

N

n∑
α=1

σα
i τ α

μ

)⎤
⎦

∼ exp

⎛
⎝ N1∑

i=�1

N2∑
μ=�2

β

2N

n∑
α,β=1

σα
i σ

β

i τ α
μτβ

μ

⎞
⎠.

(Here we have used that the patterns have unit variance, hence uξ (x) = x2 + . . ., and neglected corrections in 1/N .) This term
becomes exp [ βN

2 α(1 − α)
∑

αβ qαβrαβ] once it is expressed in terms of the order parameters q and r , bearing in mind that the
missing spins σ1, . . . ,σ�1 and τ1, . . . ,τ�2 constitute a vanishing fraction of the total number. Now averaging over spin variables
we get the other two terms in the last line of Eq. (A5), where we also include the contributions from constraining the q and r

order parameters:

Eσ exp

⎛
⎝ i

1 − α

n∑
α=1

�2∑
μ=1

m̂μ
α

N1∑
i=�1

ξ
μ

i σ α
i + i

1 − α

n∑
α,β=1

q̂αβ

N1∑
i=�1

σα
i σ

β

i

⎞
⎠

= exp
(
N (1 − α)

〈
lnEσ e

i
1−α

(
∑n

α=1

∑�2
μ=1 m̂

μ
α ξμσα+∑n

α,β=1 q̂αβσ ασβ )〉
ξ

)
and

Eτ exp

⎛
⎝ i

(1 − α)

n∑
α=1

�1∑
i=1

n̂i
α

N2∑
μ=�2

ξ
μ

i τ α
μ + i

(1 − α)

n∑
α,β=1

r̂αβ

N2∑
μ=�2

τα
μτβ

μ

⎞
⎠

= exp
(
αN

〈
lnEτ e

i
α

(
∑n

α=1

∑�1
i=1 n̂i

αξ i τ α+∑n
α,β=1 r̂αβ τ ατβ )〉

ξ

)
.

Collecting all the terms we get an expression for E[Zn
N ] which depends on the parameters mμ

α , ni
α , qαβ , and rαβ :

E[Zn
N ] =

∫ {
dmα

μ,dm̂α
μ

}{dqαβ,dq̂αβ}eNf ({mμ
α },{ni

α},{qαβ },{rαβ }), (A8)

022310-12



PHASE DIAGRAM OF RESTRICTED BOLTZMANN … PHYSICAL REVIEW E 97, 022310 (2018)

with

f
({

mμ
α

}
,
{
ni

α

}
,{qα,β},{rαβ})

= −β

2
�τ (1 − α)2

�2∑
μ=1

mμ
α

2 − β

2
�σα2

�1∑
i=1

ni
α

2 − β

2
α(1 − α)

∑
α,β=1

qαβrαβ

+ (1 − α)
〈
lnEσ eβ(1−α)�τ

∑n
α=1(m·ξ )σα+ βα

2

∑n
α,β=1 rαβσασβ 〉

ξ
+ α

〈
lnEτ e

βα�σ

∑n
α=1(n·ξ )τα+ β(1−α)

2

∑n
α,β=1 qαβτατβ 〉

ξ
. (A9)

By a saddle-point calculation we obtain immediately

im̂μ
α = β(1 − α)2�τm

μ
α in̂i

α = βα2�σni
α iq̂αβ = β

2
α(1 − α)rαβ ir̂αβ = β

2
α(1 − α)qαβ, (A10)

and in the RS ansatz, assuming that

mμ
α = mμ ni

α = ni qab = Qδαβ + q(1 − δα,β) rab = Rδαβ + r(1 − δα,β), (A11)

taking the limit n → 0 and extremizing Eq. (A9) we get the saddle-point Eqs. (7)– (12)

APPENDIX B: GAUSSIAN BIPARTITE AND SPHERICAL HOPFIELD MODEL

The bipartite system with Gaussian priors on both layers (�σ = �τ = 1) can be related to a spherical Hopfield model [39–41]
via Legendre duality as in Ref. [37]. In fact, integrating over the radius r

√
N we have

Zg(β) =
∫

dr
e−Nr2/2

√
2π

N

∫
d�r

√
N (σ )e−βH(σ ) =

∫
dr

e−Nr2/2

√
2π

N
Zr

√
N

s (β)

=
∫

dr
e−Nr2/2

√
2π

N
rN−1

∫
d�√

N (σ )e−βr2H(σ ) =
∫

dr
e−Nr2/2

√
2π

N
rN−1Z

√
N

s (βr2), (B1)

where d�r (σ ) is the uniform measure over the sphere of radius r and (Zg , Zs) are, respectively, the partition functions of the
Gaussian and spherical models. Thus, the two free energies, fg and fs , are related by

−βfg = sup
r

[ − 1
2 r2 − 1

2 ln(2π ) + ln(r) − βfs(βr2)
]
, (B2)

and so the Gaussian free energy comes from the spherical free energy calculated at the optimal radius given by

r2 = 1

1 − 2β∂β(−βfs(β))|βr2
. (B3)

Since r2 = Q, the self overlap of the σ -spins (first layer), and using the expression for the spherical free energy from [39,41] we
have, in the high-temperature region,

Q = 1

1 − βα 1
1−β(1−α)Q

= 1

1 − βαR(Q)
and R(Q) = 1

1 − β(1 − α)Q
. (B4)

These are exactly Eqs. (27) and (28) with �σ = �τ = 1. Moreover, again from Refs. [39,41] the critical line for the spherical
model is given by [1 − β(1 − α)]2 = β2α(1 − α). Thus, we obtain the critical line for the Gaussian model Eq. (24) by replacing
β → βQ:

β2α(1 − α)Q2

[1 − β(1 − α)Q]2
= 1 = β2α(1 − α)Q2R2. (B5)
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