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We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics
on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution,
we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the
time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization
of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the
absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a
number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for
the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities
in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our
framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a
different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree

classes beyond the epidemic threshold.
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I. INTRODUCTION

The susceptible-infected-susceptible (SIS) model is one of
the classical and most studied models of disease propagation
on complex networks [1-3]. It can be understood as a specific
case of binary-state dynamics [4,5] where nodes are either
susceptible (S) or infected (/). Susceptible nodes become
infected at rate Al where [ represents the number of infected
neighbors; infected nodes recover and become susceptible at
rate [, set to unity without loss of generality. Despite being
a crude approximation of reality, this is arguably one of the
simplest models leading to an absorbing-state phase transition.
For infinite size networks in the stationary state (t — 00), there
are two distinct phases: an absorbing phase—consisting of
all nodes being susceptible—and an active phase—where a
constant fraction of the nodes remains infected on average. The
former is attractive for any initial configurations with infection
rate A < A, which defines the threshold A.. From a statistical
physics perspective, this represents a critical phenomenon
where the density of infected nodes in the stationary state plays
the role of the order parameter.

It is now common knowledge in network science that the
degree distribution P (k), the probability that arandom node has
k neighbors, is a fundamental property to quantify the extent
of an epidemic outbreak [1,3]. To this end, random networks
with an arbitrary degree distribution have been extensively
used to study the impact of this property on the spreading
of diseases [3,4,6—15]. Recently a profound impact of the
degree distribution has been unveiled, leading to an interesting
dichotomy for the nature of the phase transition of the SIS
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model on networks. The activity just beyond the threshold
is either localized in the neighborhood of high degree nodes
(hubs), sustained by correlated reinfections, or maintained
collectively by the whole network [7,8,12,15]. As in Ref. [15],
we will use the terminology hub activation and collective
activation to discriminate these two scenarios.

To capture the dynamics and describe its critical behavior,
various analytical approaches have been developed using
mean field, pair approximation, and dynamic message passing
techniques [4,6,10,11,13,16-18] (see Refs. [3,19] for recent
reviews). They can be divided into two major families: degree-
based and individual-based formalisms. The former is a com-
partmental modeling scheme that assumes the statistical equiv-
alence of each node in a same degree class. It leads to simple
approaches with explicit analytical predictions, but restricted
to infinite size random networks. The latter relies explicitly on
the (quenched) structure, described by an adjacency matrix a;;,
to estimate the marginal probability of infection for each node.
Its range of applicability is not restricted to infinite size random
networks, but it is less amenable to analytical treatment than
degree-based approaches.

Despite the same basic structural information—the degree
distribution—disparities remain between the predictions of
degree-based and individual-based formalisms. An important
theoretical gap that needs to be addressed is that current
characterizations of the phase transition using degree-based
approaches are unable to describe a hub activation correctly.
This arises from the fact that the neighborhood of nodes for
each degree class is not described properly.

We provide in the following a degree-based theoretical
analysis of the SIS dynamics on time-varying (edges are being
rewired) random networks with a fixed degree sequence in
the infinite size limit. Our emphasis is on the characteriza-
tion of the critical phenomenon for both collective and hub
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activation. Our rewired network approach (RNA) permits us to
simulate an effective structural dynamics and mathematically
provides an interpolation between existing compartmental
formalisms.

The paper is organized as follows. In Sec. II we introduce
a compartmental formalism to characterize the dynamics, and
we show how it is related to other approaches. In Sec. III we
obtain the stationary distributions that we develop near the
absorbing phase. Using this framework, we draw a general
portrait of the phase transition. In Sec. IV we present an explicit
upper bound and an implicit expression for the threshold
A¢, which we compare analytically and numerically with the
predictions of a number of existing approaches. In Sec. V
we obtain bounds for the critical exponents describing the
stationary distributions near the absorbing phase, bringing to
light a heterogeneous critical phenomenon associated with
the hub activation. In Sec. VI we discuss the impacts of
structural dynamics on the hub-dominated property of a phase
transition and show the successive activation of the degree
classes beyond the threshold. We finally gather concluding
remarks and open challenges in Sec. VII. They are followed by
two appendices, giving details of the Monte Carlo simulations
(Appendix B) and of the mathematical developments for the
critical exponents (Appendix C).

II. MATHEMATICAL FRAMEWORK

Time variations of the structure greatly affect the propaga-
tion [20-26]. For networks whose evolution is independent
from the dynamical state [24-26], it has been shown to
notably alter the epidemic threshold of the SIS model. For
adaptive networks [27] where the dynamical state influences
the evolution of the structure, a hysteresis loop and a first order
transition have even been observed [20,21].

In this paper, we consider the former scenario, a structure
evolving according to a continuous Markov process, inde-
pendent of the SIS dynamics. Each edge in the network is
rewired at a constant rate w: a rewiring event involves two
edges that are disconnected, and the stubs are rematched as
presented in Fig. 1. For nodes, this implies that their stubs
are effectively reconnected to random stubs in the network
at the rate w. We allow loops and multiple edges to simplify
the rewiring procedure and impose a structural cutoff for the
maximal degree kma < N'/? to have a vanishing fraction of
these undesired edges.

This process samples a configuration model ensemble
by leaving the degree sequence unaltered [28]. Noteworthy,
this allows us to control the heterogeneity of the structure
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FIG. 1. One move of an edge switch to eventually sample the
whole of the configuration model space.

independently from the time-varying mechanism. Moreover,
the networks ensemble is uncorrelated, i.e., the degrees at the
end points of any edge are independent.

Since the structural dynamics is a Poisson process, ex-
ponentially distributed lifetimes for the edges are produced.
Although it has been argued that many real contact patterns are
better represented by power-law distributed lifetimes [22,23],
our framework still captures the essence of a time-varying
structure and is simple enough to lend itself to explicit ana-
lytical results. For all ensuing mathematical developments, the
thermodynamic limit (N — 00) is assumed.

A. Compartmental formalism

Since we consider a time-varying network preserving the
degree sequence, the statistical equivalence of each node with
asame degree k is guaranteed. This implies that the probability
pr(t) thatanode of degree k is infected follows the rate equation

—— = —px + Ak(l — pr)b, ey

where 6i(¢) is the probability of reaching an infected node
following a random edge starting from a degree k susceptible
node. In the stationary limit (o = 0 V k), the relations

Mk}
o 14 Ak6;

*

Pk

or AkOf = @)

1—pf

are obtained. Stationary values will be marked hereafter with
an asterisk (*). Equation (2) expresses that a node’s probability
of being infected is directly related to its neighborhood’s state,
quantified by 6. Our objective is therefore to find the most
precise explicit expression for this probability, taking into
account the rewiring process. In the general case, we must
have a degree-dependent solution to represent 6.

Accordingly, we consider a pair approximation framework
as introduced in Refs. [4,5]. To include the rewiring process,
we account for the probability ®(z) that a newly rewired stub
reaches an infected node,

3)

where all averages (- - - ) are taken over P (k). Let ¢(¢) be the
probability of reaching an infected node following a random
edge starting from a degree k infected node. We obtain (see
Appendix A)

‘Zitk = —A[6k + (k — D] + reg + (Q° + 0O)(1 — 6))
—[1 4+ (1 — O — Oi(ri — kb)), (4a)
dé

d_tk = g [0 + (k — DOF] — ¢ + (2" + wO)(1 — ¢y)

—[1 4+ (1 — O))¢y + ¢i (1 — Akbir '), (4b)

with . = pr /(1 — pr). Also, 25(¢) and Q(¢) are the mean
infection rates for the neighbors of susceptible and infected
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nodes. These rates are estimated by

(@ = p) (O — 6*) (k — D)
(1 = p)(1 = k)
(1 = po)[Ock + 6%k(k — 1)])

(1 — pi)Oik) ‘

Before going any further with the analysis, it useful to
discuss the approximations involved in Eqgs. (4):

(1) The mean infection rates for the neighbors (25 and Q')
are independent of the degree and are estimated from mean
values over the network. An infinite size configuration model
network is assumed.

(2) The pair approximation considers that, for a de-
gree k susceptible node, each neighbor is infected with an
independent probability 6.

Compartmental formalisms based only on the first
approximation (effective degree or approximated master
equations [4,29]) lead to excellent agreement with the
corresponding stochastic processes on random networks
(see Refs. [29,30]). The second approximation enables us to
perform a thorough stationary state analysis in the following
sections. Such pairwise approximations have been shown to
predict an epidemic threshold that is slightly off but still show
very good agreement with numerical simulations in contrast
to mean-field theories [4,31].

QS =2

) (5a)

Qf =2 (5b)

B. Reduction and relation to other formalisms

The rewiring rate w > 0 permits us to tune the interplay
between the disease propagation and the structural dynamics,
for which we can distinguish two extreme limits. There is
the annealed network limit when the rewiring is much faster
than the propagation dynamics (w — o0). It is equivalent
to consider the SIS dynamics on an annealed network with
adjacency matrix a;; = k;k;/(N(k)) [3]. In this limit, our
compartmental approach is identical to the heterogeneous
mean field theory (HMF) [6,32,33].

For annealed networks, the dynamic correlation and the
neighborhood heterogeneity can be neglected. On the one hand,
the absence of a dynamic correlation implies that the states of
neighbor nodes are independent [3,19,34]. On the other hand,
the absence of neighborhood heterogeneity implies that the
degree of a node, on average, does not affect the state of its
neighbors. From a degree-based perspective, this would mean
that 6 is a probability independent of the degree class.

In contrast with the annealed limit, there is the quasistatic
network limit (@ — 0), where both the dynamic correlation
and the neighborhood heterogeneity cannot be neglected. Be-
tween each rewiring event, the SIS dynamics has enough time
to relax and reach a stationary distribution; temporal averages
for the dynamics are then equivalent to ensemble averages on
every static realization of the configuration model. In this limit,
our compartmental approach is equivalent to the heterogeneous
pair approximation (HPA) of Ref. [4], which considers both the
dynamic correlation and the neighborhood heterogeneity.

We stress that our mathematical framework (as well as
HPA) is different from other pair approximation formalisms
that neglect the neighborhood heterogeneity, such as the pair
heterogeneous mean field theory (PHMF) [11] or similar

TABLE I. Comparison of the properties of various formalisms.

Individual ~ Degree Dynamic Neighborhood
Formalism -based -based  correlation  heterogeneity
HMF v
PHMF v v
HPA v v v
QMF v v
PQMF v v v
RNA v v v

approaches [13]. In the quasistatic limit, we also expect our
compartmental formalism to be in agreement with individual-
based approaches such as quenched mean-field theory (QMF)
[3,16,35] and pair QMF (PQMF) [10,17].

The RNA effectively interpolate between HPA and HMF
through the tuning of the rewiring rate w. The specific proper-
ties of each formalism are compiled in Table I.

III. STATIONARY DISTRIBUTIONS

Solving Egs. (4) in the stationary limit for 6", we find

p ifk =1,
RCRSER D ;
KADA) = g — k— 4aBlk — 1
K+ Yk kP +dapk — 1) ifk > 1,
2ok — 1)
(6)
where the parameters are
1 Q"
- "’_:‘)—4_ (7a)
QI + wO*
(5" + 0wOH2 + v+ Q')
B = s (7b)

MU 4+ wO*)

O+1+Q +0)2+0+ Q) -2
K = .
AQ + 0O

(70)

As desired, we have obtained a degree-dependent solution for
;. At this point, one can already verify the consistency with
HMF in the annealed limit: Taking w — oo in Eq. (6), one
recovers 6 — ®*. For finite w, however, we obtain a solution
that is potentially heterogeneous among degree classes.

A. Collective and hub activations

As briefly discussed in the Introduction, a dichotomy
exists in the nature of the phase transition of the SIS model.
Numerical evidence suggests that near the absorbing phase,
the activity is localized either on the hubs (hub activation) or
on the innermost network core (collective activation) [8]. This
dichotomy is also supported theoretically by individual-based
approaches such as QMF [36], for which the active phase near
the epidemic threshold is dominated by the principal eigenvec-
tor of the adjacency matrix. This eigenvector is localized either
on the subgraph associated with the highest degree nodes or on
the shell with the largest index in the K-core decomposition
[37,38].
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FIG. 2. Degree-dependent observables for the SIS model in the
quasistatic limit (w — 0), near the absorbing phase. Solid lines are
the predictions of Egs. (6) and (2); markers are the results of Monte
Carlo simulations. To prevent the system from reaching the absorbing
state, we have sampled the quasistationary distribution of the system
[39-41]. Averages are made on 10? realizations of the configuration
model with the same degree sequence to simulate the quasistatic
limit. The degree sequences of N = 10° nodes were drawn from a
power-law degree distribution P (k) ~ k= with cutoff k., < N'/2.
(a) Scaled probability that a degree k node is infected p;/pf . .
(b) Scaled probability of reaching an infected node from a degree
k susceptible node 6;/6;; .

For uncorrelated configuration model networks with
power-law degree distribution P (k) ~ k=7, this dichotomy
is reflected as two distinct regimes [8,36]. For y < 5/2,
the phase transition is collective due to the presence
of a large inner core, whereas for y > 5/2, the phase
transition is dominated instead by the hubs. It is important to
note that these two regimes are well defined only in the thermo-
dynamic limit (N — oo and consequently kp,x — 00) [36].

To illustrate how this dichotomy is transposed to degree-
based approaches, we present in Fig. 2 the behavior of o}
and 6; near the absorbing phase (A — A.) for quasistatic
networks with power-law degree distributions. For an exponent
y = 2.25, associated with a collective activation, we see in
Fig. 2(b) that 6, is independent of the degree, and p; grows
linearly with the degree [Fig. 2(a)]. For y = 3.1, however,
associated with a hub activation, 8;" increases with the degree
[Fig.2(b)], and p;’ grows supralinearly [Fig. 2(a)]. Our solution
[Eq. (6)] reproduces the qualitative behavior for both scenarios.
This indicates that the dichotomy can also be identified and
characterized by a degree-based point of view by studying the
behavior of 6" near the absorbing phase. This is achieved with
our approach in the following sections.

B. Perturbative development

As seen in Fig. 2, the solution for 6;° can be heterogeneous
near the absorbing phase. To provide further insights, we
consider the absorbing-state limit: we start with an active
phase (A > A.), then we take the limit A — A, which leads
to pf,0; — 0V k. According to Eq. (6), to force 6 — 0V &,
we must require that

Iim 8=0 and lim « > kpax. ()
A ke A= he
These strong constraints allow us to introduce a perturbative
development: any quantity around the critical threshold is
expressed as a power series of .

Since the RNA is self-consistent, all quantities [Egs. (5), (6),

and (7)] are interrelated. Therefore, we need to develop them

recursively in a coherent way. First, we develop the stationary
probability 6;" near the absorbing phase:

k— i+ [k — | + 22D
2a(k — 1)

O (@,1) = +0(8%)

) ©)
Kk —k
where the second equality comes from Eq. (8). However, « also
depends on $ through the quantities 5,5, and ®*. Using
Eq. (9) with Egs. (3) and (5), we obtain the following leading
behaviors:

QT =0, QT =r+0pB), ©" =0(.

This fixes « to order zero; i.e., from Eq. (7), we obtain
Kk =k(,A)+ O(P), (10
where
- 1+ +1)7 21+ 3 2
) = +(A+1) +;20( +3)+w . (1
Combining Eq. (10) with Eq. (9), we have a coherent
development for ;'

0 (w,2) = Bfiw,2) + O(BY), (12)

with the auxiliary function

Jie(w,2) = (13)

K(w,A) —k

Using these definitions, it is possible to express all quantities
to first order

QS = —’\(f"k((]g_ mﬁ + 0(BY), (14a)
. M f2k(k — 1))
QU =+ 22— g4 008, 14b
i) B+ O(B”) (14b)
2
o = MUk )/3 +0(BY). (14c)

(k)
One could continue this perturbative scheme in order to extract
the quadratic terms in 8 and so forth. However, the first order
development is quite sufficient to characterize the absorbing-
state threshold in Sec. I'V.

Approximate exponential form

We can rewrite the solution for 6" in Eq. (12) as

p exp [—ln <1— k >]+0(,32)
K(w,\) K(w,2)

. B k
Y R P [E(w,,\)}’ (15)

where the approximate exponential form is valid provided k
is sufficiently small compared to #(w,)). Near the threshold,
the density of infected nodes for each degree class is to
good approximation p;f ~ Ak6; [Eq. (2)]. In the quasistatic
limit (w — 0) and considering A < 1, &(w,A < 1) ~ 2/1?
[Eq. (11)], which leads to the exponential form

oF ~ kexp (A\’k/2). (16)

o =
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TABLE II. Threshold estimates for certain formalisms.

Formalism Threshold estimate A
HMF [6] (k) /(k*)

PHMF [11] (k)/((k*) — (k)
QMF [16] 1/max(v/kmax. (k*)/ (k)

This form has been obtained previously by other means in
Ref. [42], based upon the results of Ref. [43]. However,
they needed to extract ¥ ~ A~ from numerical simulations,
whereas it emerges naturally in our framework. A similar
expression has also been found in Ref. [15] to describe the
hub lifetime.

However, the approximate expression Eq. (15) will be
inadequate to describe the activity of high degree nodes if
k ~ k(w,A). In fact, in Sec. IVC we show that the ratio
kmax/K — 1 near the threshold for a hub-dominated phase
transition and the development of Eq. (15) breaks down.

IV. THRESHOLD

We now turn our attention towards the absorbing-state
threshold A.. Using the perturbative development of Sec. III B,
we obtain an explicit upper bound and an implicit expression
for A., which we analytically and numerically compare with
existing expressions gathered in Table II.

A. Explicit upper bound

An important parameter from the perturbative development
is K(w,A), which we call hereafter the self-activating degree. In
fact, it will become clear throughout the following sections that
K is a good proxy of the minimal degree class able to sustain
by itself the dynamics in its neighborhood with correlated
reinfections.

In the absorbing-state limit, Eq. (8) leads to the constraint
K(w,\¢) = kpax. This can be interpreted as follows: the self-
activating degree must be higher than the maximal degree,
otherwise the system would be in an active phase, sustained by
the maximal degree class. This constraint is rewritten as

l+w+ \/2kmax — 1+ 0Bkmax — 1) + @ kmax

Ae(w) <
(w) kmax -1

A7)

Equation (17) sets a general upper bound on the threshold A,
for any rewiring regime specified by w. Notably, our approach
predicts a vanishing threshold for any random networks with
finite w in the limit ky,x — 00.

In the quasistatic limit, we have

|,y S—
Ae(@ — 0) = A% < +k—m1 (18)

For large kmax, Eq. (18) is well approximated by Ad <
2/ kmax. This upper bound is qualitatively in agreement
with QMEF (see Table II) and numerical simulations on static
networks [9]. Moreover, Eq. (18) can be associated with the
threshold of a star graph with kp,x leaves [10,44]. This is a
natural constraint, since this star is certainly a subgraph of

the network due to the presence of ky,.x degree nodes. While
Eq. (18) is slightly different from the threshold suggested by
the exact analysis of the star graph [44], it is identical to the
threshold obtained from PQMF [10].

In the annealed limit, one expects a finite threshold in the
limit kmax — 0o for bounded second moment (k?) [33], i.e.,
for any degree distribution that asymptotically decreases faster
than P(k) ~ k=3, in agreement with HMF. For this condition
to be satisfied, Eq. (17) prescribes that the rewiring rate w 2>
«kmax- Therefore, a network with higher degree nodes requires
a faster rewiring dynamics to be considered annealed.

B. Self-consistent expression

Using the definition of 8 in Eq. (7b) with the first order
developments of Egs. (14), we write the self-consistent ex-
pression

(k(k = 1) fi) + o(k* i) 2 + w + X)
(k)

B = ﬁ[ } +0(B%),
(19)

which can be rewritten as

(20)

06 (X @+ o) kfi) )

 C+ o)k fi) = 20kfi)
In the absorbing-state limit, which implies 8 — 0, the term in

parentheses on the right must be zero. This defines an implicit
expression for the threshold

2 + o) {kfi(w,Ac))
2 + o) (k2 fllw,10)) — 2(kfi(w,r0)

Equation (21) is a central result of the RNA—it allows the
accurate evaluation of A, for any degree distribution P (k) and
any time scale fixed by w. For arbitrary @ and P(k), Eq. (21)
is transcendental and must be solved numerically.

re(w) = 21

C. Correspondence with existing approaches

The transcendental expression for the threshold admits
some simplifications for certain limiting cases, leading to many
correspondences with current formalisms. First, we consider
the extreme regimes of the rewiring process. Equation (21)
becomes

(k)/(&2)
(ki) (1 £5) = (A

where fi(w — 0,A.) = f,". Hence, we recover as expected
the HMF threshold [6] in the annealed limit. In the quasistatic
limit, we obtain a threshold similar in form to the one predicted
by PHMEF, except for the presence of f" in each average (see
Table II).

To make further progress in the quasistatic limit, let us
consider the limit ky,x — o0o. To simplify the notation, we
let Ko = K(w — 0,).). In this case, there are two possible
scenarios for the threshold, depending on the scaling of kj
with k.. On the one hand, if Ky / kpax — 00, then fi — B/Ko,
which is independent of the degree. On the other hand, if
Ko/ kmax —> ¢ > 1,then f; depends strongly on the degree, and

if w — oo,
Ae = (22)

ifw— 0,

022305-5



ST-ONGE, YOUNG, LAURENCE, MURPHY, AND DUBE

PHYSICAL REVIEW E 97, 022305 (2018)

104 3 T T T T T T 3

3 : kmd\ *103 1

3 K : — kllld\ *104 T

10 ? : — kmax *100 é

g [ : I kmﬂx _10(] ]
g 9 .

= 0% : E
e 3 !

10t : E

100 I ! ! : L L

2.0 2.2 2.4 2.6 2.8 3.0 3.2

FIG. 3. Ratio Ko/ kmax against the power-law degree distribution
exponent y in the quasistatic limit (w — 0), for different values of
maximum degree k. The minimum degree is ki, = 3. Vertical
dashed line corresponds to y = 5/2. Horizontal dashed line corre-
sponds to Ko/ kmax = 2kmin, identified using Eq. (23).

the threshold A, is obtained directly. Together, this leads to

if z()/kmaX — OQ,

k) /((k?) — (k)

qs —
)\’C B {\/z/\/ Ckmax (23)

if Ko/ kmax — C.

In accordance with the literature and our previous dis-
cussion in Sec. IIT A, we identify the first case in Eq. (23)
(incidentally the exact same form as the PHMF threshold)
with the collective activation scenario. Indeed, since the self-
activating degree Ky is much larger than the maximal degree
kmax just beyond the threshold, none of the degree classes are
able to self-sustain the dynamics. The critical phenomenon
is therefore truly a collective one. We associate the second
case in Eq. (23) with the hub activation scenario. Effectively,
Ko ~ kmax, such that the active phase just beyond the threshold
is attributed to the self-activation of the maximal degree class
in the network. We can again relate the scaling with ky,,x [the
second case of Eq. (23)] with the threshold of the star graph
[10,44]. The subgraph containing the hubs and their neighbors
(maximal degree stars) is therefore the dominant topological
structure responsible for the onset of the active phase.

This correspondence can be verified explicitly for power-
law degree distributions P(k) ~ k=7, for which a transition
between the collective and hub-dominated scenario appears at
y =5/2 [8,36]. This is done in Fig. 3, where, as expected,
the ratio Ko/ kmax is a growing function of ky,y for y < 5/2,
while it goes to 1 for y > 5/2—the threshold then coalesces
with the upper bound (18). This type of result has been
observed numerically [9,10] and is coherent with individual-
based approaches [3]. Precisely at y = 5/2, the ratio of the
first two moments, (k2)/(k), is equal to x/kmaxkmin, Which lead
all curves of Ko/ kmax to cross at the same point ¢ = 2kp;,.

The two different expressions in Eq. (23) are similar to the
ones for QMF (see Table II). One is reminded that the QMF
estimate for the epidemic threshold is formally a lower bound
for the real threshold [45], but it is nonetheless qualitatively
correct [9]. Therefore, Eq. (21) has the appropriate behavior
in both the annealed and quasistatic limits. This is further
validated with numerical simulations (see Figs. 4 and 5).

N =10% 4
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101k
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FIG. 4. Threshold evaluation for power-law random networks of
degree distribution P (k) ~ k=7, minimum degree k,,;, = 3 and max-
imum degree k., < N2, (a, b) Susceptibility against the infection
rate for a single network realization. (c, d) Threshold against the
number of nodes (averaged over 10 network realizations) estimated by
the position of the susceptibility peak A ,(N), our threshold estimate
ARNA of Eq. (22) for @ — 0 and the PHMF threshold APHME,

D. Comparison with simulations

We expect that Eq. (21) should be a good approximation of
A for finite size realizations of the configuration model with
large N. This can be verified by sampling the configurations of
the system that do not fall on the absorbing state, the quasis-
tationary distribution [39-41], to evaluate the susceptibility,

_ E[n?] — E[n)?
X = T En 24)

with n < N the number of infected nodes in the system and
ET- - -] denotes the expectation over the quasistationary distri-
bution. The susceptibility exhibits a sharp maximum at A ,(N)

R L
090h e Quasi-static__ |
= 0.19}
o
=
95}
=
= 0.8}
A7k
OUT Amnealed o T—e -
n gl n e | n gl " el
1072 1071 100 10! 10?

FIG. 5. Threshold against the rewiring rate for a regular random
network with degree ky = 6 and network size N = 10°. The solid
line represents the threshold estimated by Eq. (25), and the markers
represent the positions of the susceptibility peaks A ,(N). The disparity
with the simulations is attributed to a combination of finite size effects
and approximations leading to Eq. (21).
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as shown in Figs. 4(a) and 4(b), corresponding to the epidemic
threshold of the system in the thermodynamic limit [9].

We have first validated Eq. (21) regarding the two possible
activation schemes using a power-law degree distribution
P(k) ~ k77 in the quasistatic limit. Figures 4(c) and 4(d)
show that the RNA yields a threshold in agreement with
the susceptibility for both the collective (y < 5/2) and the
hub-dominated (y > 5/2) phase transition. As a comparison,
it is seen in Fig. 4(d) that the prediction of PHMF does not
reproduce the scaling of A ,(N) for the hub activation scenario.
This is explained by the fact that this approach neglects
the neighborhood heterogeneity. Despite being accurate for
collective activation [11], as seen in Fig. 4(c), PHMF is unable
to describe correctly a hub-dominated dynamics.

Moreover, Eq. (21) is versatile and predicts the threshold for
all intermediate regimes between the annealed and quasistatic
limit. To illustrate this feature, we have extended the standard
quasistationary distribution method to include the rewiring
procedure (see Appendix B). For the sake of simplicity, we
have applied it to a regular random network with distribution
P (k) = xk,, for which Eq. (21) yields the threshold

24w
Q2+ whko—2
The validation is presented in Fig. 5. Equation (25) reproduces

with good accuracy the smooth transition from one regime to
another.

re(w) = (25)

E. Nonmonotonicity of the threshold

Equation (25) and Fig. 5 suggest a monotonically decreas-
ing threshold with growing rewiring rate . One may ask: is
this always the case? Equation (21) is much more intricate and
does not possess an explicit dependence upon w for general
degree distributions.

To answer this question, it is important to note that the
random rewiring of the edges affects the threshold in two
different ways. On the one hand, it promotes the contact be-
tween infected and susceptible nodes (the dynamic correlation
is reduced), which decreases the threshold (see Fig. 5). On the
other hand, random rewiring inhibits the reinfection of hubs
by their neighbors, which is driving the hub-dominated phase
transition.

For heterogeneous networks that are affected by both
mechanisms, this leads to a nonmonotonic relation for A.(w),
as presented in Fig. 6. A value wp exists at which A.(w)
is maximized: the hub reinfection mechanism is inhibited,
without stimulating too much the spreading through new
infected-susceptible contacts. The value wop then defines the
optimal rewiring rate to hinder the infection spreading on a
network with a specified degree distribution.

V. CRITICAL EXPONENTS

To complete the phase transition portrait, we address the
theoretical determination of the critical exponents of p*, the
mean infected density, and 8}, which describes the neighbor-
hood for each degree class. More specifically, we characterize
the scaling exponents § associated with

p*~ (=2, (26)

C

~

—

(=]
T

-
IS5
T

Wopt 7

sl

eyl P el T el PR
107% 1072 1007 100 107 102 103
w

FIG. 6. Threshold against the rewiring rate for power-law degree
distribution P (k) ~ k~¥ with exponent y = 2.75 and maximal degree
kmax = 50. The threshold is evaluated with Eq. (21). The dashed line
marks the optimal value w,y at which A is maximized.

and {n,} related to
OF ~ (A — A)™. 27

To make analytical progress, we restrict ourselves to power-
law degree distribution P(k) = Ak~7 in the limit kyax —
0o. The case w — oo, the annealed limit, has already been
analyzed through the HMF framework [33] and leads to the
following critical exponents:

1/3—y) fory <3,

SIME — L 1/(y —3) for3 <y <4, (28)
1 fory > 4,
(v =2/G—y) fory <3,

H?MF ={1/(y =3) for3 <y <4, (29)
1 for y > 4,

with n; being the same V k. Note that for y > 3, A, > 0 for
annealed networks.

In this section, we consider the case study of finite w, leading
to a vanishing threshold A. — O for all degree distribution
exponents y in the limit ky,,x — oo [see Eq. (17)].

A. Bounds on the critical exponents

The solution for 6; in Eq. (6) has a complicated dependence
on each degree class and is ill-suited for the direct estimation
of the critical exponents. Instead, we consider lower and
upper bounds for various quantities near the absorbing phase,
each identified by the subscript “—" or “+4,” respectively.
For instance, 6* and 67 are lower and upper bounds for 6},
respectively, valid for all degree classes.

We are mostly interested in the scaling of these quantities
with A near the absorbing phase, hence lower and upper bounds
are expressed only up to a constant factor. According to Eq. (6),
we can set the following bounds for 6 (see Appendix C1 for
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details):
0* = [é} ~ Q% 4+ 0wo*, (30a)
K ]_
1 «
0r = [&] ~ Q' +we?. (30b)
+

The bracket [x]_, indicates that we take the lower or upper
bound of x. This permits us to obtain bounds for other
quantities in terms of the bounds for 67 —for instance, QS i
in terms of 6%, leading to self-consistent expressions.

Since the developments for lower and upper bounds are the
same, we write explicit equations in terms of 6}. For Qs
according to Eq. (5), this leads to

« Al —03F > (k*V — k7Y
Q5 = ML= 0) Agi/ %dk
(k) ’ 1+ A0k

+ 0% ((k — 1)k>k,] + 0(\201%), (31)

where (---), represents an average over P(k) from kp;, to
k' — 1, and k’ is a finite value chosen such that the rest of the
average can be approximated by an integral.
For 0% — 0, we can then extract the leading terms of the
integral in Eq. (31) (see Appendix C2). This leads to
Q5% = (1 — 0D[a1(M01) 2 + axhf} + a3s(h03) ']
+ 01201, (32)

Similarly, using Egs. (5) and (3), we obtain

A0y 220%2 205
Q’i:k—i—bl( iz + by —= b ?E)
J s Jous O+
PR
+o =), (33)
P+
OF = (ALY 2 4 A0 + 0(W2012), (34)
pL = dyM0E 4+ dy(MOLEY T+ 0(126312), (35)

where the coefficients {a;,b;,c;,d;} are nonvanishing constants
in the absorbing-state limit. We now consider separately the
region2 <y <3and y > 3.

1. Region2 <y <3

Since Q%" and ©* possess the same critical behavior
according to Eqgs. (32) and (34), the lower bound 6* possesses
the simple self-consistent expression

0 ~ (AO*) 2 = 9F ~ Ar=D/C-) (36)
Combining this with Eq. (35), we obtain
pF ~ ACT) = )0 37)

The upper bound is slightly more complicated: Q'* and
®* might not possess the same critical behavior. However,
by definition we know that Q' > Q5" ~ ®* hence Q'" is
always dominant for finite rewiring rates . This implies that
a finite rewiring rate does not have any impact on the critical

Ut

T T ; T T
R 5HI\IF J
. [
4k RNA : £ i
4 B : /
: ‘
. 4
; ’
w 3+ 'o, i
2t :
—"'-T, I I I
2.0 2.2 2.4 2.6 2.8 3.0
Y

FIG. 7. Critical exponent § associated to the mean infected
density p*, for a power-law degree distribution P(k) ~ k=7 in the
thermodynamic limit. The bounded (shaded) region and the solid line
correspond to the exponent predicted by our approach [Egs. (37) and
(39)] and the dashed line to the HMF exponent. The dashed-dotted
line indicates the transition from the collective to the hub-dominated
region (y = 5/2).

exponents. We therefore have

. (67!
0r ~ QI A4 by — (38)
P+
Using Eq. (35), we obtain
0r ~aV,  pi~ AV =20, 39)
where
-2
Y72 fory <5)2,
v=13—-y (40)
1 fory > 5/2.

Equations (37) and (39) fix the bounds for the critical
exponent 4, as presented in Fig. 7. In the region y < 5/2,
associated to the collective activation scheme, upper and
lower bounds collapse to the annealed exponent of Eq. (28),
namely, § = 1/(3 — y). This is in fact the region where the
annealed regime describes the dynamics well, even for static
networks [9].

However, in the hub activationregion (y > 5/2), the bounds
are different, 5, = 1/(3 — y), _ = 2, giving rise to a wide
range for the values of the critical exponent. We will see in
Sec. VB that this behavior is related to the emergence of a
heterogeneous critical phenomenon in this region. Neverthe-
less, it is straightforward to verify that these bounds are not
in contradiction with the exactones (y — 1 < § < 2y — 3) of
Ref. [46] for static networks.

2. Regiony >3

The lower bound 6* in this region can be determined
again using 6* ~ 25" + w®* . More explicitly, in this region
we have

0F ~ e 0" + (A0 ) 72 — e3n(07)?, (41)

where {e;} are nonvanishing constants formed by the combi-
nation of {a;,c;}. This leads to a critical behavior of the form

pr~ 0" ~ (A —2he), (42)
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where v = max{1,1/(y — 3)}. Therefore, the lower bound is
associated with a finite effective threshold defined by A, = e; .
This is at odds with the upper bound in this region, which is
the continuity of the previous region

0Fr ~x,  pL~A (43)

In brief, the two bounds are even more separated from each
other in this region.

B. Heterogeneous critical phenomenon

Using the results of Sec. VA, it is also possible to get
some insight on the critical behavior of 6;° for extreme degree
classes, 67 and H,j‘mx (the limit ky,,x — oo is still implicitly
considered). We stress that Glj‘mm and Glj‘m are different from 6*
and 67. ‘

According to Eq. (6), we have the following behavior near
the absorbing phase (see Appendix C3 for details):

* ~ Q% + wO*, (44a)

kmin

*

~ Q" 4+ wO*.

12

LRI~ x|

(44b)

Kmax

Using the expressions for 6* and 6% to bound °* and Q'",
we arrive at the following portrait:

eljmin S )h(lﬁ-H)(V—Z)7 (45)
of > 6", (46)
O ~ AV @7)

which characterizes the critical exponents ny, . and 7, . For
instance, for 2 < y < 3, we have

. y —2 y —2
min|2y — 4, — | < g,y < o—— 48)
3—vy 3—y
and
-2
Mimax = min[l,”—] (49)
3-y

It is a striking result: as presented in Fig. 8, in the hub-
dominated regime (y > 5/2), the bounded regions for 7,
and ny, . are disjoint. These different asymptotic scalings are
validated for finite &, in Fig. 9.

Different critical exponents for extreme degree classes is
also an elegant explanation for the heterogeneity of 6" observed
in Fig. 2(b). Indeed, near the absorbing phase,

X
Enin i e = A (50)
kmax
with A > 0 for y > 5/2. Moreover, it illustrates that the crit-
ical phenomenon is itself heferogeneous, involving different
mechanisms depending on the degree class: for hubs, activity
is supported locally through correlated reinfections, while for
the rest of the system, activity is mostly due to the propagation
induced by the hubs.

This results also have an impact on how p; grows for each
degree class beyond A, according to Eq. (2). It explains the
wide bounds we obtained for p* = (p;) in the hub activation
region, since p; grows differently for each degree class.

4 T T : T T
HMF !
B 5 ’.'
L RNA £ o
3 nkum.\’ : "
. )
RNA : 4
2 nkmin : 'l
< 2k S i
1F /;" .
____ T' L L L
2.0 2.2 24 2.6 2.8 3.0
v

FIG. 8. Critical exponents 17 associated to 6;, for power-
law degree distribution P(k) ~ k=7 in the thermodynamic limit.
The bounded (shaded) region and the solid lines correspond
to the exponents predicted by our approach [Egs. (48) and (49)] and the
dashed line to the HMF exponent. The dashed-dotted line indicates the
transition from the collective to the hub-dominated region (y = 5/2).

VI. BEYOND THE HUB ACTIVATION THRESHOLD

As presented in Sec. IVC, a collective activation leads to
07 ~ fi independent of the degree, while a hub activation
results in a growing function of the degree (see Fig. 2).
The latter is formally identified as a heterogeneous critical
phenomenon [Eq. (50)]. However, this analysis based on the
critical exponents is well defined only in the combined limit
kmax — 00 and A — 0, in which case the impact of the rewiring
is lost.

Beyond the threshold and for finite kp,.x, the dichotomy
is not as well defined, and the rewiring rate w does have a
significant impact. In fact, the structural dynamics permits us to
interpolate between the two scenarios. According to Eq. (11),
the rewiring rate w increases the self-activating degree K (w, 1),
forcing a more collective activation. This leads to a more
homogeneous neighborhood among the degree classes near
the absorbing phase, as seen in Fig. 10.

Also, critical exponents of Sec. V do not tell us about the
behavior of the system far beyond the hub activation threshold.
For power-law degree distribution having an exponent y >
3, it has been observed in numerical simulations that the

10 g — Num. 65 ,"”E (b) i
r—— Num. 6§}
1% Theo. 0} E 3 =
* e F
1015 3 3 Theo. 0; 3
; (a) ]

0 PRI BT T B
1955 1077 10—
A=A

FIG. 9. Critical behavior for 67 —and 67 . All curves have
been normalized to the value of 6 at the origin of the abscissae.
Dashed lines and shaded regions correspond to the theoretical scaling
predicted in the limit &k, — oo. Solid lines represent the numerical
evaluation of Eq. (6) for bounded degree distribution with kp,;, = 3
and ko = 5 x 10°. (a) Power-law degree distribution with exponent
y = 2.5. (b) Power-law degree distribution with exponent y = 2.75.
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FIG. 10. 6;/6; . near the absorbing phase for power-law degree
distribution with exponent y = 3.1 and maximal degree knm,x = 1000,
for different values of rewiring rates . The minimal degree is
kmin =3.

delocalization of the dynamics, where not only hubs sustain
the propagation, happens at a finite A. This gives rise to a
second peak on the susceptibility curve y, associated with the
activation of the shell with the largest index in the K-core
decomposition [9] and seems to correspond with the HMF
threshold [12].

Our compartmental formalism is not well suited to identify
precisely this second transition. However, we are able to
describe how the system behaves as the infection rate is
increased beyond A, towards this delocalized regime. An

1 —
k = 1000
0.8} — & =3000 .
— k= 15000
- 06F — k=7000 i
& —  k=19000
0.4} i
02k (a) .
0.0
300 i
£ 200 ]
100 ]

10!

FIG. 11. Successive activation of the degree classes for a power-
law degree distribution with exponent y = 3.1, maximal degree
kmax = 10%, and rewiring rate @ = 0. The minimal degree is ki, = 3.
The vertical dashed lines corresponds to ¥ = k for each degree k
involved. (a) Infected density per degree class p; as a function of
the infection rate A. (b) Derivative of p; with respect to A, {7, as a
function of the infection rate A.

interesting feature is the successive activation of the degree
classes. According to Eq. (11), the self-activating degree ¥ is
a monotonically decreasing function of A. Since K(w,A.) —
kmax for hub activation, ¥ (w,A) = k < kmax for A > A.. In
words, for A beyond the absorbing phase, lower degree classes
than k.« are able to self-sustain the dynamics in their neigh-
borhood, largely increasing their infected density p;.

This successive activation mechanism is observed in
Fig. 11(a), where each p; sharply increases as k ~ k, then
saturates according to Eq. (2). This is also well portrayed
by the derivative of p; with respect to A, 0, 0 = ¢, which
exhibits a maximum for k ~ & [Fig. 11(b)]. These successive
activations could be related to the smeared phase transition
observed in Refs. [14,47] for power-law degree distribution
with y > 3. In a smeared phase transition, parts of the network
exhibit an ordering transition independently, which in this case
can be associated with the high degree nodes and their direct
neighbors.

VII. CONCLUSION

Using a degree-based theoretical framework, we have de-
veloped a stationary state analysis to study the SIS dynamics
on time-varying configuration model networks. The rewiring
mechanism has allowed us to take into account the effect of
an effective structural dynamics, which mathematically repre-
sents an interpolation between a heterogeneous pair approxi-
mation (HPA) and a heterogeneous mean field theory (HMF).
A general portrait of the phase transition that characterizes
both collective and hub activation has emerged, filling the
theoretical gap between degree-based and individual-based
formalisms.

First, we have shown that it is possible to discern the type of
activation by studying the properties of 6" near the absorbing
phase, providing an alternative to the study of the principal
eigenvector [36]. This point of view has inspired our analysis
of the phase transition and allowed us to distinguish the hub
and collective activation within our degree-based framework.

Second, by using a perturbative scheme, we have obtained a
self-consistent expression for the absorbing-state threshold X..
Due to the analytical tractability of the RNA, we have been able
to establish several correspondences with existing threshold
expressions. Moreover, the generality of our threshold expres-
sion has allowed us to illustrate the impact of a time-varying
structure by tuning the rewiring rate, leading to a smooth and
possibly nonmonotonic relation A.(w).

Third, by means of bounds on various quantities, we have
characterized the critical exponents of p* and 6 for power-
law degree distributions. Noteworthy, it has allowed us to
unveil the heterogeneous critical phenomenon for the hub
activation scenario. This offers an elegant explanation for the
heterogeneity of 6" in Fig. 2(b) and also permits to discriminate
between collective and hub-dominated phase transitions.

Finally, we have studied the active phase beyond a hub ac-
tivation threshold. The time variations of the structure leads to
a more homogeneous neighborhood among the degree classes.
Therefore, the dichotomy discussed in Sec. IITA is not as
clear-cut anymore since the rewiring rate allows to interpolate
between the two activation scenarios. Also, in between the
localized and delocalized regime for a hub-dominated phase
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transition, we have observed that each degree class undergoes
a certain type of activation as the infection rate A is increased.
These independent activations could be related to the smeared
phase transition—with inhomogeneous ordering—observed in
Refs. [14,47].

Several extensions of this work can be studied. For in-
stance, the stationary state analysis can be applied to networks
featuring other types of rewiring processes. These can be
adaptive processes [20,21,27] or mechanisms that preserve
other structural properties apart from the degree sequence,
such as degree assortativity [48]. Finally, due to the generality
and versatility of the RNA, it can easily be applied to other
binary-state dynamics.
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APPENDIX A: DEVELOPMENT OF THE PAIR
APPROXIMATION

We adapt the approach proposed in Refs. [4,21], which starts
with a set of differential equations governing the evolution
of the compartments of nodes of a specified degree k and
infected degree [ (see also Refs. [5,29]). Let sy (¢) [ix(f)] be
the probability that a degree k node is susceptible (infected)
and has [ < k infected neighbors. The rate equations for these
probabilities are

ds .
d—:l =iy — Msy + [1 + o(1 — O)[( + Dsigt1y — Isul
+ (25 + wO)[(k — I + Dsgg—1y — (k — Ds],
(Ala)
diy . . .
o Msy — iy +[1+ o1 — ) + Dikgsry — lin]

+ (' + 0O)[(k — 1 + Digg_1y — (k — Dig],
(Alb)

where Q5(¢) and Q/(¢) are the mean infection rates for the
neighbors of susceptible and infected nodes. These rates can
be estimated from the compartmentalization [4], yielding

Z[ (k l)lskl QI Zl l Sk[
Z; (k —Dsi) Z; Isw)

Equations (A1) form an O[k2,, ] system of equations and do
not lead to simple stationary solutions. To obtain a pair approx-
imation formalism from Egs. (A1), we use the dimensionality
reduction scheme proposed in Ref. [4]. Let ¢y(t) be the
probability of reaching an infected node following a random
edge starting from a degree k infected node. Using Egs. (A1),
we can define a rate equation for 6, and ¢ together with the
definitions Y, Isiy = (1 — pp)kOx and Y, lixy = pekepy. This

QS = (A2)

leads to the following system of equations:

% _ ___ » - p S 4 @)1 —
TRRRTE 21:1 Sk + ridi + (25 + 0O)(1 — ;)
—[1+ a)(l — ®)]9k — O (ry — )Lk@k), (A3a)
b _ * o 1 N
= o ;l s — d + (R + 0O)(1 — ¢)
—[1+ (1 — ©)]¢p + (1 — kk@krk_]), (A3b)

with ri = p /(1 — pr).
To obtain a closed system for Egs. (A3), we use the pair
approximation

k
Y Psy (1= po[kby + k(k— DOC], (A4)
=0

which implies that the state of each neighbor is independent.
Equations (4) and (5) follow accordingly.

APPENDIX B: MONTE CARLO SIMULATIONS

To simulate the SIS dynamics on networks, we used a
modified Gillespie algorithm [49]. During the simulation
process, we track the number of infected nodes n(¢) and the
number of stubs emanating from them u(¢). The total number
of stubs is 2M and is fixed according to our rewiring process.
At each step, three event types are possible with the following
probability:

P(Recovery) = n/(n + Au + oM/2), (Bla)
P(Infection) = Au/(n + Au + wM/2), (B1b)
P(Rewiring) = (wM/2)/(n + Au + ®M/2). (Blc)

Each event occurs as follows:

(1) Recovery event: an infected node is chosen randomly
and becomes susceptible.

(2) Infection attempt event: an infected node is chosen pro-
portionally to its degree. We then choose one of its emanating
stubs randomly and infect the node at the other end point. If
it is already infected, we do nothing: this phantom process
[50] corrects the probability in order to make the process
equivalent to randomly choosing an edge among the set of
all susceptible-infected edges.

(3) Rewiring event: Two edges (a;,b;) and (ay,by) are
randomly chosen with a;,b; the labels for the nodes; choos-
ing an edge (b;,a;) is equally likely. We then rematch the
stubs according to the following scheme (a;,b),(az,b;) —
(ai,b>),(az,by). Loops and multi-edges are permitted.

After all events—even the frustrated ones—we update the
time with t — ¢ + At where At = E[At] = [n(t) + lu(t) +
wM /2]

To evaluate some observables for infection rates A near the
absorbing phase, we sample the configurations of the system
that do not fall on the absorbing state—the quasistationary
distribution [39—41,51]. When the system visits the absorbing
state, the current state is replaced by a configuration randomly
chosen among the set H of previously stored active configu-
rations. Also, with probability & Az, each active configuration
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is stored, replacing a randomly chosen one among #, thus
updating the set of states proportionally to their average
lifetime [39]. The system is then expected to converge on
the quasistationary distribution [52] over which we measure
observables. In all our simulations, we chose |H| € [50,100]
and £ = 1072

APPENDIX C: SUPPLEMENTARY DEVELOPMENTS FOR
THE CRITICAL EXPONENTS

1. Lower and upper bounds on 6;

Our insight is that 6;° is a monotically increasing function
of the degree k. Higher degree nodes have a higher probability
of being infected, hence their neighbors can only be more
infected on average. This is reflected in Eq. (6), despite not
being explicit.

The lower and upper bounds are then fixed using the
minimal and maximal values for the degree in Eq. (6):

mz[?]< F_ 1
k| k-1
or = [;L = lim o], (C2)

The parameters «, 3,k are considered finite when taking the
limit K — oo in the second equation, which is true for any
A > A

2. Integral approximation
Let us consider an integral of the form
oo ka—l
[ =k ! / —  _dk, (C3)
o1+ k(bk)!

where b = (A0*k’) ! and a < 1, equal to 3 — y) or (2 — y)
according to the integrals appearing in Eq. (31). Using z =

k’k~!, this can be rewritten as

1 —a
Z
I = dz. C4
/0 1+ bz ¢ )

This integral can be associated with the hypergeometric func-
tion [53]

I=(1-a)ZWFU,1=-a2—a;-b). (C5)

Since near the absorbing phase b > 1, to extract the leading
terms of Eq. (C5), we use the transformation formulas for the
hypergeometric function [53], leading to

I =T —a)@)b* " = (ab)y "L F(1,a;a + 1;—=b~"). (C6)
The leading terms are finally
I=hb"""+hb '+ 0072, (CT)

where {h;} are nonvanishing constants. Appropriate limits
must be taken for all values of @ = 0 or negative integer values.

3. Critical behavior of 0,fmin and O,fmx

Near the phase transition (A — 0 in this case), according
to Eq. (11), k ~ K(w,A) is very large. Since we can choose A
arbitrarily small, we can let « — 00, keeping, however, Kk <K
kmax —> 00.
For 6f ., we simply use the perturbative development
[Eq. (9)] to extract the leading term
" B N
e = T H OB = (C8)
For sz, we need to develop Eq. (6) in terms of k/kpax — O
instead. In this case, we obtain

1 K 1
0; =—+0( ):—. (C9)
o

k
max kmax o
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