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Multiple mechanisms for stochastic resonance are inherent to sinusoidally
driven noisy Hopf oscillators
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To ensure their sensitivity to weak periodic signals, some physical systems likely operate near a Hopf
bifurcation. Many systems operating near such a bifurcation exhibit stochastic resonance, but it is unclear which
mechanisms for resonance are inherent to the bifurcation. To address this question, we study the sinusoidally forced
dynamics of noisy supercritical and subcritical Hopf oscillators. We find four qualitatively different mechanisms
for stochastic resonance and determine the conditions for each type of resonance.
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I. INTRODUCTION

To achieve great sensitivity to sinusoidal stimuli, it has been
proposed that some natural systems possessing a supercritical
Hopf bifurcation operate close to the bifurcation [1]. The
sensitivity of such systems may be limited by noise, but it
is also possible that noise enhances their responsiveness in
certain situations. Stochastic resonance, broadly speaking, is
the peaking of a system’s response to a deterministic stimulus
as a function of the noise level [2,3]. Therefore, we would like
to know the mechanisms for stochastic resonance intrinsic to
systems operating near a Hopf bifurcation.

Numerous studies have explored the response to periodic
forcing of particular types of oscillators that operate near a
Hopf bifurcation. For illustration, near a supercritical Hopf
bifurcation, the FitzHugh-Nagumo model [3,4], an electron-
hole plasma model [5], and the Brusselator model [6] exhibit
stochastic resonance that is related to an abrupt increase in
the amplitude of self-oscillation as a function of a control
parameter. In contrast, stochastic resonance in the Noyes-
Field-Thomson model [7], the Hindmarsh-Rose model [8],
a model of intracellular Ca2+ oscillations [9], and a biogeo-
chemical climate model [10] is associated with spontaneous
oscillations of finite amplitude that occur at a subcritical
Hopf bifurcation. The effects of noise are sometimes model
dependent and sometimes attributed to the bifurcations. For
example, because the supercritical Hopf normal form does not
produce autonomous oscillations that rise sharply with control
parameter, the specific type of stochastic resonance associated
with the abrupt rise described above cannot be intrinsic to this
bifurcation.

To determine the behaviors of noisy sinusoidal-signal de-
tectors that are inherent to Hopf bifurcations, we study the
response to sinusoidal forcing of the supercritical and subcrit-
ical Hopf normal forms in the presence of additive complex
Gaussian white noise with uncorrelated components. These
Langevin equations define noisy Hopf oscillators, for which
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there is an equivalent formulation in terms of Fokker-Planck
equations. Analytical and numerical solutions of the Fokker-
Plank equations allow us to determine the responsiveness of
a Hopf oscillator to sinusoidal forcing over a large range of
noise levels. By relating changes in the probability density as
a function of the noise level to the phase-locked amplitude
and the degree of entrainment, we find several mechanisms for
stochastic resonance.

II. HOPF OSCILLATORS WITH ADDITIVE NOISE

The Hopf normal form in the presence of sinusoidal forcing
with additive white noise possessing uncorrelated real and
imaginary components is

ż = (μ + iω0)z + (b + ib′)|z|2z + (c + ic′)|z|4z
+ f ei(ωt+θ) + η, (1)

in which μ is the control parameter, ω0 is the Hopf frequency,
and b, b′, c, and c′ are coefficients defining the system’s non-
linearity [11–13]. The complex forcing term F (t) = f ei(ωt+θ)

has amplitude f , frequency ω, and phase θ . The noise η(t)
is complex and white and satisfies 〈η(t)〉 = 0, 〈η(t)η(t ′)〉 =
0, and 〈η(t)η†(t ′)〉 = 4dδ(t − t ′), in which 〈〉 represents the
ensemble average, η†(t) is the complex conjugate of η(t), and
d is the strength of the noise [14–16].

In the deterministic limit, a Hopf bifurcation occurs at
μ = 0; the system oscillates for μ > 0 and possesses a sta-
ble fixed point when μ < 0. In the case of a supercritical
Hopf bifurcation, b < 0, c = 0, and the amplitude of self-
oscillation grows continuously from zero at the bifurcation.
At a subcritical Hopf bifurcation, which occurs when b > 0
and c < 0, oscillations of nonzero amplitude exist. A saddle
node of limit-cycle bifurcation generates the oscillations at
μ = b2

4c
< 0. When b2

4c
< μ < 0, a stable fixed point is enclosed

by an unstable limit cycle, which is in turn encircled by a stable
limit cycle. We call the cases with μ > 0 the oscillatory sides
of the bifurcations and refer to the supercritical situation of
μ < 0 and subcritical case of μ < b2

4c
as the quiescent sides of

the bifurcations.
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In the rotating frame of the forcing, Eq. (1) can be rewritten
as

ẏ = (μ − iδω)y + (b + ib′)|y|2y + (c + ic′)|y|4y
+ f + ηe−i(ωt+θ), (2)

in which y ≡ ze−i(ωt+θ) and δω ≡ ω − ω0 is the frequency
detuning. For complex Gaussian noise, for which the real and
imaginary components are Gaussian distributed with variance
2d, the probability density P (y,t) for y satisfies the Fokker-
Planck equation:

∂tP = −∂R[(μyR + δωyI + (byR − b′yI)ρ
2

+ (cyR − c′yI)ρ
4 + f )P − d∂RP ]

− ∂I[(μyI − δωyR + (byI + b′yR)ρ2

+ (cyI + c′yR)ρ4)P − d∂IP ], (3)

in which y ≡ yR + iyI, ∂R ≡ ∂/∂yR, ∂I ≡ ∂/∂yI, and the radial

coordinate ρ(yR,yI) ≡
√

y2
R + y2

I [14,17].
The response of a supercritical Hopf oscillator to sinusoidal

forcing can be multivalued when b′ is nonzero and the response
of a subcritical oscillator is likely more complicated [18,19].
To determine the most basic consequences of noise for a forced
Hopf oscillator, we limit our analysis to the case of b′ = 0 and
c′ = 0, which defines an isochronous Hopf oscillator [20].

Because the steady-state solution to Eq. (3) determines
whether stochastic resonance occurs, it is instructive to first
discuss the solution as a function of the conditions.

A. The position distribution

1. Tuned forcing

The steady-state distribution Ps(y) of y in the case of zero
detuning, δω = 0, is given by

Ps = Neα/d, (4)

in which N is a normalization constant and α = μρ2/2 +
bρ4/4 + cρ6/6 + fyR. The solution for the supercritical case
has been reported previously [14] and the unforced solution
for both types of bifurcations has been discussed [21,22]. In
the original frame of reference, the distribution Pzs(z,t) for z

rotates at the frequency of driving and is given by

Pzs = Nexp

{
μρ2

2d
+ bρ4

4d
+ cρ6

6d

+ f [zR cos (ω0t + θ ) + zI sin (ω0t + θ )]

d

}
. (5)

When f = 0, the steady-state distribution Ps is radially
symmetric and has radial maxima at values of

√
y2

R + y2
I = ρm

satisfying cρ5
m + bρ3

m + μρm = 0 and 5cρ4
m + 3bρ2

m + μ < 0,
that is, at the same loci as the stable manifolds of the

deterministic system. A change in the qualitative shape of a
system’s state distribution is known as a phenomenological
bifurcation (Fig. 1) [23]. Here the phenomenological
bifurcations coincide with the deterministic bifurcations
independent of the noise level d.

In the unforced case, the steady-state distribution in a frame
rotating at ω = ω0 for the radius ρ and the phase differ-
ence ψ ≡ φ − ωt − θ is Pps(ρ,ψ) ≡ ρPs(y(ρ,ψ)), such that
y = ρeiψ . In this coordinate system, the radial distribution’s
maxima depend on d and occur at values of ρ = ρm satisfying
cρ6

m + bρ4
m + μρ2

m + d = 0 and 7cρ6
m + 5bρ4

m + 3μρ2
m + d <

0. The radial distribution is unimodal in the supercritical
case. In the subcritical case, the distribution is bimodal for
μ1(b,c,d) < μ < μ2(b,c,d) < 0 and d < b3/27c2 and uni-
modal otherwise, in which μ = μ1,2(b,c,d) are solutions of
4b3d + 27c2d2 − 18bcdμ − b2μ2 + 4cμ3 = 0.

Forcing at the resonant frequency breaks the radial symme-
try of the Cartesian distributions, although they retain reflection
symmetry around the line yI = 0. There is a preferred phase
difference of zero between the forcing and the oscillator’s
response such that the most probable value for yI is zero
(Fig. 1). Due to the simple form of the noise, the qualitative
shape of the forced position distribution is unaffected by the
noise level d and depends only on the fixed points of the
deterministic system. The extrema of the distribution Ps along
the symmetry line yI = 0 are given by

∂Ps(yR,0)

∂yR
= 0 (6)

and satisfy the fixed point condition [Eq. (A4) in the Ap-
pendix]. Each stable response to tuned forcing corresponds
to a peak in Ps.

In the supercritical case, Eq. (A4) defines a single fixed
point when μ < 0 or f >

√
−4μ3/27b and three fixed points

for f <
√

−4μ3/27b when μ > 0; a stable fixed point, at
which the distribution Ps is a maximum, an unstable fixed
point, and a saddle point. The stable fixed point and the saddle
point are at antipodal ends of a ring-shaped crater exhibited
by Ps. The saddle point and unstable fixed point vanish for
large forces through a saddle-node bifurcation, corresponding
to the loss of the crater in Ps. When μ < 0, Ps has a single
maximum at the only stable fixed point. The most probable
value for yR is yRm = (−f/b)1/3 when μ = 0. The most
probable value yRm is less than (−f/b)1/3 and increases with
f more slowly than f 1/3 when μ < 0, whereas the opposite
is true when μ > 0. Irrespective of the value of μ, however,
yRm → (−f/b)1/3 as f → ∞.

The subcritical distribution has four qualitatively dissimilar
shapes associated with different sets of fixed points defined
by Eq. (A4) (Fig. 2). In the range 9b2/20c < μ < 0, the
subcritical Hopf oscillator has two maxima for tuned sinusoidal
forcing satisfying f1(μ,b,c) < f < f2(μ,b,c), in which

f1(μ,b,c) =
√

−3b −
√

9b2 − 20cμ

10c

(
3b2 − 20cμ + b

√
9b2 − 20cμ

25c

)
for μ <

b2

4c
, and

(7)

f2(μ,b,c) =
√

−3b +
√

9b2 − 20cμ

10c

(
3b2 − 20cμ − b

√
9b2 − 20cμ

25c

)
.
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FIG. 1. Steady-state distributions of probability density are shown for stochastic Hopf oscillators in a frame rotating at the forcing frequency
for different values of the control parameter μ in unforced f = 0 and forced f = 10−2 scenarios [Eq. (4)]. Forcing is at the Hopf frequency
ω = ω0 and the noise level d = 10−2. In the absence of forcing, the distributions are radially symmetric. Forcing introduces radial asymmetry and
a most probable phase of 0 radians. In these cases, the corresponding distributions in the original frame of reference rotate in a counterclockwise
direction around the origin at the frequency of driving. [(a)–(f)] Supercritical Hopf oscillator (sup). [(g)–(l)] Subcritical Hopf oscillator (sub).
For all figures in this manuscript the Hopf frequency ω0 = 1, b = −1, and c = 0 in the supercritical case or b = 1 and c = −1 in the subcritical
case.

Within this region, two stable fixed points, two saddle points, and an unstable fixed point yield a distribution with two maxima
and a crater for f < f3(μ,b,c), in which

f3(μ,b,c) =
√

−3b −
√

9b2 − 20cμ

10c

(
3b2 − 20cμ + b

√
9b2 − 20cμ

25c

)
for μ >

b2

4c
. (8)
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FIG. 2. The state diagram for a deterministic subcritical Hopf
oscillator subjected to resonant forcing is shown. Global bifurcations
are not shown. There exist two stable responses to tuned forcing
with amplitude f for operating points within the green region
demarcated by the red saddle-node bifurcation lines [f1(μ,b,c) <

f < f2(μ,b,c)] that intersect at a cusp bifurcation [μ = 9b2/20c

and f =
√

−54b5/3125c3, orange dot]. Two unstable fixed points
arise through a third saddle-node bifurcation line [gray dashed,
f3(μ,b,c)] that intersects one of the red lines at μ = b2/5c and
f =

√
−4b5/3125c3 (purple dot) and asymptotically meets the other

red line at μ = b2/4c and f = 0. Stochastic resonance in the phase-
locked amplitude and the vector strength occurs for operating points
in the region shaded dark green, in which α1 < α2. The phase-locked
amplitude also peaks as a function of the noise level for points in the
region shaded orange [f < f1(μ,b,c) and 9b2/20c < μ < b2/4c or
f < f4(μ,b,c) and μ < 9b2/20c].

When f > f3(μ,b,c), two stable fixed points and a saddle
point correspond to two maxima and no crater. Outside of the
two stable-solution region, there is one stable fixed point and
no crater for f > max(f2(μ,b,c),f3(μ,b,c)) or μ < 9b2/20c.
In the case of μ > b2/5c and f2(μ,b,c) < f < f3(μ,b,c), a
stable fixed point, a saddle point, and an unstable fixed point
correspond to a distribution possessing one maximum and a
crater. In every case, the location of the distribution’s peak
yRm rises as μ grows, and yRm → (−f/c)1/5 as f → ∞ for
all values of μ.

In polar coordinates, the radial maxima occur at values of
ρm satisfying cρ6

m + bρ4
m + μρ2

m + fρm + d = 0 and 7cρ6
m +

5bρ4
m + 3μρ2

m + 2fρm + d < 0. In contrast to the Cartesian
distribution, the most probable value for the radius and the
modality of the radial distribution depend on the noise level.
In agreement with a previous calculation for the supercritical
case [16], Pps = Pps0[1 + fρ cos(ψ)/d] to linear order in f ,
in which Pps0 is the steady-state polar distribution for f = 0.

2. Detuned forcing

A closed-form solution for Eq. (3) is not apparent when
δω 	= 0, but we can solve for the steady-state distribution
numerically by employing Ps to set initial and boundary
conditions [Eq. (4)]. We find the distribution Pp(ρ,ψ,t) in polar
coordinates with periodic boundary conditions in the phase
coordinate Pp(ρ,2π,t) = Pp(ρ,0,t) and ∂ψPp(ρ,ψ,t)|ψ=2π =
∂ψPp(ρ,ψ,t)|ψ=0. In the radial direction we use the Dirichlet

boundary condition Pp(ρmax,ψ,t) = Pps(ρmax,ψ), in which
Pps(ρ,ψ) = ρPs(y(ρ,ψ)) is the steady-state solution for zero
detuning in polar coordinates. The maximum value for ρ is
selected such that Pps(ρmax,ψ) ≈ 0. The initial condition is
chosen to be Pp(ρ,ψ,0) = Pps(ρ,ψ).

The polar Fokker-Plank equation possesses terms that
diverge as ρ → 0,

∂tPp = −∂ρ

[(
μρ+bρ3+cρ5+f cos ψ+ d

ρ

)
Pp−d∂ρPp

]

− ∂ψ

[(
−δω+b′ρ2+c′ρ4− f sin ψ

ρ

)
Pp− d

ρ2
∂ψPp

]
.

(9)

To circumvent numerical complications arising from these
divergences, we define a minimum value for ρ, ρmin,
and use the condition Pp(ρmin,ψ,t) = Pps(ρmin,ψ), in which
Pps(ρmin,ψ) ≈ 0. The distribution is normalized at the end of
the integration time tmax to have unit volume over the annulus
defined by ρ ∈ [ρmin,ρmax] and ψ ∈ [0,2π ]. The steady-state
distribution in Cartesian coordinates is then given by Psδω(y) =
Pp(ρ(y),ψ(y),tmax)/ρ(y), in which tmax is chosen such that
Psδω(y) has converged sufficiently.

Forcing at a frequency different from the Hopf fre-
quency breaks the Cartesian distribution’s reflection symmetry
(Fig. 3). In contrast to the tuned case, peaks of the steady-
state distribution do not reside at the stable fixed points and
instead their positions depend on the value of the noise level
d. For negative detuning, the probability density is rotated
counterclockwise such that its peak leads the forcing. This
result accords qualitatively with the deterministic limit, in
which a stable response of an oscillator to periodic driving
at a frequency below the Hopf frequency leads the input [20].
The phase lead of the distribution’s peak also occurs, however,
when there is no stable fixed-point response in the deterministic
limit. Similarly to the stable response in the absence of noise,
the oscillator’s most probable position lags the forcing for pos-
itive detuning. Raising the noise level drives the peak’s phase
to zero and broadens the distribution. For increasing noise, the
detuned distribution approaches the tuned case. A moderate
noise level nonetheless produces detuned distributions that are
less skewed than those corresponding to tuned forcing.

The deterministic response to weak detuned forcing is
aperiodic whenever the ratio of the forcing frequency to
the Hopf frequency is irrational and does not approach a
steady state in any reference frame [20]. In contrast, the
stochastic system possesses a steady-state position distribution
for any driving frequency in a reference frame rotating at that
frequency. Unlike the tuned situation, however, the effect of
detuned forcing on the distributions declines as the control
parameter μ rises.

B. Stochastic resonance

1. Phase-locking to tuned forces can peak as a function of the
noise level near subcritical but not supercritical Hopf bifurcations

Because we wish to distinguish an oscillator’s response to
sinusoidal input from that provoked by noise, we employ the
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FIG. 3. Steady-state distributions of probability density for stochastic Hopf bifurcations are shown for a frame rotating at the forcing
frequency for different values of the control parameter μ. Forcing is at a frequency, ω = 0.9 ω0, lower than the Hopf frequency ω0, and has
an amplitude f = 10−2; the noise level d = 10−2. The distributions are rotated counterclockwise and are less skewed than the distributions
resulting from forcing at the Hopf frequency (Fig. 1). [(a)–(c)] Supercritical Hopf oscillator (sup). [(d)–(f)] Subcritical Hopf oscillator (sub).

phase-locked amplitude

|〈z̃(ω)〉zs| = |〈y〉s| (10)

and the vector strength

V ≡
∣∣∣∣ lim
T →∞

1

T

∫ T

0
eiψ(t) dt

∣∣∣∣ = |〈eiψ 〉s|, (11)

in which ω is the stimulus frequency, z̃ is the finite-time Fourier
transform of z, and 〈〉zs and 〈〉s denote long-time ensemble
averages in the respectively nonrotating and rotating frames.
In the presence of noise, the phase-locked amplitude and
the vector strength are nonzero only if the forcing amplitude
f 	= 0.

Suppose we would like to determine if |〈g〉| peaks as a func-
tion of the noise level d, in which g = gR(yR,yI) + igI(yR,yI).
Extrema of |〈g〉| occur when

∂|〈g〉|
∂d

= 0 or equivalently when
∂(〈gR〉 + 〈gI〉)

∂d
= 0.

(12)
For tuned forcing, Ps = N exp(α/d) resulting in

∂(〈gR〉s + 〈gI〉s)

∂d
= −cov(gR + gI,α)

d2
, (13)

in which cov(g,α) = 〈gα〉s − 〈g〉s〈α〉s is the covariance under
the distribution Ps. Maxima of |〈g〉s| occur when

cov(gR + gI,α) = 0 and cov(gR + gI,α
2) < 0. (14)

If gI → −gI as yI → −yI, then cov(gI,α) = 0 and
cov(gI,α

2) = 0. Correspondingly,

∂|〈y〉s|
∂d

= −cov(yR,α)

d2
and (15)

∂|〈eiψ 〉s|
∂d

= −cov(yR/ρ,α)

d2
, (16)

such that the phase-locked amplitude peaks when

cov(yR,α) = 0 and cov(yR,α2) < 0, (17)

and the vector strength is a maximum for

cov(yR/ρ,α) = 0 and cov(yR/ρ,α2) < 0. (18)

The fact that conditions Eqs. (17) and (18) differ implies that
if the responsiveness measures peak they generally do so at
different noise levels.

Because the phase-locked amplitude and vector strength
tend to zero as the noise level increases to infinity, they must
peak if they increase for some finite d. If the phase-locked
amplitude peaks at d1, then

cov(yR,α) < 0 (19)

at some d < d1, whereas if the vector strength peaks at d2, then

cov(yR/ρ,α) < 0 (20)

at some d < d2. Stochastic resonance does not occur for a
resonantly forced supercritical Hopf oscillator but is possible
for a subcritical Hopf oscillator under certain conditions
(Fig. 4).

To find analytical conditions for stochastic resonance,
we consider the limit of small noise. For small d 	= 0, the
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distribution Ps = N exp(α/d) is sharply peaked around its
maxima ym that satisfy

∂α

∂yR

∣∣∣∣
ym

= 0 and
∂2α

∂y2
R

∣∣∣∣
ym

< 0, (21)

∂α

∂yI

∣∣∣∣
ym

= 0 and
∂2α

∂y2
I

∣∣∣∣
ym

< 0, (22)

which yield

cy5
Rm+by3

Rm+μyRm+f = 0 and 5cy4
Rm+3by2

Rm+μ < 0,

(23)

yIm = 0 and yRm > 0. (24)

These equations also define the stable fixed points of the
deterministic system with eigenvalues 5cy4

Rm + 3by2
Rm + μ <

0 and −f/yRm < 0. When we expand around a maximum,

α becomes

α = αm − (yR − yRm)2d

2σ 2
R

− y2
I d

2σ 2
I

, (25)

in which

σ 2
R = −d/

(
5cy4

Rm+3by2
Rm+μ

)
> 0 and σ 2

I = yRmd/f > 0.

(26)

For one stable fixed point, the distribution Ps is approximately
normal,

Ps = 1

2πσRσI
exp

[
− (yR − yRm)2

2σ 2
R

− y2
I

2σ 2
I

]
, (27)

and there are analytical expressions for its moments. Under
this approximation, however, Eq. (13) no longer holds and the
sign of the derivative must be found directly.

We recall that a quiescent subcritical Hopf oscillator ex-
hibits two stable responses to tuned forcing in the deterministic
limit when 9b2/20c < μ < 0 and f1(μ,b,c) < f < f2(μ,b,c)
[Fig. 2 and Eq. (7)]. For weak noise the distribution Ps is
sharply peaked around these stable fixed points at (yR1,0) and
(yR2,0)

Ps =
exp(α1/d) exp

[− (yR−yR1)2

2σ 2
R1

− y2
I

2σ 2
I1

] + exp(α2/d) exp
[− (yR−yR2)2

2σ 2
R2

− y2
I

2σ 2
I2

]
2π (exp(α1/d)σR1σI1 + exp(α2/d)σR2σI2)

, (28)

in which α1 and α2 are the values of α at the stable fixed points and the parameters are defined analogously to Eqs. (21)–(26).
Because the peak value of Ps = Psm → ∞ as d → 0, at least one αn > 0. The distribution is approximately the sum of two
Gaussians.

For small d,
∂(〈yR〉s + 〈yI〉s)

∂d
= − (α1 − α2)(yR1 − yR2) exp((α1 + α2)/d)σR1σI1σR2σI2

d2(exp(α1/d)σR1σI1 + exp(α2/d)σR2σI2)2
(29)

is positive if α1 < α2 for yR1 > yR2. This condition implies
that the ratio

Ps(yR1)

Ps(yR2)
= e

α1−α2
d (30)

rises as d increases. When there are two stable responses to
forcing, the phase-locked amplitude must peak when α1 < α2

(Fig. 2).
To find the vector strength, expansions of yR/ρ around

ym to O[(y − ym)4] are needed to find the dominant term for
arbitrarily small d. We employ the expansion

yR

ρ
= 1 − 3y2

I

y2
Rm

+ 4y2
I yR

y3
Rm

+ 3
(
y4

I − 4y2
I y2

R

)
8y4

Rm

. (31)

This yields

∂(〈yR/ρ〉s + 〈yI/ρ〉s)

∂d

= − y2
R1 exp(α2/d)σR2σ

3
I2 + y2

R2 exp(α1/d)σR1σ
3
I1

2dy2
R1y

2
R2(exp(α1/d)σR1σI1 + exp(α2/d)σR2σI2)

< 0.

Due to it being a maximum in the deterministic limit, the
vector strength must initially decline for small d. We confirm
numerically, however, that the vector strength peaks as a
function of the noise level when α1 < α2 (Fig. 2).

Although there is a threshold between the stable responses,
stochastic resonance is evident only for operating points close
to one boundary of the region possessing both responses
[compare purple and orange lines in Figs. 4(c) and 4(d)]. Over
a limited range, raising the noise level biases the distribution
toward the fixed point at (yR1,0) leading to an increase in
entrainment.

In the subcritical case, the phase-locked amplitude can also
peak as a function of the noise level when the distribution Ps

has a single maximum at (yRm,0) (Fig. 4). In the region with
a single stable fixed point and 9b2/20c � μ � 0, ghosts of
other fixed points exist (Fig. 2). The fixed points are defined
by the zeros of the velocity vector v ≡ (ẏR,ẏI) = (0,0). Ghosts
of fixed points are loci at which the speed |v| is a nonzero
minimum and occur at values of y satisfying

∂|v|
∂yR

= 0 = ∂|v|
∂yI

,

∂2|v|
∂y2

R

∂2|v|
∂y2

I

>

(
∂2|v|
∂yRyI

)2

, and (32)

∂2|v|
∂y2

R

> 0.
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FIG. 4. The phase-locked amplitude and vector strength are
shown as functions of the noise level for forcing at the Hopf frequency
near supercritical [(a) and (b)] and subcritical [(c) and (d)] Hopf
bifurcations. [(a) and (b)] The values of the control parameter are
μ = 1 (red), μ = 0.2 (orange), μ = 0 (green), and μ = −1 (blue).
[(c) and (d)] The values of the control parameter are μ = 1 (red),
μ = 0 (green), μ = −0.15 (purple), μ = −0.22 (orange), μ = −0.3
(cyan), and μ = −1 (blue). The forcing amplitude f = 10−2.

A ghost of a stable fixed point (yRv,0), in which 5cy4
Rv +

3by2
Rv + μ = 0 and yRv <

√−3b/10c, lies on a valley of lo-
cally small speed and is separated from the stable fixed point by
a ridge of locally large speed. If a stochastic fluctuation drives
the system away from the stable fixed point over the pseu-
dothreshold defined by the ridge to the region near the ghost,
then for an appropriate level of noise d, the system will spend
a relatively large time near the ghost due to it slowing down.
Raising the noise level over a limited range can increase the
probability Ps(yRv,0). When f < f1(μ,b,c), yRv > yRm and,
consequently, the phase-locked amplitude can peak as a func-
tion of the noise level, but there is no peak in the vector strength
[see the cyan lines in Fig. 4(c) and 4(d) for an example].
Because yRv < yRm for f > f2(μ,b,c), there is no stochastic
resonance for larger forces [green lines in Figs. 4(c) and 4(d)].

There is, however, a sufficient condition for peaking of the
phase-locked amplitude in the presence or absence of ghosts
(μ < 9b2/20c). Consider either type of Hopf bifurcation under
conditions for which there is a single stable response to tuned
forcing. If 〈yR〉s > yRm, then 〈yR〉s peaks as a fuction of d,
because 〈yR〉s → yRm as d → 0 and 〈yR〉s → 0 as d → ∞.
For small d, Ps is sharply peaked near the stable fixed point
(yRm,0) and

〈yR〉s ≈
∫ εI

−εI

dyI

∫ yRm+εR

yRm−εR

dyRyRPs, (33)

in which εR > 0 and εI > 0 are finite bounds. In this limit,
〈yR〉s > yRm if∫ εI

−εI

dyI

∫ yRm+εR

yRm

dyRyRPs >

∫ εI

−εI

dyI

∫ yRm

yRm−εR

dyRyRPs,

(34)

which occurs if α(yR,yI) > α(2yRm − yR,yI) for all (yR,yI)
satisfying yRm < yR < yRm + εR and −εI < yI < εI.

In the supercritical case,

α(yR,yI) − α(2yRm − yR,yI)

= 2byRm(yR − yRm)((yR − yRm)2 + y2
I ), (35)

which is less than zero when yRm < yR. There is no evidence
for stochastic resonance.

For a subcritical Hopf oscillator,

α(yR,yI) − α(2yRm − yR,yI)

= 2cyRm(yR − yRm)(yR − y1)(yR + y1 − 2yRm)h(yR),

(36)

in which h(yR) > 0 for 0 < yRm < yR and y1 > yRm for
yRm <

√−3b/10c and |yI| <
√−2b/5c. By choosing εI <√−2b/5c and εR such that yRm < yR < yRm + εR < y1 we

can ensure α(yR,yI) − α(2yRm − yR,yI) > 0 for yRm < yR <

yRm + εR and −εI < yI < εI. Using cy5
Rm + by3

Rm + μyRm +
f = 0 [Eq. (23)], we find yRm <

√−3b/10c when f <

f4(μ,b,c), in which

f4(μ,b,c) =
√

−3b

10c

(
21b2 − 100cμ

100c

)
. (37)

Because f1(μ,b,c) � f4(μ,b,c) when 9b2/20c � μ < b2/4c,
this sufficient condition for peaking of the phase-locked re-
sponse also holds when ghosts of other fixed points exist.
Stochastic resonance for tuned forcing arises from the asym-
metric redistribution of Ps as d grows and does not occur when
μ > 0 or for large forcing amplitudes [Fig. 2 and Fig. 4(c)].

2. Stochastic resonance is possible near supercritical and
subcritical Hopf bifurcations in response to detuned forcing

A deterministic supercritical Hopf oscillator is perfectly
entrained by sinusoidal forcing when the frequency detuning
is small or the forcing amplitude is big [Fig. 5(a)]. For weak
forcing or large detuning, the system in the frame rotating at
the driving frequency exhibits a stable limit cycle surrounding
an unstable fixed point [Fig. 5(b)]. The response amplitude y

varies with time, corresponding to less-than-perfect entrain-
ment. In this regime, we show that noise can increase the
system’s response to forcing.

We first introduce the angular distribution

Pψ (ψ) =
∫ ∞

0
Pps(ρ,ψ) dρ, (38)

knowledge of which is sufficient to calculate the vector strength

V = |〈eiψ 〉s| =
∣∣∣∣
∫ 2π

0
eiψPψ (ψ) dψ

∣∣∣∣. (39)

For arbitrarily small noise, the peak of the angular distribution
corresponds to a minimum in the deterministic system’s speed
on the limit cycle [Fig. 5(c)]. Raising the noise level reduces the
peak and shifts the peak angle toward zero in accordance with
the behavior of the detuned distribution Psδω(y). The change
in the angular distribution with noise level and the associated
stochastic resonance can be understood by considering the
behavior of a simpler system.

For sufficiently weak noise and in the long-time limit, the
forced system’s dynamics can be captured by a single variable
defining its position along the limit cycle. To construct a similar
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FIG. 5. Stochastic resonance for a self-oscillating (μ = 0.2 � 0) and detuned supercritical Hopf oscillator. (a) The state of a deterministic
oscillator is a function of the forcing amplitude and frequency. Areas of less than perfect entrainment (light purple regions) are separated from
those exhibiting perfect entrainment (white regions) by supercritical Hopf (dashed red lines) or a saddle-node (solid red lines) bifurcations,
which meet tangentially at Bogdanov-Takens points (red dots). Global bifurcations are not shown. Dots indicate the operating points (ω =
0.89,f = 4 × 10−2) (orange), (ω = 0.85,f = 4 × 10−2) (cyan), and (ω = 0.89,f = 2 × 10−2) (purple). (b) At the orange operating point a
stable limit cycle (dark green) surrounds an unstable fixed point (dark blue). The speed on the cycle is a minimum (maximum) at the gray
(magenta) point. A circular locus with the same center as the limit cycle and passing through the cycle’s point of minimum speed is shown
(light blue). (c) Angular probability distributions Pψ (ψ) for the orange operating point are shown for the noise levels d = 10−3 (red), d = 10−2

(green), and d = 10−1 (blue). The deterministic system resides for the greatest time at the limit cycle’s point of minimum speed (gray line).
(d) Adler dynamics along the light blue circle in (b) (A = 1.19) yields the probability distributions PA(ψ) for the noise levels dA = 10−2 (red),
dA = 10−1 (green), and dA = 100 (blue). The Adler system’s speed is chosen to be a minimum at the same angle for which the speed on the limit
cycle is a minimum (gray line). [(e)–(h)] The phase-locked amplitude and vector strength are shown as functions of the noise level (solid lines)
and in the deterministic limit (dashed lines). [(e) and (f)] Responsiveness for operating points indicated in (a). [(g) and (h)] Responsiveness for
Adler dynamics on circular loci matched to the operating points indicated in (a); A = 1.19 (orange), A = 1.65 (cyan), and A = 2.5 (purple).

but simpler system, we define a circular locus yA = yRA + iyIA

with the same center as the limit cycle, in which

yRA = yRc + RA cos(β + β0) and
(40)

yIA = yIc + RA sin(β + β0).

The center of the circle is defined by

yRc = [
max

cyc
(yR) + min

cyc
(yR)

]/
2 and

(41)
yIc = [

max
cyc

(yI) + min
cyc

(yI)
]/

2,

in which the extrema are taken over the limit cycle [Fig. 5(b)].
The radius RA is fixed by requiring that the circle passes
through the point for which the Hopf system’s speed is a
minimum on the limit cycle. To describe the dynamics of β,
we employ the Adler equation

β̇ = A − sin β (42)

and choose β0 such that β̇ is a minimum at the same coordinate
for which the Hopf system’s speed is a minimum on the limit
cycle. In each interval [nπ,(n + 2)π ] of β, n ∈ Z, the Adler
system has a stable fixed point and an unstable fixed point
when |A| < 1. No fixed points exist when |A| > 1. Neglecting
transients, the solution of Eq. (42) up to a multiple of 2π is

β(t) = 2 arctan

[
1 − √

A2 − 1 tan(−t
√

A2 − 1/2)

A

]
. (43)

The corresponding Fokker-Plank equation,

∂tPA = −∂β[(A − sin β)PA − dA∂βPA], (44)

has the steady-state solution

PAs = NAe
Aβ+cos β−1

dA

(∫ β

0
e
− Aβ′+cos β′−1

dA dβ ′ + e
2πA
dA

∫ 2π

β

e
− Aβ′+cos β′−1

dA dβ ′
)

, (45)

in which dA is the noise level and NA is a normalization factor. The steady-state angular distribution is defined by

PψC [ψC(β)] = PAs(β), (46)

in which ψC(β) = arg(yA(β)).
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FIG. 6. Stochastic resonance for a detuned subcritical Hopf oscillator. [(a)–(d)] State diagrams for a deterministic system as functions of
the forcing amplitude and stimulus frequency are depicted similarly to Fig. 5(a). The forced oscillator is perfectly entrained when it possesses
one stable fixed point in the white regions or two stable fixed points in the central green regions. Less than perfect entrainment occurs when
the system possesses an unstable fixed point and a stable limit cycle (light purple regions) or a stable fixed point coexisting with a stable and
unstable limit cycle (blue regions). (a) The state diagram for μ � 0 (μ = 0) is illustrated. The Hopf bifurcations are supercritical. (b) The
diagram corresponding to b2/5c < μ < 0 (μ = −0.1) is shown. The red (blue) Hopf bifurcation lines are supercritical (subcritical). (c) The
state diagram for b2/4c < μ < b2/5c (μ = −0.22) is similar to (b) except that the central red line dips below the central blue line. (d) The
state diagram when 9b2/20c < μ < b2/4c (μ = −0.3) is depicted. The Hopf bifurcations illustrated are supercritical. [(e) and (f)] The detuned
(ω = 0.9 ω0) phase-locked amplitude and vector strength are shown as functions of the noise level. The values of the control parameter are
μ = 1 (red), μ = 0 (green, indicated in panel a), μ = −0.22 [orange, indicated in (c)], and μ = −1 (blue). The forcing amplitude f = 10−2.
(g) At the orange operating point in (c), a stable limit cycle (dark green) surrounds an unstable limit cycle (dashed red line), which encloses
a stable fixed point (dark blue dot). The points at which the speed on the stable limit cycle is a minimum (gray) and maximum (magenta) are
shown. (h) Amplitude distributions Pρ(ρ) for the orange point are shown in which the noise level d = 10−3 (dark red), d = 2 × 10−3 (cyan),
d = 5 × 10−3 (purple), d = 10−2 (light red), and d = 10−1 (light blue). The vertical dark blue (gray) line corresponds to the stable fixed point
(point of minimum speed on the stable limit cycle) shown in (g).

For each operating point of the forced Hopf oscillator, we
can construct a circular locus with Adler dynamics that cap-
tures some of the oscillator’s basic behavior. The deterministic
phase-locked amplitude and vector strength are calculated as
before using Eqs. (40) and (43). We choose the value of A

in each case such that the deterministic limits for the vector
strengths of the Hopf oscillator and the circular Adler system
are approximately equal. The stochastic phase-locked response
is given by ∣∣∣∣

∫ 2π

0
yA(β)PAs(β) dβ

∣∣∣∣ (47)

and the stochastic vector strength is∣∣∣∣
∫ 2π

0
eiψC(β)PAs(β) dβ

∣∣∣∣. (48)

Similarly to the Hopf oscillator, the peak of the angular
distribution on the circular locus decreases and moves to ψC =
0 as the noise level rises [Fig. 5(d)]. This behavior is determined
by Eq. (45) as the peak of PAs shifts to β = 0 as dA → 0.

When the forced deterministic oscillator exhibits a limit
cycle, the phase-locked amplitude and vector strength of the
Hopf oscillator peak as functions of the noise level [Figs. 5(e)
and 5(f)]. The peaks diminish and move to higher levels of
noise as the detuning is increased or the forcing amplitude

is decreased. The circular Adler system exhibits the same
qualitative changes with noise level [Fig. 5(g) and 5(h)]. Peaks
do not occur, however, if the circular locus is centered at (0,0)
instead of at (yRc,yIc). Stochastic resonance in the supercritical
Hopf oscillator stems from the noncircular redistribution of the
probability density with increasing noise.

A deterministic subcritical Hopf oscillator possesses four
distinct state diagrams as functions of the forcing amplitude
and stimulus frequency (Fig. 6). In the self-oscillating scenario
[Fig. 6(a)], the diagram is qualitatively similar to that of
a supercritical oscillator and the subcritical Hopf oscillator
operating within the purple zones exhibits stochastic resonance
arising from the same mechanism [green lines in Figs. 6(e)
and 6(f)]. This mechanism also applies to operating points in
the light purple sectors of Figs. 6(b) and 6(c).

For sufficiently small detuning, the forced oscillator is
qualitatively similar to the tuned case, in which two stable
responses are associated with peaks in the responsiveness as a
function of the noise level [central green areas in Figs. 6(b)–
6(d)]. Like a resonantly forced oscillator, the phase-locked
amplitude can also peak as a function of the noise level when
there is a single stable response [blue line in Fig. 6(e)].

In two of the state diagrams [blue regions in Figs. 6(b)
and 6(c)], stochastic resonance can arise from yet another
mechanism, in which a stable fixed point is separated from
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a stable limit cycle by an unstable limit cycle [Fig. 6(g)]. In the
deterministic limit, whether an oscillator is perfectly entrained
depends on the initial conditions. For weak noise, the system’s
probability density possesses two peaks, a large peak near the
stable fixed point and a smaller peak near the point of minimum
speed on the stable limit cycle. The radial distribution

Pρ(ρ) =
∫ 2π

0
Pps(ρ,ψ) dψ (49)

also peaks near radii defined by these points [Fig. 6(h)].
The stable fixed point is associated with a greater degree of
entrainment than the stable limit cycle. As the noise level
increases from zero, the peak near the stable fixed point
moves to a larger radial value and decreases in amplitude,
but this peak still dominates the distribution. Consequently,
the phase-locked amplitude grows with the noise level. For
sufficiently large noise levels, however, the density is greatest
near the limit cycle and the phase-locked amplitude is corre-
spondingly diminished. The distribution has a single peak for
very large noise levels, in which the noise obscures the system’s
deterministic structure. Although the most probable value of ρ

grows for very large noise levels, the phase-locked amplitude
declines.

III. DISCUSSION

Stochastic resonance and coherence resonance have been
demonstrated using a variety of measures from power spectra to
residence-time distributions [2,24]. Coherence resonance has
been analyzed and observed experimentally for several systems
operating near a Hopf bifurcation and has been demonstrated
for the normal form of a subcritical Hopf oscillator with
additive noise [21,25–27]. Here we distinguish coherence
resonance from stochastic resonance by employing the phase-
locked amplitude and vector strength, which are zero in the
absence of deterministic forcing.

Despite the simplicity of the system we study, we find
multiple distinct mechanisms for stochastic resonance. In all
cases, the redistribution of the probability density as the noise
level increases depends on the underlying structure of the
deterministic system. We show that a peak in the phase-locked
amplitude does not imply a maximum in the vector strength
and that, when both quantities peak, they do so at distinct noise
levels.

First, two stable responses to forcing for a tuned or weakly
detuned subcritical Hopf oscillator lead to peaks in the phase-
locked amplitude and vector strength as functions of the noise
level. We show, however, that the existence of two stable fixed
points does not imply stochastic resonance and find analytical
expressions for the boundaries of the region in parameter space
in which this type of resonance takes place.

Second, for a tuned or weakly detuned subcritical oscillator,
the phase-locked amplitude can peak as a function of the
noise level without peaking in the vector strength. Analytical
expressions can be found defining a set of operating points for
which a single stable fixed point is associated with stochastic
resonance in the phase-locked amplitude. This resonance arises
from the residual influence of a pair of fixed points, a stable
fixed point and a saddle point that were annihilated through a
saddle-node bifurcation, on the deterministic vector field.

Third, spontaneously oscillating supercritical and subcriti-
cal Hopf oscillators display stochastic resonance in the phase-
locked amplitude and vector strength in response to detuned,
weak forcing. We show that simple phase dynamics on a
circular limit cycle can explain this type of resonance if
the cycle possesses an asymmetry with respect to the phase
coordinate. Placing the center of the circular cycle away from
the Cartesian origin is sufficient to generate peaks in both
responsiveness measures.

Fourth, a subcritical Hopf oscillator possesses a stable fixed
point, an unstable limit cycle, and a stable limit cycle for a
limited set of control parameter values. As the noise level is
raised, the most probable state of the system shifts from being
near the stable fixed point to residing close to the stable limit
cycle. Before this transition, the phase-locked amplitude, but
not the vector strength, peaks as a function of the noise level.

Stochastic resonance has been demonstrated on both sides
of a supercritical Hopf bifurcation [3–6,28,29]. In these cases,
the systems studied have features absent from the Hopf
oscillators we describe. For example, rapid changes in the
amplitude of spontaneous oscillations with control parameter,
known as canard explosions, occur [30], the resonant frequency
varies with control parameter and forcing amplitude [18,19],
there are multiple stable responses at a single stimulus fre-
quency [18,19], and the noise is not additive, Gaussian, or
white in the normal-form coordinate system [16,23,31]. We
restrict our analysis to b′ = 0 and additive, Gaussian, white
noise and do not find stochastic resonance on the stable side
of the bifurcation. The difference may simply stem, however,
from our use of responsiveness measures different from these
previous reports. Stochastic resonance has also been reported
in systems close to subcritical Hopf bifurcations [7–9]. It is
unclear whether these resonances can be ascribed to a particular
feature of each system or to one of the generic mechanisms
described here.

The phase-locked amplitude and vector strength capture two
different aspects of a system’s response to driving. Stochastic
resonance in the vector strength shows that noise can improve
phase locking to the stimulus. In comparison, a peak in
the phase-locked amplitude as a function of the noise level
illustrates that noise can augment the response amplitude and
phase locking to the input. In two of the mechanisms we
describe, noise boosts the phase-locked amplitude more than
the degree of entrainment.

Although the stochastic enhancement we find is sometimes
only a fraction of the deterministic limit, stochastic resonance
can mean the difference between a signal being detected or not.
For example, the threshold of hearing corresponds to vibrations
in the ear of less than a nanometer measured over time scales
of less than a second [32]. In this noise-dominated regime, it is
possible that fractional increases in the phase-locked amplitude
or vector strength due to noise could determine the threshold.
Stochastic resonance in some systems may simply be the
consequence of their operation near a Hopf bifurcation, which
can be ensured by an additional feedback mechanism [33].
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APPENDIX: DETERMINISTIC LIMIT

In polar coordinates y = ρeiψ , and Eq. (2) becomes

ρ̇ = μρ + bρ3 + cρ5 + f cos ψ,
(A1)

ψ̇ = −δω + b′ρ2 + c′ρ4 − f sin ψ

ρ
,

in the deterministic limit. The fixed points ρ∗ and ψ∗ then
satisfy

(μ + bρ∗2 + cρ∗4)2ρ∗2 + (−δω + b′ρ∗2 + c′ρ∗4)2ρ∗2 = f 2,

(A2)
and their linear stability is determined by the eigenvalues of
the Jacobian

J ≡
(

μ + 3bρ∗2 + 5cρ∗4 δωρ∗ − b′ρ∗3 − c′ρ∗5

− δω
ρ∗ + 3b′ρ∗ + 5c′ρ∗3 μ + bρ∗2 + cρ∗4

)
.

(A3)
A local bifurcation can occur when either the trace of J is
zero while the determinant of J is positive definite or when the
determinant is zero.

In the isochronous case b′ = c′ = 0 and for tuned forcing
δω = 0, Eq. (A2) becomes(

μ + by∗2
R + cy∗4

R

)2
y∗2

R = f 2, (A4)

in which ψ∗ = 0 or π such that y∗
I = 0. Saddle-node bifurca-

tions occur when the determinant of J is zero or, equivalently,
when μ + 3by∗2

R + 5cy∗4
R = 0 (Fig. 2).

In a deterministic system, perfect phase locking is defined
to occur when the amplitude of the response ρ and the phase
difference between the response and driving ψ are independent
of time. For a quiescent Hopf oscillator, perfect phase locking
occurs for all forcing amplitudes and frequencies. A resonantly
forced self-oscillating system exhibits perfect phase locking at
all forcing amplitudes.

When there is detuning, sufficiently high forces are required
to perfectly phase lock an oscillating system. The range of the
forces for which perfect phase locking occurs can be found
as a function of the stimulus frequency as long as the forcing
is not too large [20]. A state diagram of the forced system is
determined by lines of local bifurcations from Eq. (A3) (Figs. 5
and 6). These bifurcation lines demarcate the region of perfect
phase locking, which is narrower than the 1:1 Arnold tongue.
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