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We present a general classification of one-soliton solutions as well as families of rogue-wave solutions for F = 1
spinor Bose-Einstein condensates (BECs). These solutions are obtained from the inverse scattering transform for
a focusing matrix nonlinear Schrodinger equation which models condensates in the case of attractive mean-field
interactions and ferromagnetic spin-exchange interactions. In particular, we show that when no background is
present, all one-soliton solutions are reducible via unitary transformations to a combination of oppositely polarized
solitonic solutions of single-component BECs. On the other hand, we show that when a nonzero background is
present, not all matrix one-soliton solutions are reducible to a simple combination of scalar solutions. Finally, by
taking suitable limits of all the solutions on a nonzero background we also obtain three families of rogue-wave

(i.e., rational) solutions.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) have received exten-
sive attention since their first experimental realization [1,2].
One of the mathematical models proposed to describe the
time evolution of the condensate wave function in a mean-
field approximation is the famous Gross-Pitaevskii equation
[3,4], which in one space dimension and in the absence
of external trapping potentials is known to be completely
integrable. The resulting equation is the so-called nonlinear
Schrodinger (NLS) equation and it describes the dynamics
in single-component BECs. Multicomponent BECs have also
been observed experimentally [5,6]. They can be created by
overlapping two single-component BECs with atoms in two
hyperfine states or mixtures of two different atomic species.
Mathematically, these situations can be modeled by coupled
NLS equations with external potentials [7-9].

Spinor BEC models have also been proposed [10-12],
which correspond to multicomponent BECs, with atoms in a
single hyperfine state but having internal spin degrees of free-
dom. When these spinor BECs were first experimentally cre-
ated, they were shown to exhibit a much richer phenomenology
than single-component BECs. For example, the spin degrees
of freedom are liberated under an optical trap, which opens
up the possibility to study spin waves in a Bose-condensed gas
[13]. Other interesting phenomena that can only be observed in
multicomponent BECs include dark-bright soliton complexes
[14—18] and the formation of spin domains and spin textures
[19-21].

Subsequently, a completely integrable model for spin-1
(F = 1)BECsin one dimension and without external magnetic
fields was proposed [22]. In this model, which requires a
specific ratio of the scattering lengths and hence of the
coupling constants, the internal dynamics of the condensate
are described by three components ®;(x,7) for j =0, £ 1,
representing the wave function of atoms with magnetic spin
quantum number j. The mean-field interaction in this model is
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attractive and the spin-exchange interaction is ferromagnetic.
The time evolution of the three-component wave function is
given by a matrix focusing NLS equation. Since such a matrix
NLS equation is completely integrable, several methods have
been used to study the system and derive explicit solutions,
including the inverse scattering transform (IST), and some
solutions were presented in Refs. [22-31]. The model was
later extended to describe BECs characterized by repulsive
interatomic interactions and antiferromagnetic spin-exchange
interactions (corresponding to the opposite sign for the ratio
of the coupling constants) [23-26]. In this case, the relevant
model is a defocusing matrix NLS equation and a nonzero
background is required in order for the system to admit soliton
solutions. The generalization to a nonzero background is
particularly important for both kinds of nonlinearity (attractive
or repulsive), since the nonzero background allows for the
existence of so-called domain wall solutions [20,21], dark-
bright soliton complexes [14—18], and for the focusing scalar
NLS equation it is related to the existence of rogue waves.

The term rogue wave is used to refer to waves that have un-
usually high amplitudes (by a factor of 2 or larger) compared to
the background and that “appear from nowhere and disappear
without a trace” [32]. Besides oceans (where they are also
referred to as freak waves) [33,34], rogue-wave phenomena
are also observed in the atmosphere [35], optics [36,37], and
plasmas [38]. Rogue waves have been studied extensively in
the context of the scalar integrable focusing NLS equation,
because of its role as a model equation in deep water waves,
optical fibers, and BECs [8,9,39,40]. In particular, Peregrine
solitons [41] and higher-order rational solutions [42,43] have
been proposed as a possible mathematical description of rogue
waves in various media [44], including in single-component
BECs [45]. Rational solutions of the coupled NLS equation
and of the three-wave interaction equations were also studied
and used to predict the existence of matter rogue waves in
BECs [46,47].
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The purpose of this work is twofold. First, we present a
complete classification of one-soliton solutions of the focusing
spinor BEC equation on a nonzero background. Second, we
obtain families of rational solutions which generalize those
obtained in Ref. [48]. All these soliton solutions are obtained
in the context of the IST for this model, which was recently
developed in [49]. We also discuss explicit spin polarization
transformations of all these solutions that relate solitonic and
rogue waves in spinor BECs and those in single-component
BECs. We show that, in the case of zero background, all
one-soliton solutions of the spinor model are equivalent, up
to unitary transformations, either to a scalar soliton solution
or to a superposition of two oppositely polarized shifted scalar
solitons. On the other hand, we show that the same statement
does not apply in the presence of a nonzero background,
since in this case only some of the one-soliton solutions
or rational solutions are equivalent, up to unitary similarity
transformations, to superposition of polarized scalar solutions.

II. SPINOR BEC MODEL AND ITS SOLITON SOLUTIONS

Atoms in F =1 spinor BECs can be described by the
three-component macroscopic condensate vector wave func-
tion (®(x,1),Do(x,1),P_1(x,1))T, where ®;(x,t) describes
atoms with magnetic spin quantum number j. In a mean-field
approximation, ®; is shown to satisfy the system of partial
differential equations
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where ¢; are the coupling constants (related to the scattering
lengths) and the asterisk denotes complex conjugation [22].
The above set of equations admits special reductions which
are integrable. The case ¢, = 0 yields the three-component
NLS equation. The case ¢y = ¢, = o yields the matrix NLS
equation, with o = %1 corresponding to the focusing or defo-
cusing regimes. In the focusing case, Egs. (1) are equivalent to
the integrable model

iD, + Dy + 200D =0, (2a)

where the coordinates x and ¢ have been suitably nondimen-
sionalized, subscripts x and ¢ denote partial derivatives, the
dagger denotes a conjugate transpose, and

swn= (M), (2b)

where ¢;(x,t) for j =0, £ 1 represent the normalized wave
functions. We refer the reader to Ref. [22] for a detailed deriva-
tion of Eq. (2) in the context of BECs. It is important to point
out the difference between the spinor model corresponding to
the matrix NLS equation (2) and the vector NLS models. As it
is evident from the comparison of Eqgs. (1) with the vector
NLS [namely, i®, + &, +2||®|>® = 0, O(x,t) being an

N-component vector], the corresponding equations describe
different physical models, with different kinds of nonlinear
terms. Explicitly, the nonlinearity in vector NLS equations only
accounts for self-phase and cross-phase modulation, whereas
the nonlinearity in the square matrix model also includes
four-wave-mixing terms and allows one to describe the spin-
exchange interaction.

A. Nonzero background

The above focusing matrix NLS equation admits a Lax pair
and thus can be studied via the IST [27,49-51]. In particular,
in [49] we considered the initial-value problem for Eq. (2) with
the boundary conditions (BCs)

d(x,1) — Py, x — Foo. A3)

Physically, the significance of Eq. (3) is that we consider BECs
whose spatial extent is much broader than that of the solution
structures being studied. We refer to @, = 0 as the case of zero
background and to @ # 0 as the case of nonzero background.
We further assumed that

DDy = o D, =K1, )

where I, is the 2 x 2 identity matrix and ky > 0 is the
amplitude of the background. The two definitions (3) and
(4) are consistent with those in previous works [24,25,27,28].
According to above definitions, ko = O corresponds to a zero
background and is referred to here as the case of zero BCs
(ZBCs); the case kg > 0, corresponding to a nonzero back-
ground, is referred to here as nonzero BCs (NZBCs). Of course
Eq. (4) restricts the class of solutions that one can describe.
On one hand, this condition is similar to the constraint that is
commonly placed when looking for solutions of focusing and
defocusing vector NLS equations [52-59], and in those cases
it is a necessary condition for the existence of pure soliton
solutions. On the other hand, we show below that, even with
this restriction, the system admits a large variety of soliton
solutions.

It is worth at this stage to point out the difference between
the current work and previous works on vector NLS equations
with NZBCs. First of all, as already mentioned above, the
corresponding equations describe different physical models,
with different kinds of nonlinear terms. When a nonzero
background is considered, this crucial difference is reflected
both in the formulation of the IST and in the behavior of the
solutions. From a spectral point of view, in the formulation
of the IST, one can show that all eigenfunctions of the square
matrix model are analytic in specific regions of the spectral
plane, whereas only two eigenfunctions of the vector model are
analytic. As a result, the scattering data for the two associated
spectral problems are different, and so are the soliton solutions.
Moreover, as we show below, the soliton solutions of the
2 x 2 matrix NLS equation are associated with matrix norming
constants and the matrix nature of the norming constants plays
a crucial role in the properties of the corresponding soliton
solutions.

In general, the boundary conditions &, must be time
dependent in order to be compatible with the time evolution.
Time-independent BCs can be achieved via a simple gauge
transformation however. Explicitly, with the transformation
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d(x,1) > D(x,1)e?*i! Eq. (2) can be written as
D, + Dy +2(PD" — ki) P =0, 5)

so that the values ®_. are independent of .

Importantly, the matrix NLS equation (2a) is invariant under
unitary transformations. Namely, if ®(x,7) is a solution of
Eq. (2a),

O(x,t) = Ud(x,1)V (6)

is also a solution of Eq. (2a) for arbitrary constant unitary
matrices U and V. Of course, in order for this invariance to also
apply to the full spinor BEC system (2), the unitary matrices U
and V must be chosen so that ®(x,7) is also symmetric. Such
general unitary transformations are then associated with spin
rotations in the spinor BEC. Because of this invariance, one
can assume without loss of generality that

q>+ == k()]z, (7)

since an arbitrary boundary condition can be reduced to the
above by an appropriate choice of U and V in (6) [49].
Therefore, in the rest of this work we discuss solitons and rogue
waves on a nonzero background with asymptotic behavior as
in Eq. (7), since solutions with a different asymptotic state can
be reconstructed from them by means of the above-mentioned
unitary transformations. Note, however, that one does not have
the freedom to specify both &, and ®_. Once &, has been
chosen, ®_ is determined by the specific solution considered
and is not necessarily diagonal, even when the constraint
provided by Eq. (4) is satisfied, as we discuss later.

The Lax pair of the spinor model (5) is given by

Yy = (_ikQ3 + O, Y=V,
where

V= 2k’ +2k® +io;(3: 2 — kyla + 2 D),

(L 0 (0 o

Here I is the 4 x 4 identity matrix and k € C denotes the
spectral parameter. In [49], we formulated the IST for Eq. (5)
satisfying the BC (4) and we derived an expression for general
N-soliton solutions. From the formulation of the IST for
the spinor model (5), N-soliton solutions are completely
determined by N discrete eigenvalues and N associated norm-
ing constants. The discrete eigenvalues are scalar complex
numbers, whereas the norming constants are 2 x 2 symmetric
complex-valued matrices. In the rest of this work we will focus
on one-soliton solutions, i.e., we take N = 1.

B. One-soliton solutions

The one-soliton solution corresponding to a discrete eigen-
value ¢ (with |¢| > ko and Im ¢ > 0) and a norming constant
K (which must be a2 x 2 symmetric complex-valued matrix)
is given by

O(x,t) = kil —iX1e 2K L ikdX2e¥ K /2? (8)
(see [49] for details), where
0(x.t) = (2 +K)[¢x + (£F —kg)t]/@cn )

and X; and X solve the linear system
X\D =1L —ikoXac/t, XoD'=5L —itXic'/ky, (10)
with
K ikoK1 s
c= - 6219 5+ g > —2i6 .
(=7 (&*)* + kg

In Appendix A we show that the behavior of the soliton so-
lutions crucially depends on the rank of the norming constant,
i.e., on the matrix nature of K. We do so by calculating the total
spin of the one-soliton solutions (8). We show thatif det K = 0
the BEC has nonzero total spin and thus is in a ferromagnetic
state and if det K # 0 the BEC has zero total spin and thus is
in a polar state [60].

Moreover, it was also shown in [49] that, when det K # 0
(i.e., for a polar solution), ®_ = e %%k, I, (with a = arg ¢).
Conversely, when det K = 0 (i.e., for a ferromagnetic solu-
tion), in general ®_ is not diagonal. Clearly, the ferromagnetic
solutions (det K = 0) are genuine matrix solutions and do
not admit any analogs in other models with scalar or vector
norming constants (e.g., scalar and vector NLS equations).
Moreover, because of the different asymptotics of ®; when
det K = 0, one expects the solutions to exhibit a kinklike
behavior, i.e., a domain wall may form. Indeed, we will show
later that in some cases Eq. (8) gives rise to topological solitons.

In the limit Ky — 0, Eq. (8) yields soliton solutions of the
spinor model with ZBCs, i.e., with ®(x,7) — 0 as x — Fo00.
Simple calculations from Eq. (8) show that the one-soliton
solution with ZBCs is given by

O(x,1) = —ie (I, + cfe) KT, (11)

) D=

where in this case
O(x,t) = (tx +¢20)/2, c=Ke*/(c* —¢). (12

Similarly to the case of NZBCs, solutions are in a ferromag-
netic state whendet K = 0 andin apolar state whendet K # 0.
The soliton solutions (11) with ZBCs were first derived in
Ref. [22].

III. CLASSIFICATION OF SOLITON SOLUTIONS

In this section we present a complete classification of the
one-soliton solutions of the spinor BEC model both with ZBCs
and with NZBCs, given, respectively, by Eqgs. (11) and (8).
First, in Sec. III A we discuss the classification of the soliton
solutions on a zero background. Then, in Sec. III B we show
how similar methods can be used to classify soliton solutions
with NZBCs.

Recall that if ®(x,?) is a solution of Egs. (2), ®(x,1) defined
by Eq. (6) is also a solution provided that U and V are two
constant unitary matrices and ®(x,?) is also symmetric. We can
then formulate the concept of equivalence classes of solutions.
That is, we say that two given solutions ®(x,?) and d(x,1) of
the spinor BEC model (2) are equivalent if there exist two
unitary matrices U and V such that Eq. (6) holds.

A. Soliton solutions with ZBCs

In [31] it was shown that up to a rotation of the quantization
axes, soliton solutions with ZBCs can be written as a “super-
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position of two oppositely polarized displaced solitons” of the
focusing NLS equation. We show below how this result can
be obtained using a method that can be generalized to classify
soliton solutions with NZBCs.

Since the norming constant K is symmetric, Takagi’s
factorization [61] ensures that there exists a unitary constant
matrix U such that

UKUT =T, T =diag(y1,y_1), (13)

where y; > 0 and yj2 are the eigenvalues of KTK. (Notice

that the matrix K K is Hermitian and positive semidefinite, so
its eigenvalues are real and non-negative.) Therefore, one can
write any norming constant as

K =U'TU". (14)
Substituting Eq. (14) into the solution (11), one has
O(x,t) =U" Q(x,1)U, (15)
where Q(x,?) is a diagonal matrix given by
Q(x.1) = diag(qi.g—1) = —ie *" (L +&)~'TT,  (16)

with & = I'e?? /(k* — k). Since U and U are unitary matrices
and Q is diagonal and hence symmetric, we conclude that Q is
also a solution of the spinor model (2) and Q — Oasx — =o0.
Moreover, because Q is in the form of Eq. (11), it is also a
one-soliton solution with the same discrete eigenvalue ¢ and a
diagonal norming constant I'.

Whenever the solution of the spinor model (2) is diagonal,
like Q(x,t) above, its diagonal components, i.e., g+ (x,?), are
decoupled and each individually satisfies the scalar focusing
NLS equation

iqi + qux +2lg17q = 0. (17)

It then follows that each g;(x,t) with j = %1 is a one-soliton
solution of Eq. (17) with discrete eigenvalue ¢ and norming
constant y;. More precisely, if we write the discrete eigenvalue
as¢ =V +iAwithA > 0and V € R, each g; will have the
form of the sech-shaped one-soliton solution of the focusing
NLS equation

Gsechj = —i Asech[A(x + 2Vt — g))]efl- VA=V,

where A§; = In(y;/2A), A is the soliton amplitude, and —2V
is the soliton velocity. Notice that since the norming constant
vj isreal, each solution ggecp, ; depends on three free parameters
instead of four. (An overall phase for each component is
absorbed by the above unitary transformation.)

Furthermore, from Eq. (13) we have

|det K| = y1y_1.

So, if the solution ®(x,7) describes a ferromagnetic state,
i.e., det K = 0, one of the y; must be zero. Without loss of
generality, we can take y_; = O and y; > 0. [Note that the case
y1 = y—1 = 0 is trivial, because Eq. (11) implies ®(x,#) =0
in this case.] On the other hand, if the solution ®(x,7) describes
a polar state, i.e., det K # 0, then both y; and y_; are strictly
positive.

As an example, Fig. 1 shows two one-soliton solutions with
ZBCs obtained from the same discrete eigenvalue, but with
different norming constants, one giving rise to a ferromagnetic

FIG. 1. Amplitudes of one-soliton solutions of the spinor BEC
model with ZBCs, with the discrete eigenvalue { = —1 4 2i and
unitary matrix U = —%1, + 2ioy: top, |¢(x,1)|; middle, |¢o(x,1)];
and bottom, |¢_;(x,?)|. The left column shows a polar state given by
Eq. (18a) with y; = 4 and y_, = 4e* and the right a ferromagnetic
state given by Eq. (18b) with y; = 4.

state and the other one to a polar state. Since eigenvalues
are preserved by unitary transformations, from the above
discussion it follows that soliton solutions with ZBCs divide
into two equivalence classes.

1. Class A

Any one-soliton solution describing a polar state (i.e., with
a nonsingular norming constant K) can be written in the form
(15) with

Q()C,t) - diag(CIsech,l(xat)aQSech,—l(xvt))a (18{:1)

where U is a constant unitary matrix [as determined by
Takagi’s factorization algorithm to reduce K to its diagonal
form (14) with I' = diag(y1,y-1)] and ggecn, j(x,2) for j = %1
is the classical sech-shaped soliton solution of the scalar NLS
equation with discrete eigenvalue ¢ and norming constant y;.

2. Class B

Any one-soliton solution describing a ferromagnetic state
(i.e., with a rank-1 norming constant K) can be written in the
form (15) with

Q(X,t) = diag(QSWh, 1 ()C,t),O),

where again U is a constant unitary matrix [as determined by
Takagi’s factorization algorithm to reduce K to its diagonal
form (14) with I' = diag(y1,0)] and gsecn.1(x,) is the classical

(18b)
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sech-shaped soliton solution of the scalar NLS equation with
discrete eigenvalue { and norming constant y;.

3. Additional remarks

Equations (18) relate one-soliton solutions of the spinor
model (2) to those of the scalar focusing NLS equation (17)
with a zero background. Any one-soliton solution of the
spinor model (2) with ZBCs is reducible, i.e., is equivalent
to either a single scalar one-soliton solution or two shifted
scalar one-soliton solutions (one in each of the two oppositely
polarized states). Conversely, given any one-soliton solutions
of the focusing NLS equation, or any two such solutions with
the same discrete eigenvalue (with either equal or different
norming constants), one can always construct a one-soliton
solution of the spinor model (2) by using an arbitrary unitary
matrix U such that the unitary transformation (15) keeps the
solution symmetric.

It is also worth pointing out that the diagonal forms in Eq.
(18) are unique, in the sense that the scalar solitons ggech, j (x,)
are uniquely determined by the discrete eigenvalue ¢ and the
non-negative eigenvalues of K'K. Thus, if two solutions ®,
and @, have the same diagonal scalar solitons ggecn, ;, then
they differ only by a constant unitary transformation of the
form (15), i.e., a spin rotation.

B. Soliton solutions with NZBCs: Schur classes

We next discuss one-soliton solutions in spinor BECs with a
nonzero background. In this case the phenomenology is much
richer than in the case of zero background, as it crucially
depends on the location of the discrete eigenvalue in the
spectral plane, as well as the structure of the norming constant.

Similarly to the scalar focusing NLS equation with NZBCs,
there exist four kinds of soliton solutions depending on the
location of the discrete eigenvalue, namely (see Fig. 2): 1.
traveling solitons (|¢| > ko with Re¢ # 0 and Im ¢ > 0); 2.
stationary solitons (¢ =iZ with Z > kp); 3. periodic solu-
tions (¢ = ikoe'® with |a| < 7/2); and 4. rational solutions
(corresponding to the limit of stationary solitons as Z — 1
or of periodic solitons as « — 0). For future reference we
write below the general traveling soliton solution [known as the
Tajiri-Watanabe (TW) soliton] of the focusing NLS equation
with discrete eigenvalue ¢ = ikoZe'®, Z > 1, |a| < /2, and
norming constant y = £e'%, as given in [62],

cosh(y 4+ 2ia) + (c42Ks —ic_K.)d

,t — k —2ia ,
grw (1) 0¢ cosh x +2Kd
(19)
where
K,(x,t) = Z?sin(s + 2«) — sin s, (20a)
K.(x,t) = Z%cos(s + 2a) — cos s, (20b)
2
x(x,t) = koc_ 1x cosa — k(z)c+,2t sin2« + In M,
cy 16
(20c)
s(x,t) = kocy 1 x sina + kjc_ ot cos 2a — @, (20d)
cen=2"%1/Z", n=1,2, (20e)
co=|1—e%Z%, d=-cosa/(cocs ). (20f)

Im ¢

3 N\J7°

e

ko Rel

FIG. 2. The four kinds of discrete eigenvalues in the spectral
plane for the spinor BEC model: 1. eigenvalue in the general
position, corresponding to traveling solitons; 2. imaginary eigenvalue,
corresponding to stationary solitons; 3. eigenvalue on the circle, corre-
sponding to periodic solutions; and 4. eigenvalue on the branch point,
corresponding to rational solutions. The four kinds of solutions are
the analogs of the Tajiri-Watanabe, Kuznetsov-Ma, Akhmediev, and
Peregrine solitons of the scalar focusing NLS equation, respectively.

The three other kinds of solitons are special cases of
Eq. (19) when the discrete eigenvalue ¢ is taken as in Fig. 2.
Note, however, that for rational solutions a suitable limiting
procedure and rescaling of the norming constant are necessary
to obtain nontrivial solutions (see [62] for the scalar case).
The generalization of this procedure for the spinor model is
discussed in Sec. IV.

Another crucial difference from the case of ZBCs discussed
in Sec. III A is that in general Takagi’s factorization does not
diagonalize the solution in the case of NZBCs. The reason is
twofold. On one hand, in general, the transformation does not
preserve the BC (7). That is, the multiplication by U from the
left and U7 from the right, which diagonalizes K, changes
the BC in Eq. (7) into &, = koUUT, which is not necessarily
proportional to the identity, or even diagonal. On the other
hand, the matrix U in Takagi’s factorization for K does not
diagonalize K fin general. Therefore, in general, the last two
terms in Eq. (8) cannot be diagonalized simultaneously, which
means that the solution of the spinor model cannot always be
decomposed into a simple combination of scalar solutions.

In order to study soliton solutions with NZBCs we instead
find it more convenient to use the Schur decomposition [63]
to express the norming constant in the simplest possible form.
The Schur decomposition theorem ensures that, for any matrix
K, there exists a unitary matrix U such that

K =Urut, 21

where I" is an upper triangular complex-valued matrix, called
the Schur form of the matrix K. As shown in Table I and in
Appendix B, all (in our case, symmetric) norming constants
K can be divided into five equivalence classes (here labeled
classes A-E), depending on the structure of their Schur forms
(i.e., depending on whether K is diagonalizable or not and
whether none, one, or both of its eigenvalues are zero). Families
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TABLE I. The five equivalence classes for the Schur form of
the norming constant K. In Appendix B we show that any norming
constant can be reduced to one of the classes by a transformation
K = UTU', where U is a unitary matrix. Explicit expressions for
each class of norming constant K and corresponding unitary matrix
U are also provided in Appendix B.

Classes A B C D E
(v Oy OO v (v w] n w
0 y 0 0 0 0 0 0 0 y.

of norming constants and corresponding unitary transforma-
tions are shown in Appendix B. (Similarly to our classification
of solitons with ZBCs, we ignore the trivial case in which I" is
the zero matrix.)

Note that the Schur form I' of a matrix is not unique.
(For example, one can switch the two diagonal entries of T’
and/or change the complex phase of the off-diagonal entry via
an additional unitary similarity transformation.) Nonetheless,
the structure of I' is unique. Indeed, since both the trace
and the determinant of a matrix are invariant under similarity
transformations by a unitary matrix and since the different
Schur forms can be uniquely distinguished in terms of the
trace and determinant of the matrix I, it follows that norming
constants belonging to different Schur classes are not related
by unitary similarity transformations.

Importantly, the above discussion implies that soliton so-
lutions obtained from norming constants in different Schur
classes are inequivalent. To see why, note that, even though the
transformation (6) that defines equivalence classes of solutions
allows for two unrelated unitary matrices U and V, in order
to preserve the BC (7) one must choose V = U t. Therefore,
in the case of NZBCs, all solutions in the same equivalence
class are related to each other via a similarity transformation
with a unitary matrix. Thus, soliton solutions obtained from
norming constants in different Schur classes belong to different
equivalence classes. The converse is also true. That is, if two
one-soliton solutions are not in the same equivalence class,
then the two norming constants are inequivalent as well.

In Sec. III C we show that solutions obtained from classes A
and B are reducible, i.e., equivalent to a simple combination of
scalar solitons, similarly to the case of ZBCs, whereas those ob-
tained from classes C—E are irreducible, i.e., not representable
in terms of simple combinations of scalar solitons.

Finally, recall that a soliton solution corresponds to a
ferromagnetic or polar state depending on whether det K = 0
or det K # 0, respectively. Thus, if the solution describes a
ferromagnetic state (i.e., one of the eigenvalues of the norming
constant is zero), then it belongs to one of the equivalence
classes B-D. Conversely, if the solution describes a polar state
(i.e., both eigenvalues of the norming constant are nonzero),
then it belongs to either class A or class E.

C. Soliton solutions with NZBCs: Core components

Substituting Eq. (21) into Eq. (8), we have

O(x,t) = UQx,n)UT, (22)

where

Q(x,t) = kil — i X, 20T 4 ikl X, T /22, (23)
and the X ; solve the linear system

X\D =1 —ikoX>¢/c, XoD' =1 —itX,& ko,
with

I L, = koIt o+
= A D=1+ ! 20 e 0
¢r=¢ (&%)* + kg

Since ®(x,?) is obtained from Q(x,t) via the transformation
(22), we refer to Q(x,t) as the core soliton component of the
solution ®(x,t) of the spinor model. This definition holds for
all classes A-E.

Note that for classes A and B the norming constant K is
a normal matrix (because it is diagonalizable by a unitary
similarity transformation). In these cases, since I" is symmetric
and diagonal, Q(x,t) is also symmetric and thus is itself a
one-soliton solution of the spinor model (5), with norming
constant I'. Conversely, for classes C—E the norming constant
K is not a normal matrix (because it is not diagonalizable
by a unitary similarity transformation). In these cases, I" is
nondiagonal and Q(x,r) is not symmetric and thus is not
a soliton solution of the spinor BEC model. Nonetheless,
®(x,t) = UQ(x,t)U' is always symmetric and therefore is
a solution of the spinor BEC model.

Below we study the solutions obtained from each Schur
class in Table I separately. It will be convenient to parametrize
the Schur forms as follows:

(i ) (50 e
e = <8 ’6) (24b)
r, - <J(; J/tar(l)(Zn))’ (240)
r, — (y +ei5)gcot(2n) ;;0> (24d)

1. Class A

Combining 'y in Egs. (24) and (23), simple calculations
show that Q(x,t) = diag(q;(x,?),q—1(x,t)), where, similarly to
the case of ZBCs, each g;(x,t) solves the scalar NLS equation

iq + qux + 291> — k3)g = 0, (25)

with the NZBC |g;(x,t)| — ko as x — Z£00. More precisely,
since the asymptotics as x — oo of Q(x,¢?) is fixed by Eq. (7),
it follows that g;(x,t) — ko asx — o0. Let grw, ;(x,t) denote
the Tajiri-Watanabe soliton solution (19) with discrete eigen-
value { = ikoZe' and norming constant y = y; = &;e'%/ for
j ==£1. As a consequence of the decoupling provided by
the Schur decomposition of the norming constant, g;(x,?) =
grw,j(x,t) for j = %1 are the general one-soliton solutions
of the scalar NLS equation. Thus, the core soliton component
Q(x,t) in class A is diagonal and it is given by

O(x,t) = diag(gtw,1(x,1),qtw,—1(x,1)). (26)
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FIG. 3. Amplitudes of a one-soliton solution of the spinor BEC
model with NZBCs with ky = 1, discrete eigenvalue ¢ = 2i e i/
and norming constant in class A. The left column shows entries of
®(x,t) from Eq. (27) with y; = ¢™/3/10, y_; = 50e~""/3, and n =
7 /8 (from top to bottom): | (x,7)|, |po(x,¢)| and |¢p_;(x,?)|. The right
column shows entries of the corresponding core soliton component
Q(x,t) from Eq. (26) (from top to bottom): |g; i (x,?), |g12(x,1)| =
lg2,1(x,0)|, and |g25(x, 1)

As discussed in Appendix B, the most general form for the
unitary matrix U, that converts the norming constant into its
Schur form, and hence the general one-soliton soliton into
the core soliton component, in class A is given by Eq. (B1).
Therefore, the general solution ®(x,7) in class A is a one-
parameter family of transformations of two shifted scalar TW
solitons,

$1(x,1) = grw.1(x,1)sin® ) + grw._1(x,1) cos> n, (27a)
do(x.1) = 3(grw.1(x.1) — gTw,—1(x,1)) sin 27, (27b)
$_1(x,1) = grw,1(x,1) cos” n + grw,_1(x,t)sin* n, (27¢)

where —m/2 < n < /2. Note that ®(x,?) is determined by
a total of eight real parameters via Eq. (27). An example of a
soliton solution ®(x,¢) in class A and the corresponding core
soliton component Q(x,?) is shown in Fig. 3. It can be seen
from the left column of Fig. 3 that, in general, the solution (27)
exhibits a one-to-one correspondence between potential traps
and peaks in different spin states. In particular, the background
develops holes in the two components ¢y corresponding
to potential traps. Such potential traps in turn create peaks
in the component ¢y. The existence of pairs of holes and
peaks is reminiscent of the dark-bright soliton complexes
considered in Refs. [14—18]. In this sense, the soliton solution

(27) exhibits oscillatory dark-bright behavior among the spin
states. This behavior manifests itself only in ®(x,#) and not in
the corresponding core component Q(x,¢), which is a direct
result of the spin rotation U of the core solutions Q(x,t)
from Eq. (22). It is also clear that such oscillatory dark-bright
behavior travels with the same velocity of the TW solitons
grw.+1(x,t) and is fully determined by the discrete eigenvalue
¢. The frequency of oscillation is also the same as that of
the TW soliton. Since the TW solitons are well known and
have been studied extensively in the past, the corresponding
results can be simply carried over to the soliton solutions in
class A.

2. Class B

Combining ' in Eq. (24) with Eq. (23), simple calcula-
tions show that Q(x,t) = diag(q,(x,t),ko). Similarly to class
A, qi(x,t) satisfies the scalar NLS equation (25) with the
NZBC ¢q;(x,t) = ko as x — xoo. Thus, we have ¢q;(x,t) =
grw(x,t) from Eq. (19). The core soliton component is
given by

Q(x,1) = diag(grw(x,1),ko). (28)
The general one-soliton solution ®(x,¢) in class B is defined by

a one-parameter family of transformations that couple a scalar
TW soliton (19) and the nonzero background k(, namely,

¢1(x,1) = grw(x,t)sin* n + ko cos” 1, (292)
po(x,1) = Hgrw(x,t) — ko) sin2n, (29b)
¢-1(x,1) = grw(x,1) cos® n + ko sin® n, (29¢)

where —m/2 < n < /2. Notice the family of solutions in
Eq. (29) depends on six real parameters. An example of a
soliton solution ®(x,¢) in class B and the corresponding core
soliton component Q(x,t) is shown in Fig. 4. With a nontrivial
parameter 7, this solution forms a domain wall. In particular,
the location of the wall coincides with the location of the TW
soliton gtw and the velocity of the wall coincides with the
soliton velocity. Hence the properties of the wall are encoded
into gtw(x,?) by means of the discrete eigenvalue ¢ and the
norming constant y.

3. Class C

Combining I'c in Eq. (24) with Eq. (23), after some
calculations we obtain the core soliton component as

O@x,1) = [q;,(x,0)]j k=12, (30)

where

q1.1(x,1) = ikge "*[sina — i cos a tanh x (x,1)], (31a)

ko _;
~_e—z[2a+s(x,t)]

qi2(x,t) = —i Z cosa sechy(x,t), (31b)
gr.1(x,1) = —ikoZe" ™V cos a sechy (x,1), (31c)
q22(x,t) = q1,1(x,1), (31d)
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FIG. 4. Same as Fig. 3, but for a one-soliton solution in class
B and discrete eigenvalue ¢ = 2ie™"/*. The left column shows the
soliton solution from Eq. (29) with y = ¢/™/3 and n = /4 and the
right column the corresponding core soliton component from Eq. (28).

with
x(x,t) = c_ 1kox cosa — k(z)ch,gt sin(2a)
+ In[(2Zko cos @) /€],
s(x,t) = cq 1kox sino + c,,gkgt cos2a — ¢,

and y = £ ¢'®. In this case Q(x,) has the form of a dark-bright
soliton, similar to those obtained for the vector focusing NLS
equation (i.e., the so-called Manakov system) with NZBCs in
[56]. The general one-soliton solution ®(x,t) of the spinor
model in this case is given by Eq. (22) with Q(x,t) given by
Eq. (31) and U¢ given by Eq. (B2). The resulting solution
is a superposition of dark and bright solitons, coupled by Uc,
which generically produces a breather-type solution due to out-
of-phase oscillations resulting from the off-diagonal entries of
Q(x,t). For brevity, we omit the explicit expressions for the
entries of ®(x,1).

A soliton solution ®(x,?) in class C and the corresponding
core soliton component Q(x,#) are shown in Fig. 5. We reiterate
that, unlike ®(x,?), Q(x,t) is not symmetric in this case, hence
it is not itself a solution of the spinor BEC model.

4. Class D

Combining I'p in Eq. (24) with Eq. (23), the core soliton
component is still given by a full 2 x 2 matrix Q(x,?) as
in Eq. (30), but where now the individual entries are given
explicitly in Eq. (B5) in Appendix B for brevity. As for class
C, the core soliton component Q(x,?) is not a solution of the
spinor BEC model (5), because it is not symmetric. The general
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FIG. 5. Amplitudes of a one-soliton solution of the spinor BEC
model with NZBCs with k, = 1, discrete eigenvalue ¢ = 2ie /0,
and y = 1l inclass C. The left column shows the solution ®(x,#) with
Uc defined in Eq. (B2) and the parameters 8, = —n/2, 8, = 7, and
n = 0 (from top to bottom): |¢,(x,?)|, |¢po(x,?)|, and |¢p_1(x,t)|. The
right column shows the corresponding core soliton component Q(x,7)
from Eq. (31), with |q1.1 (x,0)] = Ig220x,0)| (top), g1.2(x.1)] (middle),
and |q2,1(x,?)| (bottom).

one-soliton solution ®(x,?) is given by Eq. (22) as usual. A
three-parameter family of unitary matrices Up that convert
the norming constant into its Schur form, and hence the core
soliton component into the general one-soliton soliton, is given
by Eq. (B3). One example of a soliton solution with norming
constant in class D is shown in the left column of Fig. 6. The
entries of the corresponding core soliton component are shown
in the left column of Fig. 7.

The solution in class D also exhibits a domain wall behavior.
One can still see a small asymptotic amplitude difference in
¢ as x — o0 in the left column of Fig. 6. Analytically, this
is consistent with Ref. [49], where the asymptotics of one-
soliton solutions as x — =00 shows that ®(x,t) has different
asymptotic amplitudes in each spin state as x — 0o when
det K = 0.

5. Class E

By combining I'r in Eq. (24) with the general solution
formula (23), one obtains the core soliton component Q(x,?)
in class E. One example of a soliton solution with norming
constant in class E is shown in the right column of Fig. 6.
The entries of the corresponding core soliton component are
shown in the right column of Fig. 7. Unlike the previous classes,
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FIG. 6. Similar to the left column of Fig. 5, but for two one-
soliton solutions in classes D (left) and E (right) with ¢ = 2ie™"™/4.
The unitary matrix U is given by Eq. (B3) withy = 1,n = 7/8, and
B> = /2. The unitary matrix Ug is given by Eq. (B4) with y_; =1,
Yo =2i,8=m/2,and n = w/32.

in this case we are unable to write Q(x,?) in compact form:
The entries of the core soliton component do not seem to be
reducible to simple superposition of scalar solutions and are
not simpler than the solution ®(x,?) itself, as one can see by
comparing the right columns of Figs. 6 and 7. Similarly to class
A, the locations of peaks in ¢+ and holes in ¢y are clearly in
one-to-one correspondence. Thus this solution also exhibits a
dark-bright behavior.

6. Additional remarks

The results of this section can be summarized in Table II
(which labels the different types of solution) and Table III
(identifying which solution type is obtained for various classes
of norming constants and kinds of discrete eigenvalues). At this
stage it is also worth highlighting some of the common features
of the soliton solutions derived above.

(i) We reiterate that traveling solitons, stationary solitons,
and periodic solutions in each equivalence class share the
same expressions for the core soliton components and the
only difference between them is the different kind of discrete
eigenvalue.

(ii) Solitons obtained from eigenvalues of the first three
kinds (see Fig. 2) are localized along a line

c_ 1kox cosa — kéc_hzt sin 2« = const.

¢ N
\ I
L2 A IR AL AT
| SERRRILT L %7
| SEALALATA AL

2
S
Z ..

FIG. 7. Entries of the core soliton component Q(x,t) for the
solutions in class D (left) and class E (right) shown in Fig. 6 (from
top to bottom): |g1,1(x,5)|, [q1.2(x,1)], |g2,1(x,0)], and g2 2(x,1)].

The left-hand side of the above expression is determined solely
by the discrete eigenvalue ¢, yielding the soliton velocity as

V = 2kocynsina/c_ ;. 32)

This velocity also characterizes the domain walls in classes B
and D. For a discrete eigenvalue in a generic position in the
complex plane (i.e., an eigenvalue of the first kind; see Fig. 2),
the soliton travels with V' # 0, thus it is a genuine traveling
soliton. For a purely imaginary discrete eigenvalue { = ikoZ
(i.e., « = 0 corresponding to an eigenvalue of the second
kind) the soliton velocity is zero, i.e., the soliton is stationary.
Moreover, if Z = 1 with o # 0 (i.e., for an eigenvalue of the
third kind), the soliton velocity becomes infinite. The soliton is
localized in time and the solution becomes periodic in space.
Finally, as we show in the next section, the limit Z — 1 with
o = 0, corresponding to an eigenvalue of the fourth kind in
Fig. 2, may give rise to rational solutions.

(iii) Unlike the soliton velocities, the specific location and
phase of an individual soliton are determined by the Schur form
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TABLE II. Summary of the various types of core soliton compo-
nents (see Table III) obtained according to the Schur form of the
norming constant (classes A-E; see Table I) and the location of
the discrete eigenvalue ¢ (eigenvalues of the first and second kinds
yield standard soliton solutions, eigenvalues of the third kind yield
periodic solutions, and an eigenvalue of the fourth kind yields rational
solutions; see Fig. 2).

Type Solution

I reducible, two (shifted) scalar soliton solutions
II reducible, one scalar soliton solution

III irreducible, dark-bright soliton solution

v general irreducible solution

v constant solution

of the norming constant and by the unitary transformation that
reduces the norming constant to its Schur form. The explicit
expressions for these quantities in general are different for the
five classes.

(iv) Finally, we reiterate that solutions in equivalence classes
A and E represent polar states, for which the total spin of
the condensate is zero and the asymptotic state ®_ also
equals kq times the identity matrix up to a phase. Conversely,
solutions in equivalence classes B-D describe ferromagnetic
states, for which the total spin of the condensate is nonzero
and the corresponding asymptotic state ®_ is not diagonal
in general. Since the asymptotics @4 in a polar state are
diagonal with only an overall phase difference [49], each ¢;
has the same asymptotic amplitudes as x — F00. Therefore,
domain walls cannot form in a polar state. On the other hand,
in a ferromagnetic state ®_ is not diagonal while & is,
implying that each ¢; has different asymptotic amplitudes
as x — Fo00. One then expects kinklike behavior in some
solutions corresponding to domain walls. This can clearly be
seen from Fig. 4. Thus, polar states and ferromagnetic states
in general have different topological properties.

IV. ROGUE-WAVE SOLUTIONS

Next we derive rogue-wave (i.e., rational) solutions of the
spinor BEC model by taking suitable limits of the stationary
soliton solutions for each equivalence class of norming con-
stants. For simplicity, and without loss of generality, in this
section we take ky = 1, using the scaling invariance of Eq. (2):
If ®(x,t) is a solution of Eq. (2), c®(cx,c?t) is also a solution
for any real constant c.

TABLE III. Various types of core soliton components.

Schur class Eigenvalues 1-3 Eigenvalue 4

| type I, Eq. (26) type I, Eq. (37)
' type 1L, Eq. (28) type 1L, Eq. (39)
e type III, Eq. (31) type V, Eq. (40)
I'p type IV, Eq. (BS) type IV, Eq. (41)
e type IV, Eq. (23) type IV, Eq. (41)

Recall that the scalar NLS equation (25) admits a rational
solution known as the Peregrine soliton

qp(xvt) =1~ 4f(-x7t)3

4it +1
=
FoeD = T e 71

(33a)

(33b)

which, for instance, can be derived by taking the limit of a
stationary (Kuznetsov-Ma) soliton solution [64,65], i.e., the
TW solution (19) with ¢ =iZ, as the discrete eigenvalue
approaches the branch point i, i.e., as Z — 1, with a suitable
rescaling of the norming constant, namely, letting y = y,, with

Yo =20 Z(Z* — )/(Z* + D). (34)

The existence of branch points in the spectral plane is a result
of the NZBC in the formulation of the IST. The solution
(33) is centered at the origin. However, one can easily derive
a Peregrine soliton centered at an arbitrary point (xg,#))
using a different rescaling for the norming constant. Indeed,
taking

y = yp667’1x0+iC7'2t0, (35)

where c_ ; is defined in Eq. (19), the limit Z — 1 leads to
a displaced Peregrine soliton gp(x — xo,f — #) centered at
(xo0,70)-

Following a similar procedure, we next consider the limit
of the solutions obtained from a purely imaginary discrete
eigenvalue ¢ = iZ with Z > 1 for all five equivalence classes
discussed in Sec. III B and we derive corresponding families
of rational solutions with suitable rescalings of the norming
constants.

A. Class A
Recall first that in this case the core component (26) has
two independent scalar TW solitons. Similarly to the rescaling
(35), we rewrite the Schur form of the norming constant
as

c_gXiHic_pty e x_1Fic_ ot )
9 b

'y = y, diag(e e

where x4 and 74 are four real constants determined by the
eigenvalues y4 of the norming constant K. By changing y4 1,
one can change the values of x4 and #4. In the limit Z — 1,
the core soliton component (26) with discrete eigenvalue ¢ =
i Z becomes

Op(x,1) = diag(gp,1(x,1),gp,—1(x,1)), (36)

where g, +1(x,1) = gp(x — x41,t —tx)). If xy = x_jand 1t} =
t_1 (corresponding to a norming constant with y; = y_)),
the centers of the two Peregrine solitons coincide. Using the
general unitary matrix U, from Eq. (B1), we then obtain the
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FIG. 8. Amplitudes of arational solution of the spinor BEC model
in class A with ky = 1. The left column shows entries of ®(x,7) from
Eq. (37) with n = /3, (x1,t,) = (=1, — 1), and (x_;,z_;) = (1,1)
(from top to bottom): |¢;(x,1)|, |po(x,?)|, and |¢_;(x,?)|. The right
column shows entries of the corresponding core soliton component
Q(x,t) from Eq. (36) (from top to bottom): |g; 1 (x,?)|, |g12(x,1)| =
|g2.1(x. )], and |22 (x,1)].

general family of rational solutions in class A as

G1(x,1) = qp.1(x,1)sin* 0 + gp _1(x,1) cos® n, (37a)
do(x,1) = 3(gp1(x,t) — gp—1(x,1))sin2n,  (37b)
¢_1(x,1) = gp1(x,1) cos® n + gp _1(x,1)sin’ 0, (37¢)

where —7/2 < n < /2. An example of a rational solution
®(x,7) in class A and the corresponding core component
Q(x,t) are shown in Fig. 8.

The spinor BEC model (5) possesses a translation invari-
ance, namely, if ®(x,7) is a solution, then ®(x — xo,t — 1y) is
also a solution. Using this invariance, one can eliminate two
of the parameters without loss of generality, for example, x_;
and 7_,. However, the relative position of the two peaks in the
(x,t) plane cannot be changed using this invariance. Hence,
Eq. (37) defines a three-parameter family of rational solutions.
The parameter n characterizes the spin rotation of this solution.
The other two parameters describe the relative position of the
two peaks.

Clearly, from the left column of Fig. 8, the potential traps
in ¢1; pair with peaks in ¢y. Again, the mixed dark-bright
behavior is observed in this rogue-wave solution. However,
unlike the soliton solutions in class A, this dark-bright behavior
does not oscillate.

-.. 7>
P vy
IR

FIG. 9. Same as Fig. 8, but for rational solutions in class B with
(x9,t9) = (0,0). The left column shows the rational solution from
Eq. (39) with n = 7 /4 and the right column the corresponding core
component from Eq. (38).

B. Class B
In this case Q(x,?) is given by Eq. (28). As Z — 1 with
¢ =1iZ and y as in Eq. (35), one obtains

Qp(x,1) = diag(gp(x — xo, — 1), 1), (38)

which has a peak at (xg,f%). Of course, the general rational
solution is obtained from Eq. (22), with the general unitary
matrix U = Ug = U, in Eq. (B1), i.e.,

¢1(x,1) = gp(x — X, — 1) sin* n + cos®n,  (39a)
do(x,1) = [gp(x — xo,t — 1o) — 1]sin(2n)/2, (39b)
$-1(x,1) = gp(x — xo,t — tp) cos” n +sin*n,  (39c)

where again — /2 < n < m/2. Since one can shift the position
of the peak by using the translation invariance of the spinor
model, there is only one genuine parameter 7 in Eq. (39),
which characterizes the spin rotation. We point out that, when
n = /4, the solution (39) coincides with the one obtained by
direct methods in Ref. [48]. An example of a rational solution
®(x,7) in class B and the corresponding core component
Q(x,t) are shown in Fig. 9. With a generic parameter 7, the
peak in ¢ corresponds to the potential traps in both ¢4;. The
essential difference between rational solutions in classes A
and B is obviously the number of Peregrine solitons in the
core component, which determines the number of peaks in the
component ¢y.
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C. Class C

Substituting ¢ =iZ with o = 0 into the expression for
Q(x,t) from Eq. (31), we have

q1,1(x,1) = g22(x,t) = tanh x (x),
—is(t)

1
q12(x,1) = —ife sechy (x),

q2.1(x,1) = —i Ze"Dsechy (x),
where now

xx)=c_1x+1n(2Z/§), s(t)=c_ ot — ¢,

and y = £e'? as before. Then it is easy to show that Q(x,t)
tends to a trivial constant matrix regardless of the norming
constant as Z — 1, namely,

1 4 g2
Qp(x.1) = m<—4i§'ei¢

Thus, no nontrivial rational solutions are obtained as limits of
soliton solutions in class C.

—_4jEel?
44’_552 ) (40)

D. Class D
Taking the limit Z — 1 of Q(x,t) from Eq. (BS) with
2iZ(Z* — 1)| cos(2n)]
V= e
VZ* + 272 cos(4n) + 1

c_1Xxo+ic_ty
s

we have

8i(t — to) + sec?(2n) + 1

H=1-2 , 41
q1,1(x,1) A — xof —10) (41a)
4i(t —t9) —2(x — x9) + 1
,t) = —2tan(2 , (41b
q1.2(x.1) an(n) = et (41b)
4i(t —ty) +2(x —x0) + 1
,t) = —2tan(2 , 41
2.1(x.1) an(n) = (410)
2 tan%(2n)
HN=1-— 41d
q2,2(x,1) A — ol —1o) (41d)
where
A(x,t) = 1612 4 4x2 + sec’(27). (42)

The corresponding solution ®(x,?) is obtained by composing
Eq. (41) with the unitary matrix in Eq. (B3). This yields
a two-parameter family of rational solutions, whose explicit
expression is omitted for brevity. An example of a rational
solution ®(x,7) in class D and the corresponding core compo-
nent Q(x,?) from Eq. (41) are shown in Fig. 10. The one-to-one
correspondence between potential traps and peaks is observed
again among the spin states.

E. Class E

In this case there are two possible approaches to obtain
a rational solution. One can show that in order to obtain a
nontrivial limit Z — 1 with ¢ =i Z, one needs detI"'y — 0,
but the two diagonal entries of I'g cannot both tend to zero.
Thus, we consider two cases separately. First, we let the (1,1)
component of ['g tend to zero, i.e., we parametrize the Schur

Sz
A2

o g by
LT,

3 e
T < Z
,0. :',t‘ QLA
L, 2 <7 =7
<2 L %
SR |
B S

FIG. 10. Similar to Fig. 8, but for rational solutions in class
D centered at the origin with n = 7/8. The left column shows
the rational solution from Eq. (22) with Up defined in Eq. (B3)
and B, = /3. The right column shows the core component from
Eq. (41) with |gy,1(x, )] (top), [g1,2(x,0)| = |g2,1(—x,1)| (middle), and
lg2,2(x,0)] (bottom).

form I'g as

| 14 Y
E 0 y—ePyycotn))

with y = yp and yp given by Eq. (34) as before. Then the
entries of the core component as Z — 1 are

qra(x,t) = 1 —2[8it + 1 + sec*(2n)]/ A(x,1),
qi12(x,t) = —2¢7# tan(2n)[4it — 2x + 1]/ A(x,1),
@21 (x,1) = =2 tan(2n)[4it + 2x + 11/ A(x,1),
G2(x,1) = 1 = 2tan’2n)/ A(x,1),
with A(x,?) given by Eq. (42). Using the same matrix Ug from
Eq. (B4), we have
1(x,1) = 1 — 4cos® nsec2n)[4it + sec(2n)]/A(x,1),
¢o(x,1) = 4i tan(2n)x /A(x,1),
¢_1(x,1) = 1 + 4sin® nsec(2n)[4it — sec(2n)]/A(x,1).
One can show that the above solution ®(x,#) coincides with
the one from class D centered at the origin, obtained by using
Q(x,t) from Eq. (41) and the unitary matrix Up from Eq. (B3)

with B, = m /2. Thus, the family of rational solutions obtained
from class E is equivalent to that from class D.
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Alternatively, one can let the (2,2) component of I'g tend
to zero. i.e., take ' as

_ (V — P yy cot(2n) Vo)
VE - O £
14

with y as above. Note, however, that the resulting solution is
equivalent to the one obtained above. The reason why this is
the case is that the two parametrizations above for the norming
constant can be obtained from each other by simply switching
the diagonal entries, which can be done by a unitary similarity
transformation. Therefore, the corresponding solutions are
in the same equivalence class. Thus, all rational solutions
obtained from class E are equivalent to those from class D.

F. Inequivalence of rational solution families

Even though soliton solutions in different Schur classes are
inequivalent, this might not be the case for the corresponding
rational solutions. In other words, since the limit Z — 1 is
a singular limit for the norming constants and inequivalent
Schur forms might reduce to the same ones in the limit, it is
not obvious a priori that the rational solutions obtained from
different Schur classes would be inequivalent. As a matter of
fact, we have already seen that the rational solutions obtained
from classes D and E are equivalent. On the other hand, we
next show that the rational solutions obtained from classes A,
B, and D are indeed inequivalent.

Recall that the trace and the determinant of a matrix are
invariant under similarity transformations. Thus, the equality
of their trace and their determinant is a necessary condition for
two solutions ®;(x,7) and ®,(x,?) to be equivalent. That is,
if two solutions have different trace or different determinant,
they are inequivalent. In light of this observation, we compute
the traces of rational solutions in classes A, B, and D, obtaining

trda(x,1) =2 —4[f(x —x1,t —11)
+f(x —x_p,t =11l
tr ®p(x,t) =2 —4f(x — x9,t — 1),
tr®p(x,r) =2 —4[4i(t — 1y)
— sec’(2m]/ A(x — xo.t — Io),

where f(x,t) and A(x,t) are given by Egs. (33) and (42),
respectively. If n =0, one has tr ®p(x,t) = tr Dp(x,t) up
to a spatial and temporal shift. Note, however, that in the
classification of the norming constants, 7 # 0 in class D,
because when n = 0, class D reduces to class B. So all three
traces are distinct. Consequently, the three classes of rational
solutions are all inequivalent and therefore represent three
distinct families of rational solutions of the spinor BEC model.
As mentioned before, the rational solutions in class B
are equivalent, up to unitary transformations, to one of the
solutions derived in Ref. [48]. The other two families of
solutions, however, are different. Moreover, while the rational
solutions in classes A and B are reducible, in the sense that
they are equivalent to scalar rational solutions (i.e., Peregrine
solitons of the scalar NLS equation), the rational solutions in
class D cannot be reduced to scalar rational solutions.
Finally, we would like to comment on the singular nature of
the limit Z — 1. We have shown that this limit can give rise to

rational solutions. On the other hand, it is evident from Table |
that some of the Schur forms are special reductions of others.
(For example, I'y with y_; = 0 reduces to I'g.) The soliton
solutions with eigenvalues of kinds 1-3 inherit the reductions
of the Schur forms. [For example, one can easily check that the
soliton solution (27) in class A reduces to the one (29) in class
B, when y_; = 0, in which case the TW soliton grw _;(x,?)
reduces to the trivial nonzero background kj.] However, in
order to obtain the rational solution (39) in class B from the
solution (37) in class A one must consider either of the singular
limits x_; — oo ort_; — 00.

G. Spin state

Direct calculations show that all three classes of rational
solutions have a zero spin F = (0,0,0) (see Appendix A for
definition), regardless of all other parameters. Thus all three
classes of spinor BEC rogue waves correspond to the polar
states. One should note that the rational solutions in classes B
and D are derived from a ferromagnetic state, which confirms
the singular nature of the limit. Moreover, because the spin of
these rogue waves is zero, when they interact with other waves,
they will not affect their spin state.

V. CONCLUSION

We have presented a classification of one-soliton solu-
tions of spinor BECs with ZBCs and NZBCs and we have
derived families of rogue-wave solutions of spinor BECs.
We have shown that one-soliton solutions with ZBCs are
always reducible, in the sense that there always exists a
unitary transformation that relates them to solutions of single-
component BECs. On the other hand, we have also shown
that solutions with NZBCs are divided into reducible and
irreducible classes. Moreover, we showed that there exist two
inequivalent classes of one-soliton solutions with ZBCs (cor-
responding to ferromagnetic versus polar states), five inequiv-
alent classes of one-soliton solutions with NZBCs, and three
inequivalent classes of rational solutions. The classification
of all inequivalent solitons and rational solutions is of course
important in order to single out the fundamental properties of
the solutions and eliminate the complications introduced by
simple rotations of the quantization axes. In particular, in this
work we also used the classification to prove the inequivalence
of the three families of rational solutions presented and hence
the difference of the two families obtained as limits of soliton
solutions in classes B and D.

We also discussed the physical properties of solitons and
rational solutions. We showed that some solutions exhibit
oscillating pairs of potential traps and peaks that resemble
the behavior of dark-bright soliton complexes in the focusing
vector NLS. Other solutions, on the other hand, are topological
solitons and form domain walls. The domain walls can be
analyzed through the core solutions. In particular, the velocity
in Eq. (32) also corresponds to the velocity of the wall.
From a physical point of view, all soliton solutions with
NZBCs can be categorized into either a polar or a ferromag-
netic state depending on their total spin being zero or not,
and this corresponds to having topological or nontopological
solitons.
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We emphasize that the classification introduced in this work
also applies to the full matrix NLS equation, either with ZBCs
or NZBCs, namely, Eq. (2a), but where now ®(x,?) is not
necessarily a symmetric matrix, i.e., when the constraint (2b)
does not apply. The only differences from the analysis of this
work are that, for the full matrix NLS equation, the core soliton
components are themselves always solutions of the matrix
system and different solutions can be combined via arbitrary
(i.e., unconstrained) unitary matrices.

Another open question is whether even more general soliton
solutions can be obtained which do not satisfy the constraint
(4). It should be noted that this is also an open problem in the
case of the vector NLS equation.

While matter-wave solitons in one- and two-component
systems have been extensively studied and observed exper-
imentally, an extension to three components (and hence to
spinor systems) had not been attempted in experiments until
most recently: In Ref. [18] the existence of robust dark-bright-
bright and dark-dark-bright solitons in a defocusing spinor
F =1 condensate has been reported. Although, in general,
the systems considered in the experiments are nonintegrable
(see, for instance, Refs. [18,66-69]), one can get useful
insight into their behavior using perturbation techniques of
related integrable systems. For instance, the model equation
in Ref. [18] can be considered a small perturbation of a
three-component vector NLS equation. In this respect, the
theoretical predictions for the soliton solutions in the integrable
case can be an extremely valuable tool for the investigation
of the nonintegrable solitary waves in regimes that are not
too far from the integrable one. While to date there is not
yet an experimental realization of the exact focusing system
on a nonzero background that we considered in our work,
we note that the polar and ferromagnetic solitons analyzed
in Ref. [70] for the F = 1 spinor system were found to be
structurally stable, i.e., robust under random changes of the
relevant nonlinear coefficients in time. This suggests that the
solitons, and possibly the rogue waves derived in our work,
could be soon observed experimentally, in models that may be
at least perturbatively close to ours.
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APPENDIX A: TOTAL SPIN AND SPIN STATES

As shown in Ref. [60], the spin-1 BECs are either in a polar
state or in a ferromagnetic state, depending on a conserved
quantity, total spin, in the ground state. In particular, a polar
state corresponds to a zero total spin, whereas a ferromagnetic
state corresponds to a nonzero total spin. We next investigate
the total spin of the one-soliton solutions (8) explicitly.

The spin density f = (f_y, fo, f1) is defined by

f=tr(®la®), o =(01,02,03),

where o for j = 1,2,3 are the Pauli matrices, & = ®(x,7) is
given by Eq. (8), so the spin is F = [ f dx, and the total spin

is ||F|| [22]. We first rewrite the spin F as

F:tr(a/ @@de> =tr<a/ (q>q>T—k§12)dx).
R R

It is then evident that one only needs to compute the integral

1 =/ (@D — k3 1)dx,
R

in order to determine the spin F corresponding to the solution
®. In other words, the spin F is the projection of I onto the
Pauli matrices. Note that the term ké I, must be added so that
this integral is convergent on the line. It is worth mentioning
that in this work the total spin is used to characterize the polar
state, whereas in [60] the spin state is defined by the local spin,
i.e., the polar state satisfies f = 0, instead of F = 0.

The integral in Eq. (A1) is difficult to compute directly
from the solution (8). However, it is well known that the
IST provides an easier way to get conserved quantities in
terms of asymptotics of eigenfunctions and scattering data. In
particular, one can derive for the asymptotic behavior of one
of the eigenfunctions as the expression

(AL)

Y=15L- %/ (@@ — k3 L)dx" + 0(1/2%), z— oo,

X

(A2)

V\_/here z is the spectral parameter [49]. [Note that Y (x,7,7) =
N"P(x,t,z) in the notation of Ref. [48].] Relating the integral
I in Eq. (A1) to the asymptotics (A2), we have
I =—i lim lim z(/, = 7).
X—>—00 7—>0
The eigenfunction Y can be reconstructed from the inverse
problem of the IST. Specifically, Y is given by a linear system
and can be computed explicitly in the case of pure soliton

solutions. Omitting the details, the reconstruction formula for
I holds,

I = lim
X—>—00

ko ko e
D20 x, K 4+ ek x KT, (A3)
¢ -

where ¢ is the discrete eigenvalue, K is the norming constant,
0 is given by Eq. (9), and X; with j = 1,2 are given by the
same linear system (10). We refer the reader to the recent IST
formulation presented in Ref. [49] for details.

Solving the linear system (10), we have

X1 = [ — iko(DN'e/cID + (D) 'e] ™,
X, = (L —icD 't ko) Dt + D' eh)~.
In order to further simplify the expression for X ;, we need to

consider the two cases det K = 0 and det K # 0 separately.
Also, one should notice that for all r as x — —o0,

0(**) = 0(e™") > 00, 0(e*%) = 0(™") — 0.

Below we use the above formulas to compute the total spin of
the soliton solutions.

1. Full-rank norming constant K

If the norming constant K is such that det K # 0, after
some tedious calculations, we have the following asymptotics
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as x — —oQ:

_ koG = e[ + K] i
| = —
¢ (ks +1¢12)
£ =M + k)
X2 =1 5 2
ko (kg +1212)
Substituting the above asymptotics into Eq. (A3), we have
(-t {k_é
45
Notice that, as we expected, I is independent of ¢. Moreover,
I is diagonal, implying that

(KD 4+ 0(e™9),

6721'91(71 + 0(@74[9).

= e (el 4R =6 -

fi=tw(oj;2)=0, j=-10,1

Thus, we conclude that the total spin ||F|| = 0 and hence the
BEC is in a polar state.

2. Rank-1 norming constant K

We next consider the case where det K = O and K # 0, and
without loss of generality we assume that K is nondiagonal.
[If K is diagonal in this case, the spinor model reduces to
a scalar NLS equation.] Similarly to the previous case, we
can calculate asymptotics of all needed quantities. However,
because det K = 0, these asymptotics are more complicated
than before. Without showing the details, we give the final
result

I 2i Re[do(rK)*K /¢1+ ciKTK + k2coKK1/|¢)?
- |do|2trK trK'T + |co|2tr(KTK)

’

where
co= " =07, do=ike/[(c*)? + K]

Notice that I contains three matrices K, KTK, and KKT.
Recall that K is not diagonal in this situation, so K 'K, KKT,
and I cannot be diagonal. Moreover, the two nondiagonal
matrices KK and KK are Hermitian. Their projections on
the Pauli matrices cannot be identically zero. This implies that
F # (0,0,0). In other words, the total spin is nonzero and the
BEC is in a ferromagnetic state.

One can then obtain the corresponding results for one-
soliton solutions (11) with ZBCs, by simply taking the limit
ko — 0. One shows that the BECs are in a polar state when
det K # 0 and are in a ferromagnetic state when det K = 0.

APPENDIX B: EQUIVALENCE CLASSES, NORMING
CONSTANTS, AND UNITARY TRANSFORMATIONS

Recall the Schur decomposition (21). We next discuss the
equivalence classes of norming constants K according to their
Schur form I' and we identify the corresponding families of
unitary similarity transformations allowed in each class. Recall
that the diagonal entries of I" are simply the eigenvalues of
K. As discussed earlier, there are five different equivalence
classes. Note that any unitary matrix can be parametrized by
four independent real parameters in general, but at least one
parameter is fixed by the requirement that K = UT'U' be
symmetric. Consequently, unitary matrices defining similarity

transformations of solutions of the spinor BECs contain at most
three independent real parameters.

1. Class A

If K is diagonalizable by a unitary matrix and has two
nonzero eigenvalues, its Schur form is given by I'4 in Eq. (24),
where 1, are the nonzero complex eigenvalues of K. The
most general parametrization of the unitary matrix in this case
is U = Uy, with

Uy = e <sin i

eP2 cosn B1)
cosn ’

—etf sinn

with0 < 81 < 27,0 < By <mw,and 0 < 1 < 2mw. As aresult,
the most general form for the norming constant in class A is

given by
1K1 K
Ko=—(2" 2,
4 Z(Kl,z K>»

with K;; =2y sin? N+ 2y_1 cos n, Ki» = (y1 —y-1)sin
(2n), and K, » = 2y, cos? i 4 2y_; sin® 1.

2. Class B

If K is diagonalizable by a unitary matrix and has one zero
eigenvalue, its Schur form is given by I'p in Eq. (24). Note
that one could interchange the two diagonal entries by letting

fBZU]FBOI,With
(0 1
o] = 1 0/}

Thus, one can use the Schur form I' 5 without loss of generality.
We have Ug = U, from Eq. (B1). As a result, any norming
constant in this class has the form

K — Y 1 — cos(2n) sin(2n)
B=5 sin(2n) cos(2n)+1)°
3. Class C

If K is nondiagonalizable by a unitary matrix and has two
zero eigenvalues, its Schur form is given by I'c in Eq. (24),
where y is an arbitrary nonzero complex number. The most
general parametrizations of norming constants and unitary
matrices are

_ Y i F (="
Kc = tze 1= <(_1),, _i ) (B2a)
ﬁ i(—1)" ip —i(=1)" ifr
Uc = > <l( 63316 l(eiﬁz ¢ > (B2b)

where n =0,1 and 0 < B; <27 with j = 1,2. Note that,
unlike classes A and B, U¢ contains only two independent
real parameters.

4. Class D

If K is nondiagonalizable by a unitary matrix and has
one zero eigenvalue, its Schur form is given by I'p in
Eq. (24), where y is the complex nonzero eigenvalue and
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n € (—m/4,0) U (0,t/4). As before, one could interchange
the two diagonal entries by a unitary transformation and thus
choose the (1,1) component of I" to be the nonzero eigenvalue
without loss of generality. Also, without loss of generality
we can take the entries in the first row to have the same
complex phase. The most general unitary matrix in this case is

given by
ig (U1 Uiz
Un = iB , 2],
p=¢ <U2,1 Uz,z)

where 0 < 81 < 27, B> € [-7/2, —2|n) U 2Inl,7 /2], B3 =
arccos[1 — 2 csc? B, sin?(21)]/4, and

(B3a)

U1,1 = COS/33, U2_1 = elﬂz sinﬂ3,

Ui» = 1[cos(2B3) + i cot Bo] sec B3 tan(2n),

Us» = —% P2 [cot By — i cos(2B3)] esc B tan(2n).

Thus, the most general norming constant in this class is

Kp =y Ko (B3b)
p=Y Ko Kip)

Kii = (" tan® g3+ )7,
Ky, = 1[cos By csc(2B3) — i sin B cot(2B3)] 7,

Kyp =1 —(e¥P tan” g3 4+ 1)L,

5. Class E

If K is nondiagonalizable by a unitary matrix and has two
nonzero eigenvalues, its Schur form is given by I'g in Eq. (24),
where y and yy are two complex numbers, 0 < 8 < 27 and
0 < n < /4. As a special case, if n = /4 the two discrete
eigenvalues coincide. The most general norming constant and

unitary matrix for this class are given by

s Yogs(cotn
Ke=yh+ e ( ; _tann>, (B4a)
—iB o
g [ cosny e’ sinn
U =e <i sinng —ie " cos n)’ (B4b)

where 0 < 1 < 2m.

6. Core soliton component in class D
Finally, for completeness, here we give explicitly the entries
of the core soliton component Q(x,#) in class D,
qi.1(x,t) = k()e’2"“[|c0|cfZ sec o cosh(x + 2ia)

— |colPe™* 7 Z tan*(2n)

—icre " (co — cie* Z/(ZAc), (BSa)
q12(x,1) = cikoe " tan(2n)(|colc4,1e ¥ Z?

—icicoe ) (ZAe), (B5b)
q2.1(x,1) = —koZ|co| tan 2 (i|colcie”

+cocy1e XY/ Ac, (B5¢)

q2.2(x,1) = ko — [|col*koe ¥ tan?(2n)]/Ac,  (B5d)

where y = £e'?, for brevity we suppressed the x and ¢
dependences of all quantities on the right-hand side, and

x(x,t) = koc_ 1xcosa — kéc%zt sin 2¢

2Zkp|co| cos a
n—

cé

s(x,t) = cy 1kox sina + c_,zk(%t cos2a — ¢,

+1

)

Ac(x,t) = c1(|co|cy seca cosh x + 2ZK),

K,(x,t) = Z?sin(s + 2«) — sin s,

co=1—ed72 ¢ = \/C?HZ2 + |col? tan2(2).
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