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In this work, noise is used to analyze the penetration of regular islands in conservative dynamical systems. For
this purpose we use the standard map choosing nonlinearity parameters for which a mixed phase space is present.
The random variable which simulates noise assumes three distributions, namely equally distributed, normal or
Gaussian, and power law (obtained from the same standard map but for other parameters). To investigate the
penetration process and explore distinct dynamical behaviors which may occur, we use recurrence time statistics
(RTS), Lyapunov exponents and the occupation rate of the phase space. Our main findings are as follows: (i) the
standard deviations of the distributions are the most relevant quantity to induce the penetration; (ii) the penetration
of islands induce power-law decays in the RTS as a consequence of enhanced trapping; (iii) for the power-law
correlated noise an algebraic decay of the RTS is observed, even though sticky motion is absent; and (iv) although
strong noise intensities induce an ergodic-like behavior with exponential decays of RTS, the largest Lyapunov
exponent is reminiscent of the regular islands.
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I. INTRODUCTION

Realistic systems are always coupled to environments.
Small effects of the environment on the system can nicely be
described using random perturbations (noise). In Hamiltonian
systems, noise induces dissipation, can destroy the regular
dynamics, and affects transport, to mention few examples. The
presence of noise can drastically change the dynamics and
some regions of the phase space, unaccessible for the conserva-
tive case, can be reached when noise is considered. This occurs
in typical mixed phase spaces of two-dimensional (2D) Hamil-
tonian systems, where the KAM tori can be treated as barriers in
the phase space that cannot be transposed [1]. In such cases the
presence of noise allows chaotic trajectories to penetrate tori
leading to new features and behaviors. In general, the presence
of noise can modify the volume of invariant set that are scaled
with the magnitude of the noise [2], can enhance trapping
effects in chaotic scattering [3], and can change the escape
rate from algebraic to exponential decay in scattering regions
[4,5] and from trajectories leaving from inside KAM curves
[6]. In addition, noise affects anomalous transport phenomena
such as negative mobility and multiple current reversals [7],
enhances the creation and annihilation rates of topological
defects [8], and postpones the onset of turbulence and stabilizes
the three-dimensional waves which would otherwise undergo
gradient-induced collapse [9]. In systems with spatiotemporal
chaos, noise delays and advances the collapse of chaos [10].
The effect of noise in one-dimensional systems has already
been studied [11] as well as its influence on the transition
to chaos in systems which undergo period-doubling cascades
[12,13]. For this class of systems it was demonstrated that noise
can induces the escape from bifurcating attractors [14].

In this contribution we study the effects of noise on the
dynamics of the standard map with mixed phase space adding
a sequence of independent random variables that follows
three different distributions: Gaussian, uniform, and a power-

law correlated (PLC) distribution. The motivation to chose
such distributions is related to the context of open systems.
The Gaussian distribution is connected to thermal baths,
the uniform distribution due to its simplicity and the PLC
distribution related to a very actual research area of finite
and non-Markovian environments [15–17], to mention a few.
Our results show that, using uncorrelated noise, the resulting
dynamics does not depend significantly on the choice of the
distribution (Gaussian or uniform), as expected [18]. For a PLC
noise, algebraic decays for the recurrence time statistics (RTS)
curves were found, even for larger intensities of noise. The
standard deviations of the distributions are the relevant quantity
to change the dynamics. We also show that strong noise
intensities induce an ergodic-like behavior with exponential
decays of RTS; however, reminiscent of the regular islands
is still visible in the value of the Lyapunov exponent when
compared to the noiseless case.

This work is organized as follows: In Sec. II we present
the model as well the distributions used for generate the noise.
Analytical results for the stability of central points are also
presented. In Sec. III the changes in the phase space will be
investigated. In Secs. IV and V the dynamics of the standard
map with noise will be treated using RTS and the Lyapunov
exponent, respectively. The occupation of the phase space as
a function of time for each case is presented in Sec. VI and in
Sec. VII we summarize our main results.

II. STANDARD MAP WITH NOISE

The model used in this work is the paradigmatic Chirikov-
Taylor standard map with additive independent random vari-
able at each time step described by [19]

pn+1 = pn + K

2π
sin(2πxn) + Dξn

2π
[mod 1],

xn+1 = xn + pn+1 [mod 1], (1)
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FIG. 1. Phase-space dynamics for (a) K = 3.28, and (b) K =
4.23 using 100 initial conditions and 2 × 105 iterations. The fixed
points (red circles) localized at [x,p] = [1/2,0] in the center of the
figures are (a) elliptic and (b) hyperbolic. Red lines define the border
of the chaotic recurrence region to determine the RTS, i.e., above the
upper line and below the lower line.

where xn is the position at the iteration n = 0,1,2, . . . , and
pn its conjugated momentum. K is the nonlinear positive
parameter, ξn is the random variable, and D, also a positive
parameter, controls the intensity of ξn. The random variable
was included in the above map in a distinct way from that
proposed in Ref. [19]. The parameter K is responsible for the
changes in the nonlinear dynamics, so that for larger values
of K stochasticity is obtained. The map (1) has fixed points at
x1 = 0, p1 = 0 and at x1 = 1/2, p1 = 0. Applying the stability
condition |Tr(J)| < 2 for the trace of the Jacobian matrix [20],
we find |2 ± K| < 2, where the upper sign corresponds to
x1 = 0 and the lower one to x1 = 1/2. Solving the inequality,
the point at x1 = 0 is always unstable since K is positive.
Considering x1 = 1/2, we see that for K < 4 the fixed point
is elliptic and for K > 4 it is hyperbolic. These two cases are
shown in Fig. 1, using K = 3.28 in Fig. 1(a) and K = 4.23
in Fig. 1(b). For K = 3.28 the fixed point is stable, while for
K = 4.23 trajectories trace a two hyperbolic branch inside the
main KAM torus. For the values of K used in this work the
destroyed KAM curves form Cantor sets that eventually trap
trajectories for a long time. This is called the sticky effect
and is characterized by a power-law decay for the RTS curves
[21–24].

To generate an ensemble of uncorrelated random variables
ξn we choose (i) the Gaussian (G) distribution [see green plot
in Fig. 2(a)] with 〈ξn〉 = 0 and variance 0.22, to guarantee that
−1 � ξn � 1, and (ii) the uniform (U) distribution (see blue
plot) for the same range, for which all values of ξn have the
same probability of being picked up. To obtain a correlated
noise for ξn we consider the standard map defined by

In+1 = In + K

2π
sin(2πθn),

θn+1 = θn + In+1, (2)

where we can define the moment In between the interval
[−1 : 1] and θn in [0 : 1]. Using K = 2.6, case already studied
before [25,26], we obtain a mixed phase space with KAM
curves and a huge stochastic region coexisting. For a given
initial condition, the sequence of In and θn near homoclinic
points generates a sample of values that obey a time correlated
random variable [20]. Doing ξn = In, this correlated variable

FIG. 2. (a) Probability distributions used to generate the random
values ξ . Gaussian (green), uniform (blue), and PLC noise (yellow),
all cases using values inside the interval [−1 : 1]. In (b) we show in
logarithm scale the correlation for the variable In of a standard map for
107 time iterations using K = 2.6 that follows a power-law relation
C(t) ∝ t−δ .

is used here to perturb the map (1). In such cases, the time
correlation can be determined from C(t) = 〈ξ (t)ξ (t ′)〉. For a
fully chaotic phase space is expected an exponential decay:
C(t) ∝ e−b t with t . However, for a mixed phase space the
correlation C(t) presents a power-law tail [21,22,27–29], as
shown in Fig. 2(b) for 107 iterations of map (2). While
C(t) ∝ t−δ , the RTS curve for this mixed phase space follows
P (τ ) ∝ τ−γ , with γ ∼ 1.60 [26], while δ and γ are related
by δ = γ − 1 [21,28,29]. The distribution of ξn = In, which is
PLC, is displayed in Fig. 2(a) by the yellow plot.

A. Stability condition for the central point

Using D �= 0 in map (1), no periodic orbits exist anymore.
However, for one iteration it is possible to analyze the stability
of the “fixed point” under the influence of D. The “fixed point”
at [x1,p1] = [1/2,0] is called the central point, and note that
it is not a fixed point anymore since the noise changes its
location at each iteration, even though, a one-step stability
analysis allows us to demonstrate that the presence of small
noise Dξn/(2π ) does not change the stability condition of the
central point. In fact, for each iteration we are analyzing the
one-step stability of a “fixed point,” the central point whose
location changes any time. The one-step Jacobian matrix Jp of
the standard map (1) is given by

Jp =
[

1 K cos(2πxn)
1 1 + K cos(2πxn)

]
. (3)

The position of the central point is now p1 = 0, x1 =
− 1

(2π) arcsin[(Dξn)/K], and using cos[arcsin(x)] = √
1 − x2,

the Jacobian Jp becomes

Jp =
[

1 ±K
√

1 − (Dξn)2/K2

1 1 ± K
√

1 − (Dξn)2/K2

]
(4)

with eigenvalues h± = Tr(Jp)/2 ± √
(Tr(Jp)2 − 4)/2, where

the trace is given by

Tr(Jp) = 2 ±
√

K2 − (Dξn)2. (5)

Forcing the eigenvalues of the Jacobian matrix to be
|h±| < 1 implies the stability condition |Tr(Jp)| < 2. Apply-
ing this condition to the upper signal, again we have only
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FIG. 3. Phase space of the map (1) for the interval (xmin,xmax) = (0.25,0.75), (pmin,pmax) = (−0.35,0.35) with K = 3.28 [(a)–(i)] and
K = 4.23 [(j)–(r)] using different intensities of noise indicated above each column. The first line displays the results for Gaussian noise, the
second line for uniform noise, and the third one for PLC noise. In all simulations we used 100 initial conditions and iterated the map 3 × 105

times.

unstable points for any value of (Dξn)2. Considering the lower
signal and K = 3.28 and K = 4.23, the stability condition for
each case remains unaltered for |Dξn| � 1, values that will be
used in this work. Therefore, all considered noise intensities
are not strong enough to change the stability condition for the
values of K used here.

III. PHASE-SPACE DYNAMICS

Plotting trajectories in phase space allows us to identify
regions of chaotic and regular motion for the standard map.
When noise is included, initial conditions chosen inside the
stochastic sea can transpose the barrier of tori and penetrate
them. In Fig. 3 the phase-space dynamics are shown for K =
3.28 in Figs. 3(a)–3(i) and K = 4.23 in 3(j)–3(r). The case with
Gaussian noise is displayed in the first line, Figs. 3(a)–3(c) and
3(j)–3(l); with uniform noise in the second line, Figs. 3(d)–3(f)
and 3(m)–3(o); and with PLC noise in the third line,
Figs. 3(g)–3(i) and 3(p)–3(r). Compared to Fig. 1(a), for
D = 10−5 only some regular trajectories inside the main torus
are affected, as we can see in Figs. 3(a), 3(d) and 3(g) for
K = 3.28. The most emblematic case is D = 10−3, for which
we have a mixture of completely penetrated tori and other
regions still unaccessible. The increasing density of points
inside the island from the case D = 0 indicates that larger
sticky motion is expected (this will be shown later). For
these cases we can observe that the portion of phase space
accessible for the trajectory depends on the distribution used.
Using the uniform distribution with D = 10−3, the trajectories
can access most of the phase space, while for the Gaussian
distribution there are a lot of regions not visited for same

noise intensity. This means that, using distributions for which
extreme values of |ξn| are most likely to occur, it is possible
to access a larger portion of the phase space in the same time
interval.

For D = 10−1, an apparently fully chaotic motion is ob-
served, at least from the phase-space dynamics analysis.
However, from the analytical results, we know that the stable
central point is still there so that some reminiscent of regular
motion is expected. It is worthwhile mentioning here that
for a better visualization of the phase-space dynamics we
use shorter time iterations when compared to results from
Secs. IV, V, and VI. However, conclusions made above about
the penetration of island should not be substantially changed
for longer iterations. Besides, results from the next sections
corroborate these findings.

IV. RECURRENCE TIME STATISTICS

In this section we analyze the RTS for the system (1)
using different intensities D for each distribution. The RTS is
determined numerically by counting the iteration times τ that
the trajectory stays outside of the recurrence region (defined
inside the chaotic region). The existence (or not) of the sticky
motion is recognized by the cumulative distribution Pcum(τ )
defined by

Pcum(τ ) ≡
∞∑

τ ′=τ

P (τ ′). (6)

The quantity Pcum(τ ) is a traditional method to quantify stick-
iness in Hamiltonian [22,24,30–32] and conservative three-
dimensional systems [26], since events with long times τ in
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FIG. 4. Cumulative distribution Pcum(τ ) for recurrence times τ to a region in the chaotic component of the phase space using Gaussian,
uniform, and PLC noise distributions, as indicated by the title on the top of each panel with K = 3.28 and K = 4.23 for the first and second
lines of the figures, respectively. The small algebraic decay ε = 0.65 is related to the trapped motion, or enhanced trapping inside the island,
and β = 2.0 to the superdiffusive motion.

the RTS are associated to times for which the trajectory was
trapped to the nonhyperbolic components of the phase space.
Pcum(τ ) can be directly related with escape time distributions
by applying the ergodic theory of transient chaos in systems
with leaks [33,34]. Although there is no general rule, algebraic
decays of Pcum(τ ) for at least two decades indicate the existence
of sticky motion. When noise is added in Hamiltonian systems
with mixed phase space, a slow additional algebraic decay
of RTS curves [3,21] and survival probability inside domains
near the fixed point [35] was observed, which means that the
trapping around regular islands is enhanced due to trajectories
that wander inside the islands. This result was also found
in a two-dimensional conservative map coupled to an extra
dimension without noise. In this case, trajectories remain
trapped to the extra dimensional action variable, and for very
long times no recurrence occurs, resulting in plateaus in the
RTS curves [26]. In this section, our focus is to study the
relation of enhancing trapping due to D and the kind of
distribution used, as well the influence of the stability condition
of the central point of the standard map.

The RTS plots for K = 3.28 are presented in
Figs. 4(a)–4(c). For the recurrence box we use the chaotic
region, displayed in Fig. 1. It can be shown that our results
are essentially independent on the choice of the recurrence
region, as long it is located inside the chaotic region [36]. For

D = 0 we observe the usual algebraic decay Pcum(τ ) ∝ τ−γ

with γ = 1.55, indicating the well-known sticky motion.
For D � 10−2 no events with long recurrence times exist
anymore, and the characteristic long tail of RTS gives place to
an exponencial decay, a characteristic of ergodic systems. The
enhanced trapping, characterized by a slower algebraic decay
(ε = 0.65), is present for D inside the interval [10−5 : 10−3]
and for all distribution. This is a consequence of the trapped
motion inside de island from the D = 0 case, as observed by
the larger density of points in Figs. 3(b), 3(e) and 3(h). Since
the trajectory is inside the island, there is a probability of
occurring a sequence of Dξn that keeps the trajectory trapped
so that long times of recurrences are reached. The slower
decay of the RTS curves means a decrease in the number of
recurrences in this interval. Looking at Fig. 4(c), the case for
which a PLC noise was used, even for D = 1 a power-law
regime is obtained for the RTS curve, which does not occur
for other distributions. The decay follows Pcum(τ ) ∝ τ−β ,
with β = 2.0, which characterizes a superdiffusive motion on
phase space. It is also interesting to note that for D = 10−3

and D = 10−2 in Fig. 4(c) there is an exponential decay for
long times and, increasing the intensity D, the algebraic decay
is recovered. This suggests that the dynamics of the auxiliar
map (2) has great influence on the dynamics of map (1) due
the relation Dξn = DIn.
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FIG. 5. The largest LE λ1 for the map (1) with D = 0 using a grid
of 103 × 103 initial conditions for (a) K = 3.28 and (b) K = 4.23.
For each trajectory, λ1 was calculated using 2 × 106 time iterations.

The case K = 4.23 is displayed in Figs. 4(d)–4(f). By
comparison with K = 3.28, the enhanced trapping is not that
efficient. The reason for this is that the region of sticky motion
is smaller, as observed in Figs. 3(k), 3(n) and 3(q). Besides
that, there is a hyperbolic fixed point inside the main KAM
torus forcing the trajectory to stay away from the center. In
this case we do not find algebraic decay for RTS curves when
using a PLC noise for larger values ofD. Thus the sticky motion
coming from the PLC is not able to significantly keep the sticky
motion from the map (1) when the central point is unstable.
Another important conclusion is that the RTS curves obtained
for K = 3.28, as well as for K = 4.23, do not present relevant
changes using Gaussian distribution or uniform distribution.

V. LYAPUNOV EXPONENT

The quantity which measures the average divergence of
nearby trajectories is the Lyapunov exponent (LE) λ, which
provides a computable measure of the degree of stochasticity
for a trajectory. A numerical method for computing all 2N

LEs (namely the Lyapunov spectrum) in a N degrees of
freedom system can be found in Refs. [37,38]. This method
includes the Gram-Schmidt reorthonormalization procedure.
For a randomly perturbed system the technique to compute
the Lyapunov spectrum is similar and we just replace the
deterministic trajectory x by the perturbed sequence x(p)

[18,39]. Considering the system studied in this work, since
the noise ξn is independent of xn and pn, the fluctuations
will not affect the angles between expansion and contraction
directions in the tangent space, known as the angles between
Lyapunov vectors [40,41], but just the probability distributions
of variables.

To identify changes in the dynamics of the standard map
with noise, we divide the phase space of the map (1) for
K = 3.28 and K = 4.23 in a grid with 103 × 103 points. Each
point is an initial condition [x0,p0]. For trajectories starting at
each combination of [x0,p0], the largest LE λ1 was determined
using 2 × 106 time iterations and is codified by a gradient
of colors in Fig. 5 (see the color bar). Clearly, we observe
that initial conditions inside the regular islands have λ1 ∼ 0.0
(yellow points), with exception the unstable point in Fig. 5(b)
with small positive values of λ1 (red points). Initial conditions
related to the chaotic trajectory have larger values of λ1 (blue
and cyan points).

FIG. 6. The largest LE λ1 for the map (1) with K = 3.28 [(a)–(i)], codified by the same gradient color used in Fig. 5(a), and K = 4.23
[(j)–(r)], codified by the same gradient color used in Fig. 5(b). The first line was obtained using the Gaussian noise, the second line using
uniform noise, and the third line using the PLC noise. The value of D for each case is indicated above the correspondent column.
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FIG. 7. Percentage of the phase-space occupied area A(%) as a function of time for the three distributions and [(a)–(c)] K = 3.28 and
[(d)–(f)] K = 4.23 for some values of D. The inset of each case shows the region visited by the trajectory. Blue points represent the visited
region for D = 0, blue + yellow points represent the area visited for D = 10−5, and blue + yellow + red is the region visited by the trajectory
for D = 10−1, all cases after 108 time iterations.

If a perturbed trajectory x(p) is considered, as the intensityD

of noise increases, then sensitive changes can be observed in the
value of λ1 that are displayed in Figs. 6(a)–6(i) for K = 3.28
and 6(j)–6(r) for K = 4.23, using the Gaussian noise on the
first line, uniform noise on the second line, and the PLC noise
on the third. The first observation is that by increasing the
values of D the islands are penetrated and destroyed in all
cases. For D = 10−1 [Figs. 6(c), 6(f) and 6(i) for K = 3.28
and 6(l), 6(o), and 6(r) for K = 4.23], the phase space becomes
totally chaotic and the same value of λ1 is obtained for all
initial conditions. In other words, the phase space becomes
ergodic-like and exponential decays are expected for the RTS
curves, as observed in Sec. IV. The relevant point here is to
analyze how the dynamics became ergodic-like using distinct
distributions. The Gaussian distribution does not considerably
affects the trajectory for small values of D when compared to
the other distributions. This becomes evident when comparing
the yellow region (or red) from Figs. 6(a), 6(d) and 6(g) [the
same for 6(j), 6(m), and 6(p)] that display the case D = 10−5

for the Gaussian, uniform, and PLC noise, respectively. The
amount of yellow (red) points is larger (smaller) in Figs. 6(a)
and 6(j). Besides, it is interesting to observe that when trajec-
tories penetrate the islands due to noise, they tend to stay close
to hyperbolic points from the tori transforming the dynamics
more unstable (yellow → red).

Looking at the case D = 10−3, Figs. 6(b), 6(e) and 6(h)
for K = 3.28 and 6(k), 6(n), and 6(q) for K = 4.23, it is
possible to note that there are no more initial conditions that
lead to stable trajectories (yellow points). Using the uniform
distribution [Figs. 6(e) and 6(n)] higher values λ1 (� 0.5) are
obtained inside the regular islands from the noiseless case. In
addition, looking at the case K = 4.23, an important result
is the fast increasing of λ1 for initial conditions around the
central point, while for the stable case K = 3.28 the nearby
of the central point is kept regular for reasonable values
of D.

To finish this section, we would like to mention that for
the ergodic-like case D = 10−1, already discussed above,
the values of λ1 are smaller than those obtained for the
chaotic trajectory from D = 0, which is represented as cyan.
In other words, instead of increasing the values of λ1 from
the chaotic trajectory, the random distributions allow the
total penetration inside the islands and traces of the regu-
lar motion are still visible in the asymptotic values of λ1.
Thus, the phase space of the ergodic-like case, which has
an exponential decay of the RTS and is totally chaotic, still
is influenced by some properties of the destroyed islands.
This is true for correlated and uncorrelated distributions and
independent of the presence of the stable or unstable central
point.
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VI. PHASE-SPACE OCCUPATION

The last analysis presented in this work is the occupation
rate of the phase space as the intensityD increases. In Fig. 7, the
percentage of visited area A(%) of the phase space is displayed
as function of the number of iterations n for some values of
D. Using D = 10−1 it is possible to access 100% of the phase
space after n ≈ 7 × 106 time iterations for any distribution (see
the red curves in all panels of Fig. 7).

For D = 10−3 the whole phase space is occupied
just for K = 4.23 [Fig. 7(d)–7(f)], while for K = 3.28
[Figs. 7(a)–7(c)] it is possible only when the uniform dis-
tribution is used, and the whole phase space is visited after
n ≈ 2.8 × 107 iterations [see the green curve in Fig. 7(b)].
In this case, the abrupt increases of A(%) means that the
penetration inside the island is also almost abrupt and not
asymptotic.

When the cases D = 0 and D = 10−5 are compared, small
differences are observed and we need to look at the insets that
display the visited area of the phase space for different values of
D. In all insets, blue points represent the region visited by the
trajectory for D = 0 and blue + yellow points represent the
region visited for D = 10−5, both cases after 108 iterations.
Therefore the case D = 10−5 allows trajectories to access the
high-order resonances located around the main torus, what is
prohibited for D = 0, resulting in a small difference between
the area occupied in each case. For some intervals of time the
trajectory can be trapped in these small island and the visited
area for D = 10−5 (yellow curves) can be smaller than the case
D = 0 (blue curves), as we can see in Figs. 7(d) for n ≈ 1.6 ×
106 and 7(f) for n ≈ 1.8 × 107. It is important to emphasize
that these results are obtained using the initial condition x0 =
0.159146, p0 = −0.470110, localized in the chaotic sea. If
other values are used, then the curves may changed slightly
but the main conclusions remain unaltered.

VII. CONCLUSIONS

To summarize, we study the effects of perturbing the
standard map randomly using an additive variable ξn that can
follow a Gaussian, a uniform, and a PLC distribution. This last
one was generated using the deterministic standard map with
mixed dynamics. For all distributions, the RTS demonstrates
that sticky motion is enhanced for small values of the noise
intensity, namely 10−5 � D � 10−4. The power-law exponent
characterizing this decay is ε = 0.65. Here the noise tends
to increase hyperbolic points from the rational tori from the

noiseless case. For intermediate values, 10−3 � D � 10−2,
power-law decays with the same ε are observed for earlier
times but followed asymptotically by exponential decays. This
reflects the fact that larger noise intensities allow an earlier
penetration of the island and the time correlation decays faster,
i.e., the system becomes ergodic-like for earlier times when
compared to smaller noise intensities.

For D = 10−1, all (with one exception) RTS curves decay
exponentially and an ergodic-like motion is expected. How-
ever, the largest Lyapunov exponent is smaller when compared
to the Lyapunov exponent from the noiseless case. This means
that reminiscent of the sticky motion due to the destroyed
islands is still affecting the chaotic dynamics. The mentioned
exception occurs when a PLC noise is used and K = 3.28. In
this case we found an algebraic decay with β = 2.0, which
represents a superdiffusive motion through the island. In fact,
with these results it is pretty clear that the most relevant quantity
to allow penetration of the island is the standard deviation of
the distributions.

Another issue considered in this work was the stability
condition for the central point of the phase space. To compare
the two possible conditions we study the influence of noise on
the standard map for two different values for the nonlinearity
parameter: K = 3.28, for which the central point is stable,
and K = 4.23, for which the central point is unstable. The
RTS curves from the Sec. IV demonstrate that, in the presence
of noise, the two cases behave similarly but the transition to
stochasticity, when increasing D, is faster for the unstable case.

To finish, we would like to relate our results to higher-
dimensional systems. Noise can be interpreted as the net effect
of extra dimensions. If the dynamics of the extra dimensions
is chaotic, then the Gaussian distribution is a nice description
of such dynamics. If the dynamics of the extra dimensions
behaves like a conservative system with mixed phase space,
then the PLC distribution should be adequate to describe the
net effect. In this context, the global structure of regular tori in
a generic 4D symplectic map was analyzed [42] and, recently,
the decay of RTS was studied to give a nice explanation about
the island penetration through one extra dimension [26].
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