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We discuss how to understand the dynamical process of Kuznetsov-Ma breather, based on some basic physical
mechanisms. It is shown that the dynamical process of Kuznetsov-Ma breather involves at least two distinctive
mechanisms: modulational instability and the interference effects between a bright soliton and a plane-wave
background. Our analysis indicates that modulational instability plays dominant roles in the mechanism of
Kuznetsov-Ma breather admitting weak perturbations, and the interference effect plays a dominant role for
the Kuznetsov-Ma breather admitting strong perturbations. For intermediate cases, the two mechanisms are both
greatly involved. These characters provide a possible way to understand the evolution of strong perturbations on
a plane-wave background.
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I. INTRODUCTION

Recently, localized waves on plane-wave background
(PWB) became intense since their dynamics is related with
freak wave, mainly including Akhmediev breather (AB) [1],
Peregrine rogue wave (RW) [2], and Kuznetsov-Ma breather
(KMB) [3]. They have been excited in real nonlinear systems,
such as optical laser field in fiber [4–6], and water wave tank
[7]. The underlying mechanism of their dynamics has been
paid much attention after investigating their dynamics through
deriving analytical solutions. The mechanism mainly refers to
how to understand the dynamical process of these localized
waves in simple ways, based on some general physical prop-
erties. Modulational instability (MI), which is associated with
the growth of weak perturbations on a PWB, has been seen as a
mechanism of RWs and ABs [5]. Furthermore, baseband MI or
MI with resonant perturbations is found to play an essential role
in RW excitations [8–10], and much attention has been paid to
the general nature of the nonlinear stage of MI and many efforts
have been made to understand MI more systematically [11,12].
Furthermore, the underlying mechanisms for forming different
spatial-temporal structures of fundamental RWs or ABs were
uncovered very recently [13]. All these studies further deepen
our understanding on RW and AB dynamics greatly. However,
MI cannot explain the dynamical process of KMB well, partly
because MI usually fails to explain the evolution of strong
perturbations on a PWB [14]. Meanwhile, it should be noted
that nonlinear MI has been proposed to predict and explain the
evolution of strong localized perturbations with a continuous
inverse scattering spectrum [11,15]. We mainly focus on how
to understand the dynamical process of KMB, based on some
general physical mechanisms.

KMB is generally a nonlinear superposition of a bright
soliton (BS) and a PWB, since the bright soliton related term
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depends on the plane-wave term. Interestingly, it can be written
in a linear superposition form of them at some special moments.
Therefore the BS term could be seen as a “perturbation” term
on the PWB. When the BS’s amplitude is much smaller than the
background’s, the KMB’s dynamics can be explained well by
MI [10]. In a limit case, the soliton’s amplitude tends to be zero,
and KMB will tend to a RW. These cases for weak perturbations
are surely explained well by linear stability analysis on a plane-
wave background. However, the soliton’s amplitude can be
much larger than the background’s for KMB, which makes the
linear stability analysis usually not hold anymore. Moreover,
we demonstrated that breathers could exist in the modulational
stability (MS) regime which could not be reduced to RW
anymore [16], and antidark soliton was reported to exist in the
MI regime with some fourth-order effects [17]. These striking
localized waves cannot be explained by MI. We would like
to explain the mechanism of KMB to provide a reasonable
understanding of them, since these localized waves are all
related with KMB excitation.

In this paper, we discuss how to understand the dynamical
process of KMB, based on some general physical mechanisms.
An approximation form is introduced to describe the interfer-
ence effects, which is one of the fundamental properties in
both classical wave and quantum theory. The analysis results
suggest that the dynamical process of KMB involves at least
two distinctive mechanisms: MI and interference effects. Since
the two mechanisms can be used to explain the dynamical
characters of KMB well, they are seen as the mechanism of
KMB. The interference effects are between a bright soliton and
plane wave. For KMB admitting weak perturbation cases, the
oscillation period can be explained by nonlinear interference
effects, and the amplitude oscillation can be understood well
by MI. For KMB admitting strong perturbation, the oscillation
period and amplitude oscillation can both be explained by
linear interference effects. The weak and strong perturbations
are clarified by the ratio p/s � 1 and p/s � 1, respectively
(p and s denote BS amplitude and PWB amplitude). For
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FIG. 1. A qualitative description on the mechanisms of KMB. MI
plays a dominant role for KMB admitting weak perturbations, and
the interference effects (IE) play a dominant role for KMB admitting
strong perturbations. The weak and strong perturbations are clarified
by the ratio p/s � 1 and p/s � 1, respectively (p and s denote
perturbation amplitude and background amplitude, respectively). For
intermediate cases (p is comparable with s), it is expected that the
two mechanisms are both greatly involved. For the weak perturbation
case and intermediate cases, the breathing period can be explained
well by nonlinear interference effects.

intermediate cases, it is expected that the two mechanisms
are both greatly involved. These understandings on the KMB
mechanism are summarized in Fig. 1. Additionally, the inter-
ference effects can also be used to explain the antidark soliton
in the MI regime and breather excitation in the MS regime
reported previously [16,17].

II. ANALYSIS ON KUZNETSOV-MA BREATHER

For simplicity and without losing generality, we would
like to begin with a generalized KMB solution which has
been given widely for the well-known nonlinear Schrödinger
equation i�t + 1

2�xx + |�|2� = 0. Similar discussion can
be extended conveniently to KMB like a breather in other
nonlinear systems. Its explicit form can be written as follows:

� =
[
s − 2(b2 − s2) cos(ξ t) + iξ sin(ξ t)

b cosh(2x
√

b2 − s2) − s cos(ξ t)

]
eis2t , (1)

where ξ = 2b
√

b2 − s2. The parameter b >= s determines
the initial nonlinear localized wave’s shape, and s is the
background amplitude for localized waves. It should be noted
that the solution mainly has two terms. The first term is a PWB,
and the other term corresponds to a BS related term. Since
the second term depends on the PWB generally, the KMB
is a nonlinear superposition of BS and PWB. However, for
t = π+2nπ

4b
√

b2−s2 (n is an integer), the KMB can be written as

� = seiφ − i2
√

b2 − s2 sech(2
√

b2 − s2x)eiφ, (2)

where φ = s2 π

4b
√

b2−s2 . This can be seen as a linear superpo-

sition of a PWB and a BS. The BS’s amplitude is 2
√

b2 − s2,
which can be varied conveniently to investigate the evolution of
strong perturbations on PWB. If the soliton amplitude is much

smaller than the PWB amplitude, the BS term can be seen as the
perturbation term fpert in the typical linear instability analysis
on a PWB. This idea has been used to clarify the relations
between MI and several nonlinear excitations [10]. When the
amplitude of soliton perturbation tends to be zero, the KMB
dynamical process tends to be a RW which admits rational
amplification form [4–6]. Fourier analysis of the localized
perturbation suggests that both RW and KMB admit a dominant
wave vector at resonant one with the background [10,14] (the
wave vector is called according to the spatial coordinate x).
The MI analysis predicts the perturbations with resonant wave
vector admit rational amplification form, namely, 1 + i2s2t .
Therefore, the amplification of KMB admitting weak soliton
perturbations can be explained well by MI. However, when
the soliton’s amplitude is comparable with the background’s,
the linear stability does not hold anymore. For example, we
demonstrated that breathers could exist in the MS regime which
could not be reduced to RW anymore [16], and antidark soliton
was reported to exist in the MI regime with some fourth-order
effects [17]. The antidark soliton’s existence indicates that
strong perturbations are possible to be stable in the MI regime.
The breather demonstrates striking oscillation characters in the
MS regime. These localized waves’ dynamical process cannot
be explained at all, based on the MI mechanism. Therefore,
we mainly try to find a possible way to understand these cases
with strong perturbations in the following sections.

We can see that even for the nonlinear superposition form,
KMB tends to be a linear superposition form when the soliton
amplitude is much larger than the background amplitude. This
provides us with a hint to understand the dynamics of soliton-
type perturbations with large amplitudes on a plane-wave
background. We therefore introduce a linear superposition
form of a BS with a generic form and a PWB according to
the above linear form:

� ′ = seis2t − ip sech(px)eip2t/2, (3)

where p is the soliton amplitude and it corresponds to the
amplitude 2

√
b2 − s2 of the soliton perturbation term in

the KMB solution. This can be seen as an approximation
solution for strong BS type perturbations on a PWB. Since
the linear coherent form of a soliton and a plane wave
describes the well-known interference effects in both classical
wave motion theory and quantum mechanics, the evolution of
� ′ can be understood well by interference effects between
BS and PWB. In physical studies or theory, it is usual to
explain one dynamical process from other much simpler and
more general descriptions. Therefore, the linear interference
effects, as an approximation solution, can be used to explain
the oscillation of strong localized perturbations on a PWB.
This way of understanding is similar to that of MI, as an
approximation solution is used to explain the amplification
of weak perturbations on a PWB. The linear superposition
form is called linear interference effect in the following text.
Moreover, it should be noted the linear superposition form
does not hold anymore for the weak perturbation case and
intermediate cases (for which perturbation amplitude p is
comparable with the background amplitude s). In these cases,
the superposition form is a nonlinear superposition form. The
nonlinear superposition form can be used to describe the
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nonlinear interference process [18], and the dominant energy of
perturbations should be used to analyze the interference period
[10]. In the following, we show that the interference effects can
be used to explain the dynamical process of KMB with strong
perturbations well.

III. A DISCUSSION ON THE MECHANISM
OF KUZNETSOV-MA BREATHER

We would like to explain the dynamical process of KMB
from two aspects, which involve the soliton oscillation am-
plitude and the oscillation period, respectively. We calculate
the maximum density value of KMB is Pmax = (s + 2b)2,
and the minimum density value is Pmin = (s − 2b)2. To de-
scribe the oscillation amplitude with no singularity, we define
a parameter η = |Pmin−s2|

Pmax−s2 to describe the breather’s amplitude

oscillation. The period of breathing is T = 2π

2b
√

b2−s2 . Then,
we calculate the maximum density value of the introduced
linear form � ′ is P ′

max = (s + p)2, and the minimum density
value is P ′

min = (s − p)2. Then the characterization parameter

η′ = |P ′
min−s2|

P ′
max−s2 describes the breather’s amplitude oscillation

for linear interference effects between BS and PWB. The
period of breathing is T ′ = 2π

|p2/2−s2| . Based on these defined
parameters, we can compare the characters of KMB with the
linear interference form in two aspects, to understand the
dynamical process of KMB. Good agreement between them
means that interference effects can be used to explain the
dynamical process of KMB, and it can be seen as a mech-
anism of KMB. This point is similar to that MI has been
seen as a mechanism of rogue wave and the Akhmediev
breather [5,10,13].

Firstly, we investigate the amplitude oscillation behavior of
the two forms through plotting the defined parameters η and
η′. From the expressions of them, we can see that the ratio
of BS amplitude p and PWB amplitude s plays an essential
role for determining whether the soliton perturbation strength
is weak or strong. Therefore, we plot the defined parameters
η and η′ vs the ratio p/s in Fig. 2. It is shown that the linear
interference effects described line is quite different from the
one described by KMB, for weak perturbations [p/s � 1)].
Namely, the amplitude amplification is much larger than the
value expected by interference effects. The large amplification
is surely induced by MI as AB and RW. But they agree
with each other perfectly for strong perturbations (p/s �
1). Secondly, we show the relations between the oscillation
period and the ratio p/s in Fig. 3. We can see that the
linear interference effect can still describe the period of KMB
with strong perturbations. But the linear interference effect
fails to explain the dynamical characters for KMB with weak
perturbations and intermediate cases (perturbation amplitude
p is comparable with background amplitude s).

These suggest that the dynamics of KMBs with strong
perturbations can be understood by linear interference effects
between BS and PWB. To support this point, we plot the evolu-
tion dynamics of KMB and the linear superposition form with
an identical large ratio value p/s in Fig. 4. The two dynamics
indeed agree with each other perfectly for strong perturbation
cases. The linear interference form describes the dynamics of

FIG. 2. The oscillation amplitude characterization parameter η

vs p/s (the ratio of perturbation soliton amplitude and background
amplitude). The solid red line and blue dashed line correspond to the
results of KMB and the linear interference case, respectively. It is
shown that the amplitude oscillation behavior of KMB does not agree
with linear interference effects for weak soliton perturbations and the
intermediate cases, but the behavior agrees perfectly with the predic-
tion of linear interference effects for strong soliton perturbations.

KMB better with stronger BS type perturbations. For weak
perturbations, the linear interference effects fail to explain
the KMB dynamics. These cases can be understood well by
linear stability analysis. The amplifications of perturbations
are described well by the MI mechanism. But the MI fails to
explain the oscillation period of KMB. The oscillation period
can be understood from nonlinear interference effects between
PWB and a weak perturbation. The nonlinear interference
effects refer to the nonlinear superposition form of a plane wave
and soliton type perturbation. In the nonlinear case, the period

FIG. 3. The oscillation period T vs p/s (the ratio of perturbation
soliton amplitude and background amplitude). The solid red line and
blue dashed line correspond to the results of KMB and the linear
interference case, respectively. It is shown that the amplitude oscilla-
tion behavior of KMB does not agree with linear interference effects
for weak soliton perturbations and the intermediate cases, but the
behavior agrees perfectly with the prediction of linear interference
effects for strong soliton perturbations.

022218-3



LI-CHEN ZHAO, LIMING LING, AND ZHAN-YING YANG PHYSICAL REVIEW E 97, 022218 (2018)

FIG. 4. The evolution of KMB (a) and the linear interference form
(b) with an identical strong perturbation strength p/s = 4

√
6. It is

shown that their evolution processes agree well for large perturbation
soliton amplitude, which indicates the linear interference effect can
be used to explain the dynamical process of KMB with strong
perturbation cases. The plane-wave background amplitude is s = 1.

is determined by the evolution energy difference between the
background and the perturbation’s dominant energy [10]. In
this way, the oscillation period can be estimated to be identical
with the precise one of the KMB solution. This is helpful to
understand the recent discussion on the spectral stability of
rogue wave based on Floquet analysis of KMB [19].

In fact, the MI or linear interference effect alone cannot
explain the dynamical process of KMB for which the per-
turbation amplitude p is comparable with the background
amplitude s. This can be seen from the results in Figs. 2
and 3. MI can be used to understand the amplification of
amplitude, and interference effect can be used to explain the
temporal oscillation. But the breathing period does not agree
with the one calculated by linear interference form anymore,
since the linear superposition form does not hold in this case.
The period can be understood well with the aid of the nonlinear
interference effects (the dominant energy of perturbations is
also needed). Based on the above discussions, we summa-
rize the understanding on the dynamical process of KMB
in Fig. 1.

The interference effects can not only explain the dynamics
of the KMB with strong BS perturbation cases, but also can be
used to understand the antidark soliton and W-shaped soliton
with nonrational form obtained in a nonlinear Schrödinger
equation with some fourth-order effects [17]. The fourth-order
effects make the soliton excitation admit identical evolution
energy with the PWB, but these cases do not exist for the typical
nonlinear Schrödinger equation and Hirota equation [10,20].
Since they are reduced from a generic KMB, when the BS
term admits identical energy with the PWB, the oscillation
behavior will disappear and the breather will become an
antidark soliton or a W-shaped soliton. Moreover, soliton
excitation usually exists and RW or breather usually do not
exist in the MS regime. But the linear interference effect
would make breatherlike excitation exist in the MS regime,
such as the breather-II obtained in mixed coupled nonlinear
Schrödinger equations [16]. By the way, it should be noted
that the interference-induced breatherlike excitations in the
MS regime cannot reduce to be RW anymore, in contrast to the
breathers in the MI regime [4–6]. This is because the breather-II
is purely induced by the interference effects.

IV. CONCLUSION AND DISCUSSION

In summary, MI and interference effects can be used to
understand the dynamical process of KMB. MI plays a dom-
inant role for KMB admitting weak perturbations, and linear
interference effects play a dominant role for KMB admitting
strong perturbations. The weak and strong perturbations are
clarified by the ratio p/s � 1 and p/s � 1, respectively. For
intermediate cases, it is expected that the two mechanisms are
both greatly involved. Maybe it is still needed to develop some
proper ways to distinguish them or clarify the quantitative
effects of them on the KMB dynamics. The results here can
be extended to explain the dynamics of KMB and antidark
soliton in a three-wave resonant system [21], scalar nonlinear
Schrödinger equation with high-order effects [22–24], and
other types of nonlinear models [25–28].

An approximation form is introduced to describe the linear
interference effects. The reasonability of the introduced form
is supported directly by the fact that � with b tends to be
infinity will become the form � ′. However, it should be
emphasized that the localized perturbation form is chosen to
be a sech soliton type, but it is not a generic form as for
the Fourier perturbation modes in the linear stability analysis
case. Very recently, it was shown that many different localized
perturbations could evolve to be KMB in a microfabricated
optomechanical array [29]. Therefore, a more generic localized
form should be introduced to explain the evolution process of
strong perturbations better. Recently, many different types of
strong localized perturbations on plane-wave background were
discussed in detail, which demonstrated the evolutions process
involving KMBs with many different periods [11,15,30]. The
KMBs’ properties and numbers can be further evaluated by
calculating the inverse scattering technique eigenvalues with
the initial conditions, since all eigenvalues corresponding to
KMB and other nonlinear modes are contained in the initial
conditions [31,32]. If the inverse scattering eigenvalues with
the initial perturbations admit a continuous spectrum, the
evolution of perturbation was discussed in [11]. If the inverse
scattering eigenvalues with the initial perturbations admit
a discrete spectrum, the evolution of perturbations should
correspond to the cases discussed in [12,33]. Obviously, the
inverse scattering eigenvalues for the cases of soliton type
perturbations discussed here also admit the discrete spectrum
(the profile of soliton is not arbitrary for the discrete spectrum,
which is different from the sech-shaped ones discussed in [30]).
But this is a qualitative understanding on nonlinear MI. A
unified quantitative discussion is still needed.
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