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Exact relations between homoclinic and periodic orbit actions in chaotic systems
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Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum
rules. The interferences between terms are governed by the action functions and Maslov indices. In this article,
we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas
expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain
phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action
differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations
between periodic orbits, which results in an analytic expression for the action differences between long periodic
orbits and their shadowing decomposed orbits in the cycle expansion.
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I. INTRODUCTION

Phase-space-invariant structures, such as stable and unsta-
ble manifolds [1,2], play central roles in the characterization
of chaotic dynamical systems. The fundamental ingredients
of chaos [3], exponential compression and stretching, as
well as the folding and mixing of phase-space volumes, are
all characterized by stable and unstable manifolds and the
complicated patterns they form, namely homoclinic tangles
[4,5]. They govern various dynamical properties like phase-
space mixing [6,7], transport [8], and escape rates [9–13].
Intersections of stable and unstable manifolds give rise to
homoclinic and heteroclinic orbits [1], which have fixed past
and future asymptotes. Moreover, using regions bounded by
the stable and unstable manifolds as Markov partitions [14,15],
generic behaviors of homoclinic tangles give rise to Smale’s
horseshoe structures and symbolic dynamics [16,17], in which
the motions of points from nonwandering sets [2,3] under
successive mappings are topologically conjugate to a Bernoulli
shift on their symbolic strings [18–21].

Of particular interest to both classical and quantum chaos
theory are the unstable periodic orbits and homoclinic orbits
from a nonwandering set, which can be uniquely identified
from the symbolic strings of the horseshoe. For example,
classical sum rules over unstable periodic orbits describe
various entropies, Lyapunov exponents, escape rates, and
the uniformity principle [22]. In the semiclassical regime,
properties of such classical orbits are also extremely important.
A few cases are given by periodic [23–25] and closed orbit sum
rules [26–28] that determine quantal spectral properties, and
homoclinic (heteroclinic) orbit summations [29,30] generating
wave-packet propagation approximations. The interferences
in such semiclassical sum rules are almost exclusively gov-
erned by the orbits’ classical action functions and Maslov
indices [31–33], and thus this information takes on greater
importance in the context of the asymptotic properties of
quantum mechanics. Various resummation techniques have
been given to work with series which are often divergent in
nature [34–36]. Other studies exploring a fuller understanding
of the interferences have also been carried out [37–43]. In

semiclassical orbit summations, the classical action as a phase
factor is scaled by h̄. Therefore, small errors in the orbit
actions will be magnified and significantly compromise the
degree of accuracy of the spectral quantities. Because of
sensitive dependence on initial conditions, numerical methods
of calculating long orbits and their classical actions become
exponentially demanding with increasing periods, hinder-
ing the calculations of systems’ spectra on fine-resolution
scales.

There exist rather intimate relations between orbits in
chaotic systems, e.g., similarity of two symbolic strings implies
shadowing between the actual points in phase space; see,
for example, Ref. [44]. Thus, unstable periodic orbits are
always shadowed by homoclinic orbit segments possessing
the same symbolic codes. It turns out that periodic orbits
can be built up from different homoclinic orbit segments up
to any desired accuracy. Furthermore, using the MacKay-
Meiss-Percival action principle [45,46], exact and consider-
ably simpler approximate formulas can be derived, expressing
the periodic orbit actions in terms of the homoclinic actions,
which can be calculated in fast and stable ways [47]. The
exponential divergence problem in the numerical computations
of long periodic orbits can be avoided. The same formulas also
enable explicit studies of action relations between different
periodic orbits, which eventually lead to analytic expressions
of action differences between long periodic orbits and their
decomposed pseudo-orbits in the theory of cycle expansion
[35,48].

This paper is organized as follows: Section II reviews
the concepts related to the horseshoe-map symbolic dy-
namics and definitions of various kinds of generating func-
tions in Hamiltonian systems. Section III develops the the-
ory to express the classical actions of unstable periodic
orbits as differences between selected homoclinic orbits.
Section IV demonstrates an immediate application to deter-
mine the small action differences between periodic orbits
and their decomposed pseudo-orbits in the cycle expansion.
Section V summarizes the work and discusses possible future
research.
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FIG. 1. (Schematic) Example partial homoclinic tangle from
the Hénon map, which forms a complete horseshoe structure. The
unstable (stable) manifold of x is the solid (dashed) curve. There
are two primary homoclinic orbits {h0} and {g0}. R is the closed
region bounded by loop LUSUS[x,g−1,h0,g0]. Under forward iteration,
the vertical strips V0 and V1 (including the boundaries) from the upper
panel are mapped into the horizontal strips H0 and H1 in the lower
panel. At the same time, points in region E0 are mapped outsideR into
regionE1, never to return and escape to infinity. There is a Cantor set of
points in V0 and V1 that remain inside R for all iterations, which is the
nonwandering set � defined in Eq. (A2). The phase-space itineraries
of points in � in terms of V0 and V1 give rise to symbolic dynamics,
as described by Eq. (A3).

II. BASIS CONCEPTS AND DEFINITIONS

A. Symbolic dynamics and horseshoes

Let M be an analytic and area-preserving map on the
two-dimensional phase space (q,p), and x = (q,p) be a hy-
perbolic fixed point under M . Denote the unstable and stable
manifolds of x by U (x) and S(x), respectively. Typically,
U (x) and S(x) intersect infinitely many times and form a
complicated pattern called a homoclinic tangle [1,4,5]. The
notation U [x1,x2] is introduced to denote the finite segment of
U (x) extending from x1 to x2, both of which are points on U (x),
and similarly for S(x). It is well known that Markov generating
partitions to the phase space [14,15] can be constructed that use
segments on U (x) and S(x) as boundaries, which are used to
assign symbolic dynamics [18–21] as phase-space itineraries
of trajectories under the mapping. Assume the system is highly
chaotic and the homoclinic tangle forms a complete horseshoe,
part of which is shown in Fig. 1, as this is generic to a significant
class of dynamical systems. In such scenarios, the Markov

partition is a simple set of two regions [V0,V1], as shown in
Fig. 1. Each phase-space point z0 that never escapes to infinity
can be put into an one-to-one correspondence with a bi-infinite
symbolic string

z0 ⇒ . . . s−2s−1.s0s1s2 . . . (1)

where each digit sn in the symbol denotes the region that
Mn(z0) lies in: Mn(z0) = zn ∈ Vsn

, sn ∈ {0,1}. In that sense,
the symbolic code gives an “itinerary” of z0 under successive
forward and backward iterations, in terms of the regions V0

and V1 in which each iteration lies. Throughout this paper, we
use the area-preserving Hénon map [Eq. (A1)] with parameter
a = 10 for illustration. This parameter is well beyond the first
tangency, thus giving rise to a complete horseshoe-shaped
homoclinic tangle with highly chaotic dynamics. It serves as a
simple paradigm since the symbolic dynamics permits all pos-
sible combinations of binary codes, and no “pruning” [49,50]
is needed. However, the results derived ahead mostly carry
over into more complicated systems possessing incomplete
horseshoes, or systems with more than binary symbolic codes,
though more work is needed to address such systems. Refer to
Appendix A for more details on the construction of the Markov
generating partition and symbolic dynamics.

The intersections between S(x) and U (x) give rise to homo-
clinic orbits, which are asymptotic to x under both M±∞. From
the infinite families of homoclinic orbits, two special ones {h0}
and {g0} can be identified as primary homoclinic orbits, in the
sense that they have the simplest phase-space excursions (the
set {h0} includes the point h0 and all its iterations forward
and backward in time). The segments S[x,h0] and U [x,h0]
intersect only at h0 and x. The same is true for all its orbit
points hi ; this holds for {g0} as well. There are only two primary
orbits for the horseshoe, but possibly more for systems with
more complicated homoclinic tangles.

The orbit of z0, denoted by {z0}, is the infinite collection of
all Mn(z0):

{z0} = {M−∞(z0), . . . ,M−1(z0),z0,M(z0), . . . ,M∞(z0)}
= {z−∞, . . . ,z−1,z0,z1, . . . ,z∞},

where zn = Mn(z0) for all n. Points along the same orbit
have the same symbolic strings but shifting decimal points.
Therefore, an orbit can be represented by the symbolic string
without the decimal point.

Under the symbolic dynamics, a period-T point y0, where
MT (y0) = y0, can always be associated with a symbolic string
with infinite repetitions of a substring with length T :

y0 ⇒ . . . s0s1 . . . sT −1.s0s1 . . . sT −1 · · · = γ .γ , (2)

where γ = s0 . . . sT −1 is the finite substring and γ .γ denotes its
infinite repetition (on both sides of the decimal point). Notice
that the cyclic permutations of s0 . . . sT −1 can be associated
with the successive mappings of y0, generating a one-to-one
mapping to the set of points on the orbit. Since an orbit can
be represented by any point on it, the position of the decimal
point does not matter; therefore we denote the periodic orbit
{y0} as

{y0} ⇒ γ (3)
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with the decimal point removed. Similarly, the finite length-
T orbit segment [y0,y1, . . . ,yT −1], which composes one full
period, is denoted

[y0,y1, . . . ,yT −1] ⇒ γ (4)

with the overhead bar removed, as compared to Eq. (3). Any
cyclic permutation of γ refers to the same periodic orbit.

A primitive periodic orbit is a periodic orbit that cannot
be written into repetitions of any shorter periodic orbits.
Correspondingly, its symbolic string cannot be written into
repetitions of any of its shorter substrings. For example,
110110 is not a primitive periodic orbit, since it is just the
twice-mapped primitive periodic orbit 110 .

The hyperbolic fixed point has the simplest symbolic code
x ⇒ 0.0, and its orbit {x} ⇒ 0 correspondingly. A homoclinic
point h0 of x has symbolic code of the form [51]

h0 ⇒ 01s−m . . . s−1.s0s1 . . . sn10 (5)

where the 0 on both ends means the orbit approaches the fixed
point (therefore stays in V0) under both M±∞. Similar to the
periodic orbit case, the homoclinic orbit can be represented as

{h0} ⇒ 01s−m . . . s−1s0s1 . . . sn10 (6)

with the decimal point removed, as compared to Eq. (5).
Of particular interest, the primary homoclinic points g0 and

h0 in Fig. 1 have symbolic codes 01.0 and 01.10, respectively.
Their forward iterations g1 and h1 have codes 010.0 and 011.0,
respectively, which correspond to a shift of the decimal points
for one step toward the right side. The orbits {g0} and {h0} are
represented by

{g0} ⇒ 010,

{h0} ⇒ 0110; (7)

note that they have the simplest possible codes among all
homoclinic orbits. For example, the nonprimary orbits {g′

0} and
{h′

0} from Fig. 1 have codes 01010 and 01110, respectively.

B. Generating function and classical action

For any phase-space point zn = (qn,pn) and its image
M(zn) = zn+1 = (qn+1,pn+1), the mapping M can be viewed
as a canonical transformation that maps zn to zn+1 while
preserving the symplectic area, therefore a generating (action)
function F (qn,qn+1) can be associated with this process such
that [45,46]

pn = −∂F/∂qn,

pn+1 = ∂F/∂qn+1.
(8)

Despite the fact that F is a function of qn and qn+1, it is
convenient to denote it as F (zn,zn+1). This should cause no
confusion as long as it is kept in mind that it is the q variables
of zn and zn+1 that go into the expression of F . The compound
mapping Mk , which maps zn to zn+k , then has the generating
function

F (zn,zn+k) ≡
n+k−1∑

i=n

F (zi,zi+1), (9)

which, strictly speaking, is a function of qn and qn+k .

For periodic orbits {y0} ⇒ γ with primitive period T , the
primitive period classical action Fγ of the orbit is

Fγ ≡
T −1∑
i=0

F (yi,yi+1). (10)

Fγ is just the generating function that maps a point along the
orbit for one primitive period. For the special case of the fixed
point x, Eq. (10) reduces to

F0 = F (x,x), (11)

where F (x,x) is the generating function that maps x into itself
in one iteration.

For nonperiodic orbits {h0}, the classical action is the sum
of the generating functions over infinite successive mappings

F{h0} ≡ lim
N→∞

N−1∑
i=−N

F (hi,hi+1) = lim
N→∞

F (h−N,hN ) (12)

and is divergent in general. However, the MacKay-Meiss-
Percival action principle [45,46] can be applied to obtain
well-defined action differences for particular pairs of orbits.
An important and simple case is the relative action �F{h0}{x}
between a fixed point x and its homoclinic orbit {h0}, where
h±∞ → x:

�F{h0}{x} ≡ lim
N→∞

N−1∑
i=−N

[F (hi,hi+1) − F (x,x)]

=
∫

U [x,h0]
pdq +

∫
S[h0,x]

pdq =
∮

US[x,h0]
pdq

= A◦
US[x,h0], (13)

where U [x,h0] is the segment of the unstable manifold from
x to h0, and S[h0,x] is the segment of the stable manifold
from h0 to x. The ◦ superscript on the last line indicates that
the area is interior to a path that forms a closed loop, and the
subscript indicates the path: US[x,h0] = U [x,h0] + S[h0,x].
As usual, clockwise enclosure of an area is positive and coun-
terclockwise is negative. �F{h0}{x} gives the action difference
between the homoclinic orbit segment [h−N, . . . ,hN ] and the
length-(2N + 1) fixed point orbit segment [x, . . . ,x] in the
limit N → ∞. In later sections, upon specifying the symbolic
code of the homoclinic orbit {h0} ⇒ 0γ 0, we also denote
�F{h0}{x} alternatively as

�F{h0}{x} = �F0γ 0,0 (14)

by replacing the orbits in the subscript with their symbolic
codes.

Likewise, a second important case is for the relative action
between a pair of homoclinic orbits {h′

0} ⇒ 0γ ′0 and {h0} ⇒
0γ 0, which results in

�F{h′
0}{h0} ≡ lim

N→∞

N−1∑
i=−N

[F (h′
i ,h

′
i+1) − F (hi,hi+1)]

= lim
N→∞

[F (h′
−N,h′

N ) − F (h−N,hN )]

=
∫

U [h0,h
′
0]

pdq +
∫

S[h′
0,h0]

pdq = A◦
US[h0,h

′
0]

= �F0γ ′0,0γ 0, (15)
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where U [h0,h
′
0] is the segment of the unstable manifold from

h0 to h′
0, and S[h′

0,h0] is the segment of the stable manifold
from h′

0 to h0. Because the endpoints approach x forward and
backward in time, one can also write

�F{h′
0}{h0} = lim

N→∞
[F (h′

−(N+n),h
′
N+m) − F (h−N,hN )]

−(n + m)F0 , (16)

which is useful ahead.

III. ACTION FORMULAS

In highly chaotic systems, the computation of long orbits
is always a daunting task due to exponential divergence on
initial error. On the contrary, invariant structures such as the
stable and unstable manifolds, along with homoclinic orbits,
can be calculated in rather stable ways with high precision
[47]. It is thus desirable to extract information about periodic
orbits (which are unstable to calculate) from the knowledge of
homoclinic orbits (which are stable to calculate). In a previous
work [52], the geometric relations between the homoclinic
orbits and periodic orbits were given using Moser invariant
curves [38,53–55]. In this section, we generalize our previous
results, remove the dependence on auxiliary structures such
as the Moser invariant curves, and derive both exact and
approximate formulas to express the periodic orbit action in
terms of the homoclinic orbit actions and phase space areas.
Detailed numerical verifications are given to demonstrate the
accuracy of the procedure.

A. Exact periodic orbit and homoclinic orbit
action differences

Consider an arbitrary unstable periodic orbit {y0} ⇒ γ for
which nγ is the primitive period. The basic idea is to con-
sider the action difference of two auxiliary homoclinic orbits
{h(γ γ )

0 } ⇒ 0γ γ 0 and {h(γ )
0 } ⇒ 0γ 0, and generate its relation

to the periodic orbit action Fγ . To fix the procedure, split the
string γ into two substrings: γ = γ −γ +. Let the lengths of γ −
and γ + be n− and n+, respectively, where n− + n+ = nγ . The
splitting can be done arbitrarily, but without loss of generality
assume the split is in the middle. If nγ is even, n± = 1

2nγ ; and
for cases in which nγ is odd, let n− = n+ − 1. Let the zero
subscript periodic orbit point be y0 = ynγ

⇒ γ +γ −.γ +γ −,
and the zero subscript homoclinic points be

h
(γ )
0 ⇒ 0γ −.γ +0,

h
(γ γ )
0 ⇒ 0γ.γ 0 = 0γ −γ +.γ −γ +0, (17)

from which it follows that

h
(γ γ )
−n+ ⇒ 0γ −.γ +γ −γ +0,

h
(γ γ )
n− ⇒ 0γ −γ +γ −.γ +0, (18)

and h
(γ )
±∞ = h

(γ γ )
±∞ = x. With the help of Eq (16), the ac-

tion difference of the two auxiliary homoclinic orbits is

given by

�F0γ γ 0,0γ 0

= lim
N→∞

[
F

(
h

(γ γ )
−(N+n+),h

(γ γ )
N+n−

) − F
(
h

(γ )
−N,h

(γ )
N

)] − nγF0

= lim
N→∞

[
F

(
h

(γ γ )
−(N+n+),h

(γ γ )
−n+

) − F
(
h

(γ )
−N,h

(γ )
0

)]
+ lim

N→∞
[
F

(
h

(γ γ )
n− ,h

(γ γ )
N+n−

) − F
(
h

(γ )
0 ,h

(γ )
N

)]
+F

(
h

(γ γ )
−n+ ,h

(γ γ )
n−

) − nγF0, (19)

where we have cut F (h(γ γ )
−(N+n+),h

(γ γ )
N+n− ) into three parts,

F (h(γ γ )
−(N+n+),h

(γ γ )
−n+ ), F (h(γ γ )

−n+ ,h
(γ γ )
n− ), and F (h(γ γ )

n− ,h
(γ γ )
N+n− ), that

correspond to the initial, middle, and final parts of {h(γ γ )
0 },

respectively. Similarly, F (h(γ )
−N,h

(γ )
N ) is cut into two parts,

F (h(γ )
−N,h

(γ )
0 ) and F (h(γ )

0 ,h
(γ )
N ), corresponding to the initial and

final parts of {h(γ )
0 }, respectively. The choice of the divisions

is motivated by the shadowing implied by the similarities of
symbolic strings.

The derivation of the action difference of Fγ and
�F0γ γ 0,0γ 0 proceeds by applying the MacKay-Meiss-Percival
action principle, Eq. (B1), separately to the three action
difference terms

Fγ − �F0γ γ 0,0γ 0

= lim
N→∞

[
F

(
h

(γ )
−N,h

(γ )
0

) − F
(
h

(γ γ )
−(N+n+),h

(γ γ )
−n+

)]
+ lim

N→∞
[
F

(
h

(γ )
0 ,h

(γ )
N

) − F
(
h

(γ γ )
n− ,h

(γ γ )
N+n−

)]
+ [

Fγ − F
(
h

(γ γ )
−n+ ,h

(γ γ )
n−

)] + nγF0 (20)

and adding their contributions. The end result reduces to a
specific phase-space area.

The first term in Eq. (20) is the difference between the initial
parts of the two auxiliary homoclinic orbits. Let the points
a and b of Eq. (B1) be h

(γ γ )
−(N+n+) and h

(γ )
−N , respectively, and

let the curve c of Eq. (B1) be the unstable manifold segment
U [h(γ γ )

−(N+n+), h
(γ )
−N ]. After N iterations, c = U [h(γ γ )

−(N+n+), h
(γ )
−N ]

is mapped to c′ = U [h(γ γ )
−n+ , h

(γ )
0 ], and this leads to

lim
N→∞

[
F

(
h

(γ )
−N, h

(γ )
0

) − F
(
h

(γ γ )
−(N+n+), h

(γ γ )
−n+

)]
=

∫
U [h(γ γ )

−n+ ,h
(γ )
0 ]

pdq − lim
N→∞

∫
U [h(γ γ )

−(N+n+)
,h

(γ )
−N ]

pdq

=
∫

U [h(γ γ )
−n+ ,h

(γ )
0 ]

pdq. (21)

Similarly, the second term is the action difference between the
final parts of the two auxiliary homoclinic orbits. By the same
logic with a = h

(γ γ )
n− , b = h

(γ )
0 , and c = S[h(γ γ )

n− , h
(γ )
0 ],

lim
N→∞

[
F

(
h

(γ )
0 , h

(γ )
N

) − F
(
h

(γ γ )
n− , h

(γ γ )
N+n−

)] =
∫

S[h(γ )
0 , h

(γ γ )
n− ]

pdq.

(22)

The third term in Eq. (20) is the difference between the periodic
orbit action Fγ = F (y0,ynγ

), and the middle nγ iterations of

{h(γ γ )
0 }, F (h(γ γ )

−n+ , h
(γ γ )
n− ). Choose the points a and b of Eq. (B1)

022216-4



EXACT RELATIONS BETWEEN HOMOCLINIC AND … PHYSICAL REVIEW E 97, 022216 (2018)

U
SC

C’
  hn- 

 h0h-n+ 

 

y0

FIG. 2. (Schematic) The correction term in Eq. (24) is determined
by this exponentially small near-parallelogram area. The lower left
corner y0 = ynγ

⇒ γ +γ −.γ +γ − is a fixed point under Mnγ . The

other three corners are homoclinic points h
(γ γ )
−n+ ⇒ 0γ −.γ +γ −γ +0,

h
(γ )
0 ⇒ 0γ −.γ +0, and h

(γ γ )
n− ⇒ 0γ −γ +γ −.γ +0 . The unstable and

stable segments between corresponding homoclinic points are labeled
by U and S, respectively. C is a straight line segment connecting h

(γ γ )
−n+

and y0, which is exponentially close to the stable direction of y0. Under
Mnγ , C is mapped into a near-straight segment C ′ connecting h

(γ γ )
n−

and ynγ
= y0, which is exponentially close to the unstable direction

of y0. Under nγ iterations, the successive images of y0 and h
(γ γ )
−n+

first approach, then separate from each other, making a near fly-by
somewhere in the middle.

to be h
(γ γ )
−n+ and y0, respectively, and choose the curve c to be an

arbitrary curve C[h(γ γ )
−n+ ,y0] connecting them. As y0 is a fixed

point under nγ iterations, c maps to c′ = C ′[h(γ γ )
n− , y0]. Thus,

Fγ − F
(
h

(γ γ )
−n+ , h

(γ γ )
n−

) =
∫

C ′[h(γ γ )
n− , y0]

pdq −
∫

C[h(γ γ )
−n+ , y0]

pdq

=
∫

C[y0, h
(γ γ )
−n+ ]

pdq +
∫

C ′[h(γ γ )
n− , y0]

pdq.

(23)

Although the curve C[h(γ γ )
−n+ , y0] can be an arbitrary curve

connecting the end points, a convenient choice without loss
of generality is to let C be the straight line segment as shown
in Fig. 2.

From the discussion in Appendix A, it is clear that h
(γ γ )
−n+ ⇒

0γ −.γ +γ −γ +0 is within an exponentially small [∼O(e−μnγ )]
neighborhood of y0 and C is exponentially close to the
stable direction of y0. The images of h

(γ γ )
−n+ and y0 under

successive forward iterations first approach and then separate
from each other. After nγ iterations, the final image h

(γ γ )
n− ⇒

0γ −γ +γ −.γ +0 is exponentially close to the unstable direction
of y0 and remains within a small neighborhood [∼O(e−μnγ )] of
it. Since under the local linearized map of Mnγ , the straight line
segment C must be mapped into another straight line segment,
the image C ′ = Mnγ (C) must be nearly a straight line as well.
The geometry is shown in Fig. 2.

Adding the results of Eqs. (21)–(23), substituting into
Eq. (20), and rearranging terms give an exact formula express-
ing the periodic orbit action in terms of the relative homoclinic
orbit actions, a multiple of the fixed point’s action, plus a
phase-space area:

Fγ = nγF0 + �F0γ γ 0,0γ 0 + A◦
CUSC ′[y0,h

(γ γ )
−n+ ,h

(γ )
0 ,h

(γ γ )
n− ]

,

(24)

where

A◦
CUSC ′[y0, h

(γ γ )
−n+ , h

(γ )
0 , h

(γ γ )
n− ]

=
∫

C[y0, h
(γ γ )
−n+ ]

pdq +
∫

U [h(γ γ )
−n+ , h

(γ )
0 ]

pdq

+
∫

S[h(γ )
0 , h

(γ γ )
n− ]

pdq +
∫

C ′[h(γ γ )
n− , y0]

pdq (25)

yields the area of the near-parallelogram in Fig. 2. This result
is invariant under all possible ways of partitioning γ into
γ = γ −γ +, as long as the y0, h

(γ )
0 , and h

(γ γ )
0 are defined

consistently. Nevertheless, the choice made in the derivation,
where γ − and γ + have near-identical lengths, leads to a
near-parallelogram-shaped region in Fig. 2. For other choices,
especially those with greatly unequal lengths, γ − and γ +, the
A◦

CUSC ′[y0, h
(γ γ )
−n+ , h

(γ )
0 , h

(γ γ )
n− ]

area would be distorted into long thin,

possibly strongly curved, strips, making it more difficult to
calculate the area integral. In addition, it is possible to give an
order estimate for the integral, which is best done by choosing
γ − and γ + to have the same lengths.

A careful inspection on the symbolic codes of the four
corners of the parallelogram allows us to estimate the order of
magnitude of its area. Notice the four corner have symbolic
codes y0 ⇒ γ +γ −.γ +γ −, h

(γ γ )
−n+ ⇒ 0γ −.γ +γ −γ +0, h

(γ )
0 ⇒

0γ −.γ +0, and h
(γ γ )
n− ⇒ 0γ −γ +γ −.γ +0. Since γ − and γ + are

chosen to have near-identical lengths, the symbolic codes of
the four corners will match along central block lengths of at
least nγ . Therefore, Eq. (A7) implies an upper bound for the
order of its magnitude:

A◦
CUSC ′[y0,h

(γ γ )
−n+ ,h

(γ )
0 ,h

(γ γ )
n− ]

∼ O(e−μnγ ), (26)

where μ is the Lyapunov exponent of the system. For long
orbits (nγ large enough), this area can be neglected and leads
to an approximate form of Eq. (24),

Fγ = nγF0 + �F0γ γ 0,0γ 0 + O(e−μnγ )

= nγF0 + A◦
US[h(γ )

0 ,h
(γ γ )
0 ]

+ O(e−μnγ ), (27)

that expresses the periodic orbit action in terms of the fixed-
point action and the relative action between corresponding
homoclinic orbits with well-estimated error. Notice that the
right-hand side of Eq. (27) is evaluated without construct-
ing the periodic orbit or locating its phase-space points. In
Ref. [47], a method was given to calculate the homoclinic
orbits in very stable way. The basic idea is that calculating
successive intersections of the stable and unstable manifolds
is a structurally stable operation whereas direct propagation of
phase points magnifies small propagation errors exponentially
fast. Thus, Eq. (27) can be used to calculate the classical
action of arbitrarily long periodic orbits. The periodic orbit
approximated is the one which follows the excursion of {h(γ )

0 }.

B. Optimal representation and numerical verification

Equation (26) gives an upper bound of the order of mag-
nitude of the area correction corresponding to the worst-case
scenario, which results if the string γ ends with the digit 1 on
the left and right sides. However, if γ has Lγ consecutive 0s on
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its left end and Rγ consecutive 0s on its right end, the lengths
of matching central blocks of the symbolic codes of the four
corners increases to (nγ + Lγ + Rγ ) and the error estimate of
Eq. (26) improves to

A◦
CUSC ′[y0,h

(γ γ )
−n+ ,h

(γ )
0 ,h

(γ γ )
n− ]

∼ O(e−μ(nγ +Lγ +Rγ )) . (28)

Therefore, given a periodic orbit {y} ⇒ γ with length nγ , not
all cyclic permutations of γ necessarily lead to the same quality
approximation in Eq. (27) due to Eq. (28).

The optimal situation is to cyclically permute γ until it
has the longest string of 0s on the left or right boundary (or
some combination). Let us consider a concrete example for
the Hénon map with {y0} ⇒ 10001, γ = 10001 (worst-case
scenario), and an optimal scenario γ ′ = 00011. They give rise
to different homoclinic orbits in Eq. (27) since

0γ 0 = 0100010,

0γ ′0 = 0110, (29)

which do lead to differing quality of approximation.
The 10001 orbit starts from point

(3.18110104534044,3.18110104534044) and maps back into
itself to 12 decimal places in a double precision calculation
after five iterations. Direct calculation of the classical action
function gives

F10001 = 34.093 709 790 589. (30)

Of course, for the exact expression there is no difference in
which homoclinic orbits are used. We first verify Eq. (24) with
γ ′ = 00011, and partition it into γ ′− = 00 and γ ′+ = 011.
Substituting the three symbols into Eq. (24) leads to

F10001 = 5F0 + �F011000110,0110 + A◦
CUSC ′[y ′

0,h
(γ ′γ ′)
−n+ ,h

(γ ′ )
0 ,h

(γ ′γ ′ )
n− ]

= 34.093 709 790 630. (31)

The relative error is one part in 10−12, which is as good as
possible given the propagation error. This “exact” calculation
required finding the point y ′

0 corresponding to 01100.01100,
an impractical task for very long orbits.

Next, consider Eq. (27) for both the nonoptimal represen-
tation γ = 10001 and the optimal representation γ ′ = 00011.
There is the nonoptimal approximation

F10001 ≈ 5F0 + �F010001100010,0100010

= 34.091 429 013 921 (32)

and the optimal

F10001 ≈ 5F0 + �F011000110,0110

= 34.093 701 415 127. (33)

The nonoptimal case leads to a relative error of 6.7 × 10−5,
whereas the optimal case gives a relative error of 2.5 × 10−7,
smaller by a factor of 270.

The choice of optimal representation is not necessarily
unique as occurs if γ has multiple substrings with the same
maximum possible number of consecutive 0s. For example, let
γ = 110011001, which has two 00 substrings. Following the
above procedure, we can identify two optimal representations,
namely γ1 = 001100111 and γ2 = 001110011, respectively.
In these cases, the two optimal accompanying orbits should

yield errors within the same order of magnitude, thus equally
valid in practice.

C. Action formulas with partitioned substrings

In Sec. III A, the approximate action formula, Eq. (27),
requires either the construction of the homoclinic orbit 0γ γ 0,
or the area integral involving the homoclinic point h

(γ γ )
0 ⇒

0γ.γ 0 as one of the end points. Although these quantities can
be calculated in quite stable ways without exponentially di-
verging error, the calculation is time-consuming for orbits with
large periods. Upon further investigation into the geometric
relations between classical orbit structures, it turns out to be
possible to partition the symbolic codes, thereby relying on
homoclinic orbits with shorter excursions, the longest of which
are half the length of those in Sec. III A. This generates a host
of new relations among orbits and reduces the complexity of
the task.

Starting from a long periodic orbit {y} ⇒ γ , cut its sym-
bolic string into two substrings in γ = γ1γ2, such that their
lengths nγ = n1 + n2, where n1 and n2 are the lengths of γ1 and
γ2, respectively. Assuming neither γ1 nor γ2 is a single-digit
string, further cut both of them into two substrings, such
that γ1 = γ −

1 γ +
1 and γ2 = γ −

2 γ +
2 . Let the length of γ ±

i be
n±

i ; then ni = n−
i + n+

i (i = 1,2). For convenience, assume
cutting the γis (i = 1,2) in the middle, similar to in Sec. III A.
Then the periodic orbit can be denoted alternatively by {y} ⇒
γ −

1 γ +
1 γ −

2 γ +
2 . To fix y0, position the decimal point in the string

γ −
1 .γ +

1 γ −
2 γ +

2 , and the other yn follow by the appropriate shifts
in the decimal point.

Four homoclinic orbits are involved in the determination of
the classical action Fγ . These auxiliary homoclinic orbits are{

h
(γ1)
0

} ⇒ 0γ10,
{
h

(γ2)
0

} ⇒ 0γ20,{
h

(γ1γ2)
0

} ⇒ 0γ1γ20,
{
h

(γ2γ1)
0

} ⇒ 0γ2γ10, (34)

where the symbolic codes of h
(γ1)
0 , h

(γ2)
0 , h

(γ1γ2)
0 , and h

(γ2γ1)
0 are

identified in Eq. (C2).
As shown in Appendix C, following similar but generalized

steps from Sec. III A gives a generalized exact analytic formula
for the periodic orbit action:

Fγ = nγF0 + �F0γ1γ20,0γ10 + �F0γ2γ10,0γ20

+A◦
CUSC ′[y0, h

(γ1γ2)

−n
+
1

, h
(γ1)
0 , h

(γ2γ1)

n
−
1

]

+A◦
CUSC ′[y

n
+
1 +n

−
2

, h
(γ2γ1)

−n
+
2

, h
(γ2)
0 , h

(γ1γ2)

n
−
2

]
, (35)

where the two near-parallelogram-area terms A◦
CUSC ′[··· ] have

similar interpretations as in Eq. (24). Notice the symbolic codes
of the four corners of the first and the second parallelograms
match in central block lengths of at leastn1 andn2, respectively.
Therefore, we can estimate the upper bounds of the orders of
magnitudes of these areas as

A◦
CUSC ′[y0,h

(γ1γ2)

−n
+
1

,h
(γ1)
0 ,h

(γ2γ1)

n
−
1

]
∼ O(e−μn1 ) (36)

and

A◦
CUSC ′[y

n
+
1 +n

−
2

,h
(γ2γ1)

−n
+
2

,h
(γ2)
0 ,h

(γ1γ2)

n
−
2

]
∼ O(e−μn2 ), (37)
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which lead to the approximation

Fγ = nγF0 + �F0γ1γ20,0γ10 + �F0γ2γ10,0γ20

+O(e−μn1 + e−μn2 ), (38)

which expresses Fγ in terms of two relative homoclinic orbit
actions, but of shorter excursions. As before, a geometric
alternative exists that does not require the calculation of the
homoclinic orbits. Using Eq. (15) results in

�F0γ1γ20,0γ10 + �F0γ2γ10,0γ20

= A◦
US[h

(γ1)
0 ,h

(γ1γ2)
0 ]

+ A◦
US[h

(γ2)
0 ,h

(γ2γ1)
0 ]

=
∫

U [h
(γ1)
0 ,h

(γ1γ2)
0 ]

pdq +
∫

S[h
(γ1γ2)
0 ,h

(γ1)
0 ]

pdq

+
∫

U [h
(γ2)
0 ,h

(γ2γ1)
0 ]

pdq +
∫

S[h
(γ2γ1)
0 ,h

(γ2)
0 ]

pdq (39)

and a further manipulation of the integral paths combines the
two areas into a single curvy parallelogram. This is done by
splitting the two stable manifolds paths∫

S[h
(γ1γ2)
0 ,h

(γ1)
0 ]

pdq =
∫

S[h
(γ1γ2)
0 ,h

(γ2)
0 ]

pdq +
∫

S[h
(γ2)
0 ,h

(γ1)
0 ]

pdq

(40)
and∫

S[h
(γ2γ1)
0 ,h

(γ2)
0 ]

pdq =
∫

S[h
(γ2γ1)
0 ,h

(γ1)
0 ]

pdq +
∫

S[h
(γ1)
0 ,h

(γ2)
0 ]

pdq.

(41)
By substituting Eqs. (40) and (41) into Eq. (39), and noticing
cancellations between certain paths, we obtain

�F0γ1γ20,0γ10 + �F0γ2γ10,0γ20

= A◦
US[h

(γ1)
0 ,h

(γ1γ2)
0 ]

+ A◦
US[h

(γ2)
0 ,h

(γ2γ1)
0 ]

= A◦
SUSU [h

(γ1γ2)
0 ,h

(γ2)
0 ,h

(γ2γ1)
0 ,h

(γ1)
0 ]

(42)

and therefore a geometric alternative of Eq. (38),

Fγ = nγF0 + A◦
SUSU [h

(γ1γ2)
0 ,h

(γ2)
0 ,h

(γ2γ1)
0 ,h

(γ1)
0 ]

+O(e−μn1 + e−μn2 ), (43)

which only requires integration along the corresponding stable
and unstable manifold segments. Notice that Eq. (42) is
actually the classical result described in Eq. (8.16) of Ref. [46],
which expresses the action relations between two pairs of
homoclinic orbits in terms of the region bounded by alternating
stable and unstable manifolds connecting them.

For completeness, we mention that it is possible to partition
γ into three or more substrings. For example, the triple
partition, γ = γ1γ2γ3, leads to

Fγ = nγF0 + �F0γ1γ2γ30,0γ1γ20

+�F0γ2γ3γ10,0γ2γ30 + �F0γ3γ1γ20,0γ3γ10

+O(e−μ(n1+n2) + e−μ(n2+n3) + e−μ(n3+n1)). (44)

Note that this formula also has an exact version similar to
Eq. (35), consisting of three A◦

CUSC ′[··· ] correction terms. The
derivation follows by a straightforward generalization of the
procedure in Appendix C. Similarly, in the M-tuple partition

case, γ = γ1γ2 . . . γM , the approximation is

Fγ = nγF0 +
∑

(i1···iM )

�F0γi1 ···γiM
0, 0γi1 ···γiM−1 0

+O

⎛
⎝ ∑

(i1···iM )

e−μ(ni1 +···+niM−1 )

⎞
⎠, (45)

where
∑

(i1···iM ) denotes the sum over all cyclic permutations
of (1,2, . . . ,M), therefore consisting of M terms.

D. Optimal partition and numerical verification

It is of interest to know, given a periodic orbit γ , which
among all possible ways of partitioning γ into γ1γ2 leads to an
optimal partition for the approximation, Eq. (38).

Similar to Sec. III B, the key is the order of magnitudes of
the two A◦

CUSC ′[··· ] areas. Just as for Eq. (26), Eqs. (36) and
(37) give the upper bounds of the worst-case scenarios where
γ2 and γ1 have both digits 1 on their left and right ends. For
other cases where there are 0s on either the left or right ends
of γ2 or γ1, the estimates can be further improved to

A◦
CUSC ′[y0,h

(γ1γ2)

−n
+
1

,h
(γ1)
0 ,h

(γ2γ1)

n
−
1

]
∼ O(e−μ(n1+L2+R2)),

A◦
CUSC ′[y(n+

1 +n
−
2 ),h

(γ2γ1)

−n
+
2

,h
(γ2)
0 ,h

(γ1γ2)

n
−
2

]
∼ O(e−μ(n2+L1+R1)), (46)

where Li and Ri are the total numbers of consecutive 0s
counted starting from the very left and right ends, respectively,
on the substring γi (i = 1,2). The error associated with Eq. (38)
is determined by the lesser of the two exponents. Thus, of all
partitions γ ′ = γ ′

1γ
′
2, the one which maximizes the min(n1 +

L2 + R2, n2 + L1 + R1) yields the smallest error.
For a numerical verification, we have calculated the

period-8 orbit {y} ⇒ γ = 10110000, for which y0 =
(2.92687946960229,−1.78896759995064). The action func-
tion calculated following the orbit is

F10110000 = 50.526 431 207. (47)

A nonoptimal partition of this orbit is chosen to be γ1 =
1011 and γ2 = 0000. For this partition, min(4 + 4,4 + 0) = 4.
Note that γ2 = 0000 actually corresponds to the fixed-point
being iterated four times. An optimal partition is γ ′

1 = 1100
and γ ′

2 = 0010, for which min(4 + 3,4 + 2) = 6. Evaluating
both partitions with Eq. (38) gives the nonoptimal result

F10110000 ≈ 8F0 + �F010110,010110 + �F010110,0

= 8F0 + �F010110,0

= 50.510 819 938

and the optimal result

F11000010 ≈ 8F0 + �F011000010,0110 + �F010110,010

= 50.526 729 754.

Comparing the results with Eq. (47), the relative error from
the nonoptimal partition is 3.1 × 10−4 and that of the optimal
partition 5.9 × 10−6, smaller by a factor of 190.

For the verification of the exact formula, substituting the
optimal partition into Eq. (35) leads to

F11000010 = 50.526729754916 − 0.000298551864

= 50.526 431 203.
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Comparing with Eq. (47), the relative error of the exact formula
is 7.9 × 10−11, as good as possible given the presence of
propagation error.

IV. CYCLE EXPANSION

The cycle expansion [3,35,48] has been an important
approach to determining various physical quantities, such as
dynamical ζ functions and spectral determinants, in terms
of the very few shortest periodic orbits. In the expansion, a
periodic orbit {y} is grouped together with shorter pseudo-
orbits whose full symbolic itineraries build up the itinerary of
{y}, with the assumption that the action differences between
{y} and its decomposed pseudo-orbit decrease rapidly with
increasing periods. Though it may be often true for highly
chaotic systems, we show that a natural consequence of
Eq. (38) yields a geometric result for the action differences,
thus providing an analytic way to evaluate in which cases the
action differences between orbits in the cycle expansions are
small enough.

A. Action differences between periodic orbits and their
decomposed pseudo-orbits

Consider an arbitrary periodic orbit {y} ⇒ γ , and its parti-
tion into two substrings: γ = γ1γ2. In the cycle expansion, γ

can be decomposed into a pseudo-orbit composed by (γ1 + γ2),
with the action difference between them assumed vanishing in
the original approaches. However, with the help of Eqs. (38)
and (27), we can express the classical actions of γ , γ1, and γ2

respectively:

Fγ = nγF0 + �F0γ1γ20,0γ10 + �F0γ2γ10,0γ20

+O(e−μ(n1+L2+R2) + e−μ(n2+L1+R1)), (48)

Fγ1 = n1F0 + �F0γ1γ10,0γ10 + O(e−μ(n1+L1+R1)), (49)

and

Fγ2 = n2F0 + �F0γ2γ20,0γ20 + O(e−μ(n2+L2+R2)). (50)

Subtracting Eqs. (49) and (50) from Eq. (48) gives an expres-
sion for the action difference between γ and its decomposed
pseudo-orbit:

Fγ − (Fγ1 + Fγ2 ) = �F0γ1γ20,0γ10 + �F0γ2γ10,0γ20

−�F0γ1γ10,0γ10 − �F0γ2γ20,0γ20

+O(e−μ(n1+L2+R2) + e−μ(n2+L1+R1)

+e−μ(n1+L1+R1) + e−μ(n2+L2+R2)). (51)

Notice that, since

�F0γ1γ20,0γ10 − �F0γ1γ10,0γ10 = �F0γ1γ20,0γ1γ10,

�F0γ2γ10,0γ20 − �F0γ2γ20,0γ20 = �F0γ2γ10,0γ2γ20, (52)

in fact, there is the simplified formula

Fγ − (Fγ1 + Fγ2 ) = �F0γ1γ20,0γ1γ10 + �F0γ2γ10,0γ2γ20

+O(e−μ(n1+L2+R2) + e−μ(n2+L1+R1)

+e−μ(n1+L1+R1) + e−μ(n2+L2+R2)), (53)

which expresses the action difference between γ and (γ1 + γ2)
in terms of four homoclinic orbits: 0γ1γ20, 0γ1γ10, 0γ2γ10,
and 0γ2γ20, all constructed using the substrings of the periodic
orbit.

Furthermore, letting h
(γiγj )
0 ⇒ 0γi.γj 0 (i,j = 1,2), a geo-

metric alternative of Eq. (53), similar to Eq. (43), can be written
as

Fγ − (Fγ1 + Fγ2 ) = A◦
SUSU [h

(γ1γ2)
0 ,h

(γ2γ2)
0 ,h

(γ2γ1)
0 ,h

(γ1γ1)
0 ]

+O(e−μ(n1+L2+R2) + e−μ(n2+L1+R1)

+ e−μ(n1+L1+R1) + e−μ(n2+L2+R2)), (54)

which calculates the action difference as a curvy parallelogram
bounded by stable and unstable manifolds. The quality of the
cycle expansion depends on the size of the areas A◦

SUSU [....],
which are typically small if a long orbit is split in the middle.
However, it is conceivable that one might include correction
terms, such as the area term in Eq. (54), into the approximation
to achieve a better result, although a more elaborate resumma-
tion scheme is needed for that purpose.

For general cases where γ is exceedingly long, further par-
titioning is possible by repeated use of Eq. (53), and therefore
the action difference between a long periodic orbit and its
decomposed pseudo-orbit composed by multiple substrings
can be obtained. This adds further area correction terms. At a
minimum, the magnitudes of the error terms imply a practical
limit to further decreasing lengths ni of the substrings γi , which
may depend on the error tolerance of specific problems (or the
value of h̄).

B. Optimal decomposition and numerical verification

The results just presented allow for arbitrary decomposi-
tions of any given periodic orbit γ , γ = γ1γ2, and express the
action difference between γ and (γ1 + γ2) in terms of specific
homoclinic relative actions or phase-space areas. However, it
is worth comparing optimal and nonoptimal partitions for the
cycle orbits. The optimal partitions γ ′ = γ ′

1γ
′
2 maximize:

min(n1 + L2 + R2, n2 + L1 + R1,

n1 + L1 + R1, n2 + L2 + R2). (55)

Again, the optimal decomposition may be not unique for a
periodic orbit.

As a numerical verification, consider the period-8 orbit {y}
(γ = 10110000) from Sec. III D. A nonoptimal decomposition
is given again by γ1 = 1011 and γ2 = 0000. The 1011 orbit has
y0 = (3.16227766016837,1.91714492922763), whereas the
0000 orbit is just four times the fixed-point orbit. Substituting
their symbolic strings into Eq. (53) yields

F10110000 − (F1011 + F0000)

≈ �F010110,0101110110 + �F010110,0. (56)

The difference is given by

F10110000 − (F1011 + F0000) = −47.264 193 841, (57)

which would actually be a nonsensical split for the cycle
expansion as one wants this difference already to be small and
it is on the scale of the action for the full orbit. The correction
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area is

�F010110,0101110110 + �F010110,0 = −47.318 648 376, (58)

leaving an error relative to the full periodic orbit action as
1.1 × 10−3.

Next, consider the optimal decomposition γ ′
1 = 0010 and

γ ′
2 = 1100. The 0010 orbit y0 = (−4.04036574091217, −

3.16227766016837), and the 1100 orbit has y0 =
(3.16227766016837,−3.16227766016837). Substituting
them into Eq. (53) yields

F00101100 − (F0010 + F1100)

≈ �F010110,0100010 + �F011000010,01100110. (59)

This gives

F00101100 − (F0010 + F1100) = 8.362 729 071,

which is far superior to the previous case as the area is much
smaller. It is still significant though. The area correction is

�F010110,0100010+ �F011000010,01100110 = 8.363 587 075,

(60)

leaving a relative error with respect to the full action of 1.7 ×
10−5, a significant improvement compared with the nonoptimal
decomposition, as expected.

V. CONCLUSIONS

The relations between classical orbit sets play important
roles in both classical and quantum chaotic dynamics. The
relations given here can be used as a starting point for un-
derstanding the connections between homoclinic and periodic
orbits, action correlations, corrections to cycle expansions,
and symmetries, such as the role of Richter-Sieber pairs in
time-reversal-invariant systems. Controlled estimates of errors
were given for various approximations. Also, note that indi-
vidual periodic orbit actions can be calculated from generating
functions, but the numerical computations suffer from sensitive
dependence on initial conditions therefore being prohibitive for
long orbits. By relating them to homoclinic orbits, which can
be stably calculated relying on the structural stability of stable
and unstable manifolds, they become stably calculable as well.

Organizing the orbits with symbolic dynamics, we have
determined periodic orbit actions using homoclinic orbits
constructed from either the entire symbolic string or partitioned
substrings, and derived both exact and approximate action
formulas. Although the exact formulas require the numerical
determination of the periodic orbit points, the approximate
formulas only require the calculation of homoclinic orbits,
which is much simpler [47]. The errors associated with the
approximate formulas scale down exponentially fast with
increasing periods, making them almost exact for long orbits.
Explicit action relations among periodic orbits also come
as natural consequences, which turns the often empirical or
statistical account of action correlations between periodic
orbits into an analytic study of either homoclinic relative
actions or phase-space areas bounded by invariant manifolds,
linking classical entities such as homoclinic tangles to the
quantal spectral quantities of chaotic systems.

The analytic scheme developed here provides universal
expressions for the action relations between either homoclinic
and periodic orbits, periodic orbit pairs, or periodic orbits and
their decomposed pseudo-orbits on the microscopic level. It is
conceivable that this microscopic formula, when paired with
a macroscopic counting scheme [44] should enable efficient
semiclassical resummations on both the analytic [43] and
numerical aspects.

APPENDIX A: HORSESHOE, MARKOV PARTITIONS,
AND SYMBOLIC DYNAMICS

Symbolic dynamics provides a powerful technique, i.e.,
the topological description of orbits in chaotic systems
[18–21]. Perhaps the most famous model that demonstrates
its elegance is the horseshoe map [16,17], a two-dimensional
diffeomorphism possessing an invariant Cantor set, which
is topologically conjugate to a Bernoulli shift on symbolic
strings composed by 0s and 1s. A numerical realization of
the horseshoe is the area-preserving Hénon map [56] defined
on the phase plane (q,p), which is the simplest polynomial
automorphism giving rise to chaotic dynamics [57]:

pn+1 = qn, qn+1 = a − q2
n − pn. (A1)

It follows from the work in Ref. [58] that for sufficiently large
parameter values of a the Hénon map is topologically con-
jugate to a horseshoe map, therefore possessing a hyperbolic
invariant set of orbits labeled by binary symbolic codes; see
Chapters 23 and 24 of Ref. [2] for a brief review of the Smale
horseshoe and the corresponding symbolic dynamics.

To visualize the action of the mapping M [e.g., Eq. (A1)]
on the homoclinic tangle, let us consider the closed region
R in Fig. 1, bounded by loop LUSUS[x,g−1,h0,g0], where
LUSUS[x,g−1,h0,g0]=U [x,g−1]+S[g−1,h0]+U [h0,g0]+S[g0,x].
Under the mapping M , the trapezoid-shaped R is compressed
along the stable direction and stretched along the unstable
direction, and folded back to partially overlap with itself,
with the vertical strips V0 and V1 mapped into the horizontal
strips H0 and H1, respectively. Similarly, the inverse mapping
M−1 stretches R along the stable direction and fold back,
with the horizontal strips H0 and H1 mapped into V0 and
V1, respectively. Therefore, points in region E0 bounded by
LUSUS[g−2,h−1,h

′
−1,g

′
−1] are mapped outside R into E1 bounded

by LUSUS[g−1,h0,h
′
0,g

′
0] under one iteration. For open systems

such as the Hénon map, any point outside R never returns and
escapes to infinity; there is a similar construction for inverse
time. Of great structural significance is the nonwandering set
� of phase-space points z that stay inside R for all iterations
[2,3]:

� =
{

z : z ∈
∞⋂

n=−∞
Mn(R)

}
. (A2)

In particular, we focus on the homoclinic and periodic points
that belong to �.

Using the closed regions V0 and V1 in Fig. 1 as Markov
generating partition for the symbolic dynamics, every point z0

in � can be labeled by an infinite symbolic string of 0’s and
1’s:

z0 ⇒ . . . s−2s−1.s0s1s2 . . . , (A3)
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where each digit sn in the symbol denotes the region that
Mn(z0) lies in: Mn(z0) = zn ∈ Vsn

, sn ∈ {0,1}. In that sense,
the symbolic code gives an “itinerary” of z0 under successive
forward and backward iterations, in terms of the regions V0

and V1 that each iteration lies in. The semi-infinite segment
“s0s1s2 . . . ” (resp. “. . . s−2s−1”) from the symbolic code is
referred to as the head (respectively, tail) of the orbit with
initial condition z0 [51], and the decimal point separating the
head and the tail denotes the region (Vs0 ) that the current
iteration z0 belongs to. Let � denote the symbolic space of
all such bi-infinite symbolic strings. Strings in � are then in
1-to-1 correspondence with points in �, and the mapping M

in phase space is topological conjugate to a Bernoulli shift in
the symbolic space. Therefore, forward iterations of z0 move
its decimal point toward the right side of the symbolic string,
and backward iterations move it toward the left side.

Besides elegant topological conjugacy, the symbolic strings
also contain information about the location of points in
phase space. Following a standard procedure [59], subsequent
Markov partitions [14,15] can be constructed from the generat-
ing partitions [V0,V1], which specifies the phase-space regions
that points with certain central blocks of fixed lengths must
locate within. Starting from V0 and V1, define recursively an
ever-shrinking family of vertical strips Vs0···sn−1 in phase space,
such that

Vs0···sn−1 ≡ Vs0

⋂
M−1

(
Vs1···sn−1

)
, (A4)

where si ∈ {0,1} for i = 0, · · · ,n − 1. Similarly, starting from
H0 and H1, an ever-shrinking family of horizontal strips
Hs−n···s−1 can be defined:

Hs−n···s−1 ≡ M
(
Hs−n···s−2

) ⋂
Hs−1 , (A5)

where s−j ∈ {0,1} for j = 1, . . . ,n. The horizontal and vertical
strips intersect at curvy “rectangular” cells, which can be
labeled by a finite string of symbols:

Hs−n···s−1

⋂
Vs0···sn−1 ⇒ s−n . . . s−1.s0 . . . sn−1 (A6)

These cells are Markov partitions of central block lengths
2n, in the sense that any point from � with coinciding central
blocks s−n . . . s−1.s0 . . . sn−1 must locate inside (or on the
boundary of) the corresponding cell. Shown in the upper and
lower panels of Fig. 3 are two examples of Markov partitions
of lengths 2 and 4, respectively, numerically generated from
the Hénon map. Take the cell 10.01 from the lower panel
as example: Any point with symbolic string of the form
. . . s−4s−310.01s2s3 . . . must either locate inside or on the
boundary of 10.01.

Closeness between two symbolic strings imply closeness
between the corresponding points in phase space. Because
of the compressing and stretching nature of the horseshoe
map, the widths of the horizontal and vertical strips becomes
exponentially small with increasing block lengths, and so do
the cell areas they intersect. Without loss of generality, we
assume, in Fig. 1, that the area A◦

SUSU [x,g0,h0,g−1] is of order
∼O(1). Then the resulting area of the cell s−n . . . s−1.s0 . . . sn−1

is of order ∼O(e−2nμ), where μ is the Lyapunov expo-
nent of the system, an exponentially small area for large
n values. This geometry [59] is shown by Fig. 4. There-
fore, any two points from � with identical central blocks

H0

H1

V0 V1

0.0
0.1

1.1
1.0

H00

H10

H11

H01

V00 V01 V11 V10

00.00 00.01

10.00 10.01

FIG. 3. Markov partitions constructed in the Hénon map. Upper
panel: The Vs0 and Hs−1 regions corresponds to the same regions in
Fig. 1. The four cells Hs−1 ∩ Vs0 ⇒ s−1.s0 are the Markov partitions of
lengths 2. Lower panel: Markov partitions of length 4. The horizontal
and vertical strips are created as Hs−2s−1 = M(Hs−2 ) ∩ Hs−1 and
Vs0s1 = Vs0 ∩ M−1(Vs1 ). The H and V strips intersect at 16 cells
Hs−2s−1 ∩ Vs0s1 ⇒ s−2s−1.s0s1, as indicated by a black dot inside each
of them. For the sake of clarity, we only explicitly labeled four cells
in the lower left corner. Any point from � with symbolic string of
fixed central block . . . s−2s−1.s0s1 . . . must either locate inside or on
the boundary of the s−2s−1.s0s1 cell. The sizes of the cells shrink
exponentially with increasing string lengths.

of length 2n must locate in the same exponentially small
cell. Consider two points h ⇒ . . . s−n . . . s−1.s0 . . . sn . . .

and h′ ⇒ . . . s ′
−n . . . s ′

−1.s
′
0 . . . s ′

n . . . ; if h and h′ agree on
a central block of length 2n, i.e., s ′

−n . . . s ′
−1.s

′
0 . . . s ′

n−1 =
s−n . . . s−1.s0 . . . sn−1, they must both located in same cell

Hs-n ...s-1

Vs0 ...sn-1

s-n...s-1.s0...sn-1

FIG. 4. (Schematic) The widths of Hs−n ···s−1 and Vs0 ···sn−1 are
∼O(e−nμ), so the cell area of s−n . . . s−1.s0 . . . sn−1 is ∼O(e−2nμ).
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A
a

q

p p

qa qb
qa’ qb’

M

q

c
b a’

b’c’

A’

FIG. 5. a and b are arbitrary points and c is a curve connect-
ing them. a′ = M(a), b′ = M(b) and c′ = M(c). Then A′ − A =
F (qb,qb′ ) − F (qa,qa′ ).

labeled by s−n . . . s−1.s0 . . . sn−1:

h,h′ ∈ Hs−n···s−1

⋂
Vs0···sn−1 ⇒ s−n . . . s−1.s0 . . . sn−1, (A7)

the area of which is ∼O(e−2nμ). Therefore, by specifying
longer central block lengths of a point’s symbolic string, we can
narrow down its possible location in phase space with smaller
cells from the Markov partition.

APPENDIX B: MACKAY-MEISS-PERCIVAL
ACTION PRINCIPLE

The MacKay-Meiss-Percival action principle discussed in
this section was first developed in Ref. [45] for transport
theory. A comprehensive review can be found in Ref. [46].
Generalization of the original principle beyond the “twist” and
area-preserving conditions is discussed in Ref. [60], and we
only give a brief outline of the theory in this Appendix. Shown
in Fig. 5 are two arbitrary points a = (qa,pa), b = (qb,pb) and
their images a′ = M(a), b′ = M(b). Let c be an arbitrary curve
connecting a and b, which is mapped to a curve c′ = M(c)
connecting a′ and b′. Let A and A′ denote the algebraic area
under c and c′ respectively. Then the difference between these
areas is

A′ − A =
∫

c′
pdq −

∫
c

pdq

= F (qb,qb′ ) − F (qa,qa′ ); (B1)

i.e., the difference between the two algebraic areas gives the
difference between the action functions for one iteration of the
map.

Starting from this, MacKay et al. [45] derived a formula
relating the action difference between a pair of homoclinic
orbits to the phase-space area of a region bounded by stable and
unstable manifolds, as demonstrated by Fig. 6. In this figure,
a0 and b0 are a pair of homoclinic points:

a±∞ → b±∞. (B2)

There exist unstable and stable manifolds connecting the
two points shown by the solid and dashed curves. Those
manifolds could be the manifolds of other fixed points, or
manifolds associated with a0 and b0 themselves. Let U [a0,b0]
and S[b0,a0] be the corresponding segments; we first apply
Eq. (B1) repeatedly to the semi-infinite pair of homoclinic orbit

a0

b0

A

FIG. 6. a0 and b0 is a homoclinic pair. They are connected by
an unstable segment U [a0,b0] (solid) and a stable segment S[b0,a0]
(dashed). Then the action difference between the homoclinic orbit
pair is �F{b0}{a0} = A.

segments {a−∞, . . . ,a0} and {b−∞, . . . ,b0} and get

0∑
n=−∞

[F (bn−1,bn) − F (an−1,an)]

=
∫

U [a0,b0]
pdq −

∫
U [a−∞,b−∞]

pdq =
∫

U [a0,b0]
pdq,

(B3)

where
∫
U [a−∞,b−∞] pdq = 0 since a−∞ → b−∞. Similarly for

the semi-infinite pairs {a0, . . . ,a∞} and {b0, . . . ,b∞}, we have

∞∑
n=0

[F (bn,bn+1) − F (an,an+1)]

=
∫

S[a∞,b∞]
pdq −

∫
S[a0,b0]

pdq =
∫

S[b0,a0]
pdq. (B4)

Adding up Eqs. (B3) and (B4), we have

�F{b0}{a0} =
∞∑

n=−∞
[F (bn,bn+1) − F (an,an+1)]

=
∫

U [a0,b0]
pdq +

∫
S[b0,a0]

pdq = A, (B5)

where A denotes the area shown in Fig. 6.

APPENDIX C: DERIVATION OF EQ. (35)

This Appendix contains a detailed derivation of Eq. (35),
which follows a similar, but more elaborate process compared
with those in Sec. III A. As in Sec. III C, let the periodic orbit be
{y} ⇒ γ , and its symbolic code partitioned into: γ = γ1γ2 =
γ −

1 γ +
1 γ −

2 γ +
2 , with lengths nγ = n1 + n2 = n−

1 + n+
1 + n−

2 +
n+

2 . Its classical action Fγ can be extracted with the help of
four auxiliary homoclinic orbits

{
h

(γ1)
0

} ⇒ 0γ10 = 0γ −
1 γ +

1 0,{
h

(γ2)
0

} ⇒ 0γ20 = 0γ −
2 γ +

2 0,{
h

(γ1γ2)
0

} ⇒ 0γ1γ20 = 0γ −
1 γ +

1 γ −
2 γ +

2 0,{
h

(γ2γ1)
0

} ⇒ 0γ2γ10 = 0γ −
2 γ +

2 γ −
1 γ +

1 0. (C1)
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Furthermore, set the zero subscript homoclinic points along
their respective orbits

h
(γ1)
0 ⇒ 0γ −

1 .γ +
1 0,

h
(γ2)
0 ⇒ 0γ −

2 .γ +
2 0,

h
(γ1γ2)
0 ⇒ 0γ −

1 γ +
1 .γ −

2 γ +
2 0

h
(γ2γ1)
0 ⇒ 0γ −

2 γ +
2 .γ −

1 γ +
1 0, (C2)

from which it follows that

h
(γ1γ2)
−n+

1
⇒ 0γ −

1 .γ +
1 γ −

2 γ +
2 0,

h
(γ1γ2)
n−

2
⇒ 0γ −

1 γ +
1 γ −

2 .γ +
2 0,

h
(γ2γ1)
−n+

2
⇒ 0γ −

2 .γ +
2 γ −

1 γ +
1 0,

h
(γ2γ1)
n−

1
⇒ 0γ −

2 γ +
2 γ −

1 .γ +
1 0, (C3)

where the points in Eq. (C3) are just images of those in
Eq. (C2) under respective iterations. Of interest here are
the relative actions �F0γ1γ20,0γ10 and �F0γ2γ10,0γ20, which,
following Eq. (16), can be expressed as

�F0γ1γ20,0γ10 = lim
N→∞

[
F

(
h

(γ1γ2)
−(N+n+

1 )
,h

(γ1γ2)
n−

2 +N

)−F
(
h

(γ1)
−N,h

(γ1)
N

)]
−(n+

1 + n−
2 )F0 (C4)

and

�F0γ2γ10,0γ20 = lim
N→∞

[
F

(
h

(γ2γ1)
−(N+n+

2 )
,h

(γ2γ1)
n−

1 +N

)−F
(
h

(γ2)
−N,h

(γ2)
N

)]
− (n+

2 + n−
1 )F0. (C5)

Similar to Eq. (20), comparing Fγ to the sum of the
relative auxiliary homoclinic orbit actions (�F0γ1γ20,0γ10 +
�F0γ2γ10,0γ20) gives

Fγ − �F0γ1γ20,0γ10 − �F0γ2γ10,0γ20

= F
(
y0,yn+

1 +n−
2

) + F
(
yn+

1 +n−
2
,ynγ

)
− lim

N→∞
[
F

(
h

(γ1γ2)
−(N+n+

1 )
,h

(γ1γ2)
n−

2 +N

) − F
(
h

(γ1)
−N,h

(γ1)
N

)
+F

(
h

(γ2γ1)
−(N+n+

2 )
,h

(γ2γ1)
n−

1 +N

) − F
(
h

(γ2)
−N,h

(γ2)
N

)] + nγF0.

(C6)

Analogous to the spirit of Sec. III A, partition the ho-
moclinic orbit generating functions F (h(γi )

−N,h
(γi )
N ) (i = 1,2)

into two parts, F (h(γi )
−N,h

(γi )
0 ) and F (h(γi )

0 ,h
(γi )
N ), which cor-

respond to the initial and final parts of the {h(γi )
0 } or-

bit segment, respectively. Also, partition the generating
functions F (h

(γiγj )

−(N+n+
i )

,h
(γiγj )

n−
j +N

) (i,j = 1,2) into three parts,

F (h
(γiγj )

−(N+n+
i )

, h
(γiγj )

−n+
i

), F (h
(γiγj )

−n+
i

, h
(γiγj )

n−
j

), and F (h
(γiγj )

n−
j

, h
(γiγj )

n−
j +N

),

that correspond to the initial, middle, and final parts of {h(γiγj )
0 }

orbit segment, respectively. The expression for Fγ is obtained
from substituting these generating function into Eq. (C6), and
regrouping them into action differences according similarity

in the symbolic code sequences along their orbit segments:

Fγ − �F0γ1γ20,0γ10 − �F0γ2γ10,0γ20

= lim
N→∞

[
F

(
h

(γ1)
−N, h

(γ1)
0

) − F
(
h

(γ1γ2)
−(N+n+

1 )
, h

(γ1γ2)
−n+

1

)]
+ [

F
(
y0, yn+

1 +n−
2

) − F
(
h

(γ1γ2)
−n+

1
, h

(γ1γ2)
n−

2

)]
+ lim

N→∞
[
F

(
h

(γ2)
0 , h

(γ2)
N

) − F
(
h

(γ1γ2)
n−

2
, h

(γ1γ2)
n−

2 +N

)]
+ lim

N→∞
[
F

(
h

(γ2)
−N, h

(γ2)
0

) − F
(
h

(γ2γ1)
−(N+n+

2 )
, h

(γ2γ1)
−n+

2

)]
+ [

F
(
yn+

1 +n−
2
, ynγ

) − F
(
h

(γ2γ1)
−n+

2
, h

(γ2γ1)
n−

1

)]
+ lim

N→∞
[
F

(
h

(γ1)
0 , h

(γ1)
N

) − F
(
h

(γ2γ1)
n−

1
, h

(γ2γ1)
n−

1 +N

)] + nγF0.

(C7)

Notice that the first six terms in the above expression are
differences in the generating functions between orbit segments
regrouped according to similarities in the symbolic code
sequences. Following the same procedures as in Sec. III A
by repeated use of Eq. (B1), we convert each term into a
phase-space integral along certain paths:

(i) the first term,

lim
N→∞

[
F

(
h

(γ1)
−N, h

(γ1)
0

) − F
(
h

(γ1γ2)
−(N+n+

1 )
, h

(γ1γ2)
−n+

1

)]
=

∫
U [h

(γ1γ2)

−n
+
1

, h
(γ1)
0 ]

pdq, (C8)

(ii) the second term,

F
(
y0, yn+

1 +n−
2

) − F
(
h

(γ1γ2)
−n+

1
, h

(γ1γ2)
n−

2

)
=

∫
C ′[h(γ1γ2)

n
−
2

, y
n
+
1 +n

−
2

]
pdq +

∫
C[y0, h

(γ1γ2)

−n
+
1

]
pdq, (C9)

where, similar to Sec. III A, we take the liberty to choose C to
be the straight-line segment connecting the end points, which
is mapped to a near straight-line segment C ′ under (n+

1 + n−
2 )

iterations,
(iii) the third term

lim
N→∞

[
F

(
h

(γ2)
0 , h

(γ2)
N

) − F
(
h

(γ1γ2)
n−

2
, h

(γ1γ2)
n−

2 +N

)]
=

∫
S[h

(γ2)
0 , h

(γ1γ2)

n
−
2

]
pdq, (C10)

(iv) the fourth term,

lim
N→∞

[
F

(
h

(γ2)
−N, h

(γ2)
0

) − F
(
h

(γ2γ1)
−(N+n+

2 )
, h

(γ2γ1)
−n+

2

)]
=

∫
U [h

(γ2γ1)

−n
+
2

, h
(γ2)
0 ]

pdq, (C11)

(v) the fifth term,[
F

(
yn+

1 +n−
2
, ynγ

) − F
(
h

(γ2γ1)
−n+

2
, h

(γ2γ1)
n−

1

)]
=

∫
C ′[h(γ2γ1)

n
−
1

, ynγ ]
pdq +

∫
C[y

n
+
1 +n

−
2

, h
(γ2γ1)

−n
+
2

]
pdq, (C12)
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where C is chosen to be the straight-line segment connecting
the end points, which is mapped to a near straight-line segment
C ′ under (n−

1 + n+
2 ) iterations, and

(vi) the sixth term,

lim
N→∞

[
F

(
h

(γ1)
0 , h

(γ1)
N

) − F
(
h

(γ2γ1)
n−

1
, h

(γ2γ1)
n−

1 +N

)]
=

∫
S[h

(γ1)
0 , h

(γ2γ1)

n
−
1

]
pdq. (C13)

Substituting Eqs. (C8)–(C13) into Eq. (C7) and rearranging
the terms eventually lead to

Fγ = nγF0 + �F0γ1γ20,0γ10 + �F0γ2γ10,0γ20

+A◦
CUSC ′[y0, h

(γ1γ2)

−n
+
1

, h
(γ1)
0 , h

(γ2γ1)

n
−
1

]

+A◦
CUSC ′[y

n
+
1 +n

−
2

, h
(γ2γ1)

−n
+
2

, h
(γ2)
0 , h

(γ1γ2)

n
−
2

]
(C14)

which is Eq. (35) in Sec. III C.
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