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Dynamics of coupled mode solitons in bursting neural networks
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Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly
coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff
modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation.
We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our
nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and
knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to
collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff
mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the
upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is
inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles
of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system
mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of
weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation
phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the
pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone
modes.
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I. INTRODUCTION

The evolution of cellular and subcellular processes operat-
ing on a hierarchy of time scales generates electrical activities
in cells. These processes interact nonlinearly to produce
complex temporal activities that are crucial for a holistic
physiological behavior in a neural network [1–16]. Within
this context, coupled systems play an important role. From
the biological perspective, coupled oscillators find applications
in: insulin secreting cells in the pancreas; pacemaker cells in
the heart; neural networks in the brain and spinal cord that
control such rhythmic behaviors as chewing, running, and
breathing [12–14]. Communication between neurons and other
biological oscillators takes place in a myriad of ways. In the
study of interactions between biological systems, the physical
basis of mechanism that governs the dynamics of coupled
oscillators to effectively describe most biophysical processes
in neural networks remains poorly understood.

The dynamics of nerve pulse propagation governed by
a system of nonlinearly coupled complex Ginzburg-Landau
(CCGL) equations provides a suitable platform to study
coupled mode waves in neural networks [17]. Nonlinear
dissipative media like: biological nerves, chemical reaction
and diffusion systems are best modeled by complex Ginzburg-
Landau (CGL) equations, which are essential for the under-
standing of various patterns [18–24]. In such systems, the
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combined influence of dispersion, self phase modulations,
linear and nonlinear gain and loss leads to the propagation
of localized solitary pulses [25,26]. Due to its high relevance
in coupled systems, the Hindmarsh-Rose (HR) model [27,28],
which is sometimes considered as the generalization of the
Fitzhugh equations [29], is a good candidate for the investi-
gation of such nonlinearly coupled phenomena. These mathe-
matically simplified systems emanated from the physiological
model of Hodgkin-Huxley [30].

The observations of nonlinear excitations and dissipative
solitons in neural networks [31,32], have greatly motivated
our interest on investigating coupled mode oscillations in
such systems. In fact, Moukam Kakmeni et al. in Ref. [31]
analytically showed that the propagation of modulated waves
in neural networks is governed by the modified CGL equa-
tion. This was a groundbreaking result because prior to the
publication, most scientists could only demonstrate this effect
numerically. We believe that, this model can also support
coupled modes dynamics, that are modelled by two nonlinearly
CCGL equations. By drawing inspiration from the Fermi,
Pasta, and Ulam (FPU) observation [33], the lower and upper
cutoff modes of wave propagation across the neural network,
modeled by the modified CGL equation, are superimposed to
analytically check the effects of coupled nonlinearity, which
can be considered similar to that of the chemical synaptic
coupling.

Because electrical signals are the basis of information
transfer in the nervous system, the understanding of neural
information processing will require a detailed characterization

2470-0045/2018/97(2)/022214(14) 022214-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.022214&domain=pdf&date_stamp=2018-02-15
https://doi.org/10.1103/PhysRevE.97.022214


NFOR, GHOMSI, AND MOUKAM KAKMENI PHYSICAL REVIEW E 97, 022214 (2018)

of how these signals evolve in nerve cells for sensory stimuli
and motor commands [1,2]. Coupled mode oscillations incor-
porates a highly flexible mechanism for neural information
processing, thereby providing an elegant tool for information
integration across several spatiotemporal coupled neuronal
networks [12,34–36]. Experimental data suggest that phase-
amplitude coupling in the brain is a superposition of low and
high frequency signals [37]. However, this phenomenon is
not well understood and will be the subject of the present
study. We analyze how strong continuous coupling between
lower and upper cutoff modes oscillations influences the
dynamics of a neural network, and more importantly, how
it impacts on the modes that contain the superposition of
the two extreme frequencies in the network. In fact, a neural
signal is composed of two distinct components [38–42]: (a) a
low-frequency component that is originated primarily by the
combined random electrical activities of the neural cells. It
is a slow varying signal and it has been shown that this
signal conveys some information about the state of rest of the
subject under test [43,44]; (b) a high-frequency component
called neural spike or action potential that indicates when a
neuron generates a short electrical pulse. These spikes are
correlated with living beings actions like moving one arm,
or associated with some emotions. Thus, a broadband neural
signal is the one that contains both low- and high-frequency
bands. This is the most interesting signal configuration for
neural research, since it preserves all the information of the
neural signal [38,42,44]. As, for example, the case of bursting
neurons, which are mostly composed of two main frequencies,
the burst frequency characterized by the period between two
spike in the dynamic state where the neuron repeatedly fires
discrete groups (high frequency) and the spiking frequency
defined by a period of quiescence before the next burst occurs
(low frequency) [27,28,31,45,46].

Note that, common models of nerve signal are based on
the one proposed by Hodgkin and Huxley in 1952 [30], who
explained that the nerve pulse or action potential is created by a
voltage difference across the cell membrane [27–29,31–34,45].
More recently, in 2005, Heimburg and Jackson proposed a
new theory saying that nerve signals are sound like density
wave [47]. Thus, nerve impulses are due to the lipids of
the cell membrane which, at their transition point, are able
to generate and propagate a localized short impulse [47].
Following this theory, the problem of collision and annihilation
of action potential traveling in opposite directions is very
controversial. In fact, in a recent work, A. Gonzalez-Perez
et al., reported on collision experiments and indicated that,
the collision of two impulses generated simultaneously in
orthodromic and antidromic directions, does not result in their
mutual annihilation. Instead, they penetrate each other and
emerge from the collision without material alterations of their
shape or velocity [48]. This result was in agreement with the
results on the electromechanical soliton theory for nerve-pulse
propagation proposed by Heimburg et al. [47]. Nevertheless,
this claim was immediately contested by R. W. Berg et al.
who in a similar experiment, obtained contradictory result
[6]. As reported in the literature since more than six decades,
action potentials annihilate upon collision [3,5–10,49,50]. In
the present study, we also addressed this question from a

theoretical and numerical perspective, and the results presented
are clearly in agreement with annihilation.

The rest of the work is organized as follows: In Sec. II,
from the diffusive HR model we derive the two nonlinearly
CCGL equations for the coupled modes. This is achieved by
superimposing the lower and upper cutoff modes in the disper-
sion relation and then applying the multiple scale expansion
in a semi-discrete approximation. We explore the modified
Hirota method in Sec. III to analytically obtain bright-bright
pulse soliton solutions of the nonlinearly CCGL equations. A
detailed numerical analysis of the nonlinearly CCGL system
is carried out in Sec. IV. A Linear stability analysis in Sec. V
shows that the nonlinear coupling favors the instability of plane
waves in the neural network. Section VI is devoted to the
numerical analysis of the discrete HR system to verify that
it supports the analytical solution obtained from the CCGL
equation. We end the work with a conclusion in Sec. VII.

II. THE MODEL AND DERIVATION OF THE
NONLINEARLY COUPLED EQUATIONS

The Hindmarsh-Rose model for neuronal activity is one
of the most widely studied parameterized three-dimensional
systems of ordinary differential equations. It arises as a
reduction of the conductance-based Hodgkin-Huxley model
for neural spiking [27,28]. The model has the capability
of exhibiting all qualitatively important and distinct kinds
of spiking and bursting behavior. Is arguably the simplest
reduction of Hodgkin-Huxley models [30]. In this work, we
consider networks of identical Hindmarsh-Rose (HR) neurons
symmetrically coupled in a linear way [31,45,46]. The equa-
tions governing the evolution of the system are

u̇n = μn − au3
n + bu2

n − vn + I + K(un+1 − 2un + un−1),

(1a)

μ̇n = c − du2
n − eμn, (1b)

v̇n = r[s(un − u0) − vn], (1c)

where n = 1,...,N . The coupling is on the variable un, which
plays the same role as the membrane potential in a biological
neuron. The parameter I plays the role of the input membrane
current in a biological neuron. It is capital in determining
whether the HR neuron describes various behaviors like qui-
escent, subthreshold, suprathreshold, or chaotic regime. The
variable μn accounts for the measure of the rate at which
transport of sodium and potassium ions is made through fast
ion channels, while vn is the bursting variable, taking into
consideration the rate of the transport of other ions like Cl−
and proteins anions. One of the main roles of this variable is
to control the rest period between two action potentials. The
variable un also defines the activities into the fast subsystem,
the variable μn is also called spiking variable and the variable
vn defines the activities into the slow subsystem [27,28,31].
The other parameters c, d, and e are constant parameters, and
the coupling strength of the gap junction between neurons is
represented by K .

To go further with the analysis, the system of Eqs. (1) is
transformed as developed in Ref. [31], and we thus obtain the
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Liénard form of the diffusive HR model as

ün + �2
0un + ε

(
εγ0 + γ1un + εγ2u

2
n

)
u̇n + ελ1u

2
n

+ ε2 γ2

3
u3

n + ε2λ3vn = D0(un+1 − 2un + un−1)

+ ε2D1(u̇n+1 − 2u̇n + u̇n−1), (2a)

v̇n + rvn − �2
0un = 0, (2b)

with ε being a perturbation parameter (ε << 0) introduced to
take into consideration the order at which each parameter of the
coupled system is linked to the slow variable that is maintained
into the system, since it defines the bursting behavior impor-
tant in this analysis. Equation (2a) is therefore the equation
regulating the dynamics of the membrane potential in the HR
coupled model, and it resembles the one governing the one
dimensional dynamics of the potential difference across the
cell membrane for a FitzHugh-Nagumo model [51]. Equation
(2b) describes the dynamics of the bursting variable, which
accounts for the rate at which the transport of some ions such
as Cl− and protein ions is done via slow ions channels.

A. Dispersion relation of wave propagation

There are always frequency limits within which normal
propagation of nerve impulse signals are observed across a neu-
ral network. Moreover, beyond these limits, the system needs
some external perturbations to have stable action potentials.
To define the appropriate frequency limit, we employ a pertur-
bation technique where suitable solutions of the diffusive HR
model containing the ε parameter are used. Upon substitution
of these solutions of the diffusive HR model into Eq. (2), the
dispersion relation is obtained with terms at order ε0eiθn . In
this light, we consider the following solutions of our coupled
HR model Eqs. (2):

un(t) = εφn + ψn eiθn + ψ∗
n e−iθn + ε[ρn e2iθn + ρ∗

n e−2iθn ],

(3)

vn(t) = εGn + Fn eiθn + F ∗
n e−iθn + ε[Hn e2iθn + H ∗

n e−2iθn ],

(4)

with θn = qn − ωt where q is the normal mode wave number
and ω is the angular velocity.

In this semidiscrete approximation φ, ψ , ρ (respectively, G,
F , H ) are supposedly independent of the “fast” variables t and
n. Instead, they depend on the “slow” variables defined byXi =
εix and Ti = εi t , for i � 1. A continuum limit approximation
is then made with the wave amplitudes while the discrete nature
of the phase in maintained. For instance ψn(t) is replaced by
ψ(X1,X2,...,T1,T2,...), while ψ̇n and ψn±1 are computed at
order ε2 using a Taylor series expansion. Similar expressions
hold for φn, ρn, Gn, Fn, and Hn, which are eventually used to
evaluate un and vn.

The ansatz considered in both Eqs. (3) and (4) is inherent
to the spirit of the multiple-scale expansion method: as the
differential operators in space and time domains are expanded
over two distinct perturbation scales (though the same pertur-
bation parameter is used, namely ε), the solution too should
be expanded. There is no universal order of truncation for
this expansion. Usually, the relevant highest-order term in

q0 1 2 3

ω

0.2
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0.5

Lower cutoff mode

Upper cutoff mode

FIG. 1. Linear dispersion curve of the nerve impulse for D0 =
0.04 and �2

0 = 0.032. There is a lower cutoff mode q = 0 with
frequency ω0 = �0 and upper cutoff mode q = π with frequency
ωmax = (�2

0 + 4D0)1/2.

the expansion is determined by the order of expansion of
the two differential operators. As elaborated in [31,52], upon
substitution of un and vn into Eq. (2a) and collecting terms
proportional to ε0eiθn , we obtain

ψ(−ω2) + ψ�2
0 = D0[ψeiq + ψe−iq − 2ψ],

which yields the dispersion relation

ω2 = �2
0 + 4D0 sin2

(
q

2

)
. (5)

From Eq. (5), the linear spectrum has a gap ωmin = �0 and
it is limited by the cutoff frequency ωmax = (�2

0 + 4D0)1/2 due
to discreteness as shown in Fig. 1.

The variation of the diffuseness of the plasma membrane
through the parameter D0, which is the dispersion coefficient,
physically accounts for the alteration of ions movement across
pumps and ion channels of the neural membranes. This motion
of ions coupled with the threshold frequency �0 in Eq. (5),
enables us to identify various frequency bands that are unique
to specific wave profiles, such as �: 1–4 Hz, θ : 4–8 Hz,
α: 8–12 Hz, β: 12–30 Hz, and γ : 30–70 Hz [11,53]. A
comprehensive neurophysiological mechanism that constrains
synchronization to a specific frequency band still remains
unclear. However, these oscillations represent ongoing and
spontaneous activities of the brain, as exhibited by different
neuronal organizations emerging from arrays of neuronal
tissues and cells in the brain [54]. In this work, we are
interested in a mode that contains the superposition of two
extreme frequencies in the system. That is, the lower cutoff
mode obtained for q = 0 (ωmin = �0) and the upper cutoff
mode obtained when q = π (ωmax = (�2

0 + 4D0)1/2). Thus,
in the following, we will establish the equations describing the
nonlinear wave propagation in these modes.

B. Deriving the nonlinearly coupled mode equations

Coupled modes oscillation (CMO) is generally used to
study the interdependence between low-frequency and high-
frequency neural activities. In the dynamics of real neural
networks, larger neural populations oscillate at low frequencies
while small neuronal ensembles operate at high frequencies
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[55], hence an in-depth knowledge of CMO would enhance
flexible coordination of neural activity in the entire network
in both spatial and time domains. Moreover, variations in
CMO patterns have been shown to be inextricably linked
to a myriad of neuronal disorders like Parkinson’s disease
[56,57], schizophrenia [58,59], and anxiety [60]. Since CMO
is ubiquitously observed in most neural networks [13,61,62],
it is important to rigorously investigate their effect with the
diffusive HR model. The principle behind this coupled-mode
system is basically to superimpose the lower and upper cutoff
modes. Note that at lower cutoff θ1n = q1n − ω1t , where
ω1 = �0, q1 = 0, and at upper cutoff mode θ2n = q2n − ω2t ,
with ω2 = (�2

0 + 4D0)1/2, q2 = π.

To derive the coupled-mode equations from the HR model,
we now approximate the solution of Eq. (2) in the form

un(t) = εφ1n + ψ1n eiθ1n + ψ∗
1n e−iθ1n

+ ε[ρ1n e2iθ1n + ρ∗
1n e−2iθ1n ] + εφ2n + ψ2n eiθ2n

+ψ∗
2n e−iθ2n + ε[ρ2n e2iθ2n + ρ∗

2n e−2iθ2n ], (6)

vn(t) = εG1n + F1n eiθ1n + F ∗
1n e−iθ1n

+ ε[H1n e2iθ1n + H ∗
1n e−2iθ1n ] + εG2n + F2n eiθ2n

+F ∗
2n e−iθ2n + ε[H2n e2iθ2n + H ∗

2n e−2iθ2n ]. (7)

By evaluating the expansion and derivatives of Eqs. (6)
and (7) (using multiple scale in the semidiscrete approach),
then substituting into Eq. (2a) and collecting terms of order
ε0eiθ1n and ε0eiθ2n , respectively, yields the confirmation of
cutoff frequencies ω1 and ω2 given above. Terms of order
ε1eiθ1n and ε1eiθ2n , respectively, generate ∂ψj

∂T1
+ vg

∂ψj

∂X1
= 0

for j = 1,2. But the group velocity vg vanishes, implying
that ψj is independent of the time scale T1. As highlighted
in Ref. [31], we collect terms without exponential depen-
dence to have the relation φj = −2λ1

�2
0

|ψj |2. Also terms pro-

portional to ε1e2iθ1n and ε1e2iθ2n enable us to, respectively,
have

ρ1 = (λ1 − iω1γ1)

3�2
0

ψ2
1 , (8a)

ρ2 = (λ1 − iω2γ1)

3
(
�2

0 + 16
3 D0

)ψ2
2 . (8b)

We now collect terms of order ε2eiθ1n and ε2eiθ2n to,
respectively, realize the coupled system of equations:

∂2ψ1

∂T 2
1

− 2iω1
∂ψ1

∂T2
= iω1γ0ψ1 + (iω1γ1 − 2λ1)(ψ1φ1 + ψ∗

1 ρ1) + (iω1 − 1)γ2|ψ1|2ψ1

+ (2λ1 − iγ2ω1)φ2ψ1 + 2γ2(1 − iω1)|ψ2|2ψ1 − λ3F1 + D0
∂2ψ1

∂X2
1

, (9a)

∂2ψ2

∂T 2
1

− 2iω2
∂ψ2

∂T2
= iω2γ0ψ2 + (iω2γ1 − 2λ1)(ψ2φ2 + ψ∗

2 ρ2) + (iω2 − 1)γ2|ψ2|2ψ2

+ (2λ1 − iγ2ω2)φ1ψ2 + 2γ2(1 − iω2)|ψ1|2ψ2 − λ3F2 + 4iω2D1ψ2 − D0
∂2ψ2

∂X2
1

. (9b)

Furthermore, we substitute the expansion and derivatives of
Eqs. (6) and (7) into Eq. (2b) and collect the following terms:

Terms proportional to ε0eiθ1n and ε0eiθ2n , respectively,
give

F1 = �2
0(r + iω1)

r2 + ω2
1

ψ1, (10a)

F2 = �2
0(r + iω2)

r2 + ω2
2

ψ2. (10b)

Terms of order ε1e0iθ1n and ε1e0iθ2n , respectively, yield

G1 = �2
0

r
φ1 = −2λ1

r
|ψ1|2, (11a)

G2 = �2
0

r
φ2 = −2λ1

r
|ψ2|2. (11b)

Terms of order ε1e2iθ1n and ε1e2iθ2n , respectively, generate

H1 = �2
0(r + 2iω1)

r2 + 4ω2
1

ρ1 = (r + 2iω1)(λ1 − iω1γ1)

3
(
r2 + 4ω2

1

) ψ2
1 ,

(12a)

H2 = �2
0(r + 2iω2)

r2 + 4ω2
2

ρ2 = �2
0(r + 2iω2)(λ1 − iω2γ1)(
r2 + 4ω2

2

)(
3�2

0 + 16D0
) ψ2

2 .

(12b)

Finally, we simplify the system of Eqs. (9) by substituting
the values of φj , ρj , and Fj obtained above to have

i
∂ψ1

∂T2
+ P1

2

∂2ψ1

∂X2
1

+ [Q1|ψ1|2 + C1|ψ2|2]ψ1 + i
R1

2
ψ1 = 0,

(13a)

i
∂ψ2

∂T2
+ P2

2

∂2ψ2

∂X2
1

+ [Q2|ψ2|2 + C2|ψ1|2]ψ2 + i
R2

2
ψ2 = 0,

(13b)
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which is a system of two nonlinearly CCGL equations. The
coefficients P1, P2,Q1,Q2, C1, C2, R1, and R2 are given in
Appendix A, with the dispersion coefficients P1, P2 being
purely real. Q1,Q2 are the complex self-phase modulation
(SPM) coefficients, while R1, R2 are the complex dissipative
coefficients that account for the linear gain or loss. Last,
C1, C2 are the nonlinear coupling coefficients responsible for
cross-phase modulation (XPM) and essentially affecting the
symmetry-breaking transformations of bright solitons [63].

For C1 = C2 = 0, we obtain the uncoupled complex
Ginzburg-Landau (CGL) equations. Generally speaking, the
CGL equation is one of the most-studied nonlinear equations
in the physics world today. This is because it gives a qualitative
and quantitative description of a myriad of physical activities
[18,31,64]. In neural networks, the observed propagation of
modulated nerve impulse is governed by the CGL equation,
which clearly demonstrates how neurons participate in the
processing and sharing of information [31]. Exact analytical
solutions for solitary pulses in models based on CGL equations
have already been obtained using a variety of techniques
[17–22]. Depending on the nonlinear interaction coefficients
Cj , two forms of wave emerge: standing stable plane waves or
traveling waves. Beside these waves, one can also observe am-
plitude death, complex localized pattern, and spatiotemporal
chaos for different values of Cj .

This nonlinearly CCGL system Eq. (13), finds applications
in many fields of coupled mode analysis. In the context of
hydrodynamics, it can be used to model the interaction of
counter-propagating waves under convection in binary-fluids
[65–70]. It is also prominent in oscillatory media [17] and
plasma physics [71] among many others. The usage of these
coupled mode equations in optics stands tall in a class of its
own. This is especially the case with the transition from single-
mode to multi-mode propagation of signals in fibers [72,73].
In our present investigation with nerve impulse propagation,
it mainly describes the activities at lower and upper cutoff
modes. Such multimode dynamics due to nonlinear coupling
has the potentials of distorting, filtering and stabilizing neural
impulse signals. Typically, two modes are always associated
with the first and second mode envelopes given by ψ1(X1,T2)
and ψ2(X1,T2), respectively.

III. ANALYTIC SOLUTION OF THE NONLINEARLY
COUPLED MODES EQUATION

It is now incumbent on us to find exact analytical solutions
of ψ1 and ψ2 in Eq. (13) for Cj �= 0. This can effectively be
achieved by using a special method initially introduced by
Hirota in 1971 [74].

A. The Modified Hirota operator and
its applications

Hirota developed a method for solving nonlinear equa-
tions without requiring the complex technique of inverse
scattering method. Concretely, the principle of the Hirota
bilinear method lies on the implementation of the Hirota
bilinear operator, which transforms the nonlinear evolution
equations into several coupled bilinear equations. This act
decomposes the original complicated equation into a series of

relatively simple equations [75,76]. Depending on the nature
of the physical problem, several modifications and improve-
ments are made to obtain an even larger class of nonlinear
waves.

To solve the nonlinearly CCGL Eq. (13), we use the
modified Hirota derivative proposed by Gholam-Ali et al. in
Ref. [77], and define

(
Dm

x Dn
t

)
(G.F ) =

[
∂

∂x
−

(
1

2
+ iαj

)
∂

∂x ′

]m

×
[

∂

∂t
−

(
1

2
+ iαj

)
∂

∂t ′

]n

×G(x,t)F (x ′,t ′)
∣∣∣∣
x=x ′,t=t ′

, (14)

�j (F.F ) =
(

1

2
+ iαj

)(
3

2
+ iαj

) (
FFxx − F 2

x

)
,j = 1,2,

(15)

where m and n are positive integers and αj with j = 1,2 are
real parameters.

We consider the transformations ψj (x,t) =
�j (x,t) exp(−iRji/2 t), P ′

j = Pj/2, �j = −Rjr/2, j = 1,2,
and set T2 = t, X1 = x, and use it to rewrite Eq. (13) as

i
∂�1

∂t
+ P ′

1
∂2�1

∂x2
+ [Q1|�1|2 + C1|�2|2]�1 = i�1�1,

(16a)

i
∂�2

∂t
+ P ′

2
∂2�2

∂x2
+ [Q2|�2|2 + C2|�1|2]�2 = i�2�2.

(16b)

The real coefficients P ′
1 and P ′

2 are the dispersion terms that
measure the diffusion of ions across the membrane. The real
parts of the complex coefficients Qj and Cj account for
the self and cross-phase modulations, respectively, while the
imaginary parts measure the nonlinear gain/loss. The linear
gain/loss of the coupled modes system is given by the real
coefficients �1 and �2.

To apply the modified Hirota method, we perform the
following transformations to the system of Eqs. (16):

�1 = ηG exp[i(k1x − �1t)]

F
1
2 +iα1

, �2 = μH exp[i(k2x − �2t)]

F
1
2 +iα2

.

(17)

Here, k1 and k2 are the wave numbers of the envelopes, �1

and �2 are the angular frequencies of the envelopes. The
wave numbers and the angular frequencies are not necessarily
interdependent, and F (x,t),G(x,t) and H (x,t) are assumed to
be real-valued functions while η = ηr + iηi and μ = μr + iμi

are complex numbers.
We substitute Eq. (17) into Eq. (16) and apply the modified

Bekki-Nozaki Hirota operators Eqs. (14) and (15) to have the
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system of equations: [
�1 + ι1 − iP ′

1k
2
1 + i�1 − Dα1,t − 2k1P

′
1Dα1,x + iP ′

1D
2
α1,x

]
(G.F ) = 0, (18a)

[ι1 + iP ′
1�1](F.F ) + [(Q1i − iQ1r )|η|2G2 + (C1i − iC1r )|μ|2H 2] = 0, (18b)[

�2 + ι2 − iP ′
2k

2
2 + i�2 − Dα2,t − 2k2P

′
2Dα2,x + iP ′

2D
2
α2,x

]
(H.F ) = 0, (18c)

[ι2 + iP ′
2�2](F.F ) + [(Q2i − iQ2r )|μ|2H 2 + (C2i − iC2r )|η|2G2] = 0, (18d)

where the normalization condition F/|F |( 1
2 +iαj ) = 1 is used

and ιj with j = 1,2 stand for decoupling constants.

B. Pulse-typed soliton solutions

To look for a pulse-typed soliton solutions of Eqs. (16),
functions G,H, and F are assumed to have the following
forms:

G = exp 1
2 (Rx + ωt), H = exp 1

2 (Rx + ωt),

F = 1 + bexp (Rx + ωt) + L exp 2(Rx + ωt). (19)

Equating the proper powers of the exponentials and neglecting
higher harmonic terms of the order exp 3(Rx + ωt) above, lead
to the following relations:

�1 = −R2P ′
1

4
+ k2

1P
′
1,

�2 = −R2P ′
2

4
+ k2

2P
′
2, R2 = �1

α1P
′
1

,

ω = −2Rk1P
′
1 + 2�1, k2 = Rk1P

′
1 − �1 + �2

RP ′
2

,

|η|2 = b
[
2α1C1r + C1i

(
α2

1 − 3/4
)]

�1

α1(Q1iC1r − Q1rC1i)
, ι1 = ι2 = 0,

|μ|2 = −b
[
2Q1rα1 + Q1i

(
α2

1 − 3/4
)]

�1

α1(Q1iC1r − Q1rC1i)
.

This pulse solution is subjected to the following constraints

�2 = α2P
′
2�1

α1P
′
1

, P ′
2 = α2P

′
1

[
R

(
4α2

1 + 1
) − 8α1k1

]
α1

[
R

(
4α2

2 + 1
) − 8α2k2

] ,

C2r = bR2
(
3/4 − α2

2

)
P ′

2

− bR2P ′
1

[
2Q1rα1 + Q1i

(
α2

1 − 3/4
)]

Q2r

Q1rC1i − Q1iC1r

,

C2i = 2bα2R
2P ′

2 − bR2P ′
1

[
2Q1rα1 + Q1i

(
α2

1 − 3/4
)]

Q2i

Q1rC1i − Q1iC1r

.

Finally, we obtain the amplitudes of the solutions of the
coupled Eq. (16) as

|�1(x,t)|2 = |η|2|e(Rx+ωt)|∣∣[1 + b e(Rx+ωt) − b2

2 e2(Rx+ωt)
]∣∣ , (20a)

|�2(x,t)|2 = |μ|2|e(Rx+ωt)|∣∣[1 + b e(Rx+ωt) − b2

2 e2(Rx+ωt)
]∣∣ . (20b)

Figures 2(a) and 2(d) depict the spatiotemporal evolution of
the coupled amplitudes in the neural network, while Figs. 2(b)

and 2(e), respectively, give the corresponding contour plots.
Last, Figs. 2(c) and 2(f) show the coupled solitary bright-bright
amplitudes generated in the spatial domain.

IV. NUMERICAL ANALYSIS OF THE COUPLED MODES
AMPLITUDE EQUATION

In this section, we numerically seek for solitary wave
solutions to the coupled mode amplitude Eqs. (16). It is note-
worthy to recall that small amplitude waves are linear, while
large amplitude oscillations are typically nonlinear in nature.
As the propagation of action potential takes place through a
neural network, two intrinsic properties of the medium, namely
nonlinearity and dispersion, may affect the evolution of the
nerve impulse. Nonlinearity tends to generate a steeper profile
of the nerve impulse while dispersion leans towards flattening
it. Generally, in Hamiltonian systems the balance between the
effects of nonlinearity and dispersion (or diffraction as the case
applies) is responsible for the emergence of solitons. However,
real biological neural systems are dissipative in nature, thus
rendering the dynamic balance between nonlinearity and dis-
persion insufficient for the observation of stable nerve impulse.
Consequently, we also require the additional balance between

FIG. 2. Spatiotemporal evolution of stationary bright-bright
solitary waves of solution Eq. (20) on left column and corresponding
contour plot on right column. This is for P ′

1 = −0.011,

Q1 = 0.7 + 1.2i, Q2 = −1.0 + 0.4i, C1 = −0.5 + 0.6i, �1 = 0.1,

α1 < 0, α2 < 0 . (a,b)|η|2 = 0.338, k1 = −14.0, b = 3.0, L = 4.5
(c,d)|μ|2 = 0.324, k1 = −14.0, b = 3.0, L = 4.5 (e, f)|η|2 = 0.338,

k1 = −28.0, b = 100.0, L = 5.0 (g,h)|μ|2 = 0.324, k1 = −28.0,

b = 100.0, L = 5.0 .
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FIG. 3. Dynamics of the lower and upper cutoff modes amplitudes
|�1| and |�2|, respectively, for the coupled system of Eq. (16). The
lower and upper cutoff modes |�1| and |�2| are both localized (static)
bright solitons with: (a) Three-dimensional evolution of |�1| on all the
computational domain, (b) upper view of |�1|, (c) profile of |�1| at all
times; (d) three-dimensional evolution of |�2|on all the computational
domain, (e) upper view of |�2|, (f) profile of |�2| at all times. The
parameter values are taken as: P

′
1 = 0.0000011, Q1 = 0.7 + 0.001i,

C1 = −0.5, �1 = 0.0001, P
′
2 = 0.0000011, Q2 = −1.0 + 0.001i,

C2 = 0.5, and �2 = 0.0001.

the gain and loss during the process of exchange of ions
between the intracellular and extracellular fluids of a neural
membrane and also between neighboring cells. Therefore,
capturing solitary wave solutions in dissipative systems is a
more challenging issue because of this double balance. In
some special cases, the effects of dissipation clearly dominates
that of linear dispersion, leading to a nonlinear diffusive
process because of the interplay between nonlinearity and
dissipation. Travelling pulses in dissipative media are some
times termed dissipative solitons, and were first predicted
to exist in reaction-diffusion systems [78]. In our current
investigation, the comforting and motivating factor about this
numerical investigation of dissipative soliton solutions is that,
when the double balance is achieved, the resultant solitary
waves are extremely robust. They represent stable structures
in the nonlinear system, that exist far from equilibrium.

Solitons generally remain unchanged during interactions,
but suffer only a minor phase shift [79,80]. Consequently, they
can be looked upon as modes of the system, used to solve
initial-value problems by employing a nonlinear superposition
of modes [81]. In Sec. III, we rigorously showed that the
nonlinearly coupled system Eq. (16) supports pulse-typed
soliton solutions. It is therefore natural for us to consider
solution Eq. (20) as the initial condition for our numerical
scheme. In the light of this, we perform two main numerical
analysis by initially considering the “bell-shaped” hyperbolic
secant envelope solution Eq. (20) for both |�1| and |�2|. Sub-
sequently, we perform a similar analysis using two different
ansatzs: a “bell-shaped” hyperbolic secant envelope for |�1|
on one hand, and a weak amplitude plane wane for |�2| on
the other hand. This is achieved by considering a partition of

FIG. 4. Dynamics of the lower and upper cutoff modes amplitudes
|�1| and |�2|, respectively, for the coupled system of Eqs. (16). The
lower cutoff mode |�1| is a bisoliton propagating through the medium
and the upper cutoff mode |�2| is a set of two kinks: a kink and
an antikink propagating through the medium. (a) Three-dimensional
evolution of |�1| on all the computational domain, (b) upper view of
|�1|, (c) profiles of |�1| at three different times; (d) three-dimensional
evolution of |�2| on all the computational domain, (e) upper view of
|�2|, (f) profiles of |�2| at three different times. The parameter values
are taken as: P

′
1 = −0.000011, Q1 = 0.7 + 1.2i, C1 = −0.5 + 0.6i,

�1 = 0.1, P
′
2 = −0.000011, Q2 = −0.1 + 0.4i, C2 = −0.5 + 0.6i,

and �2 = 0.1.

500 points in a one-dimensional spatial domain [−L,L], with
a time step of 0.1 and a spatial step of 0.2. The numerical
investigation on the system of coupled partial differential
Eqs. (16), is based on the finite difference scheme where we
take L = 50 and impose periodic boundary conditions.

Starting with two “bell-shaped” hyperbolic secant ansatzs
depicted in Fig. 2 as initial conditions, localized (static) solitons
solutions can be obtained for both modes |�1| and |�2|, as
shown in Fig. 3. Figures 3(a) and Fig. 3(d) show the three-
dimensional spatiotemporal evolution of the lower and upper
cutoff modes, respectively, in all the computational domain.
Their corresponding upper views are presented in Figs. 3(b)
and 3(e), respectively. The related profiles of |�1| and |�2|
are also highlighted in Figs. 3(c) and 3(f), respectively. These
observations clearly reaffirms that the coupled system Eqs. (16)
support localized modes.

A further numerical treatment of our problem indicates in
Fig. 4 that under suitable parameter conditions, interesting
events of excitation propagation can occur. Indeed Fig. 4(a)
reveals that, starting from a hyperbolic secant soliton solu-
tion, the lower cutoff mode can break down into a bisoliton
propagating (in opposite directions) in the spatial domain.
An upper view of this phenomenon is depicted in Fig. 4(b).
Figure 4(c) supports this fact by showing the profiles of this
wave at different propagation times. This clearly reinforces
the observation experimentally made in Ref. [82], where the
pulse-typed soliton that mimics the action potential eventually
degenerate into two axonal propagation in opposite directions.
The nonlinear coupling immediately triggers the hyperbolic
secant ansatz of the upper cutoff mode |�2| to evolve into
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two propagating kinks. That is, a kink moving toward the
left while an antikink migrates to the right as portrayed on
Fig. 4(f); with their respective profiles obtained at different
values of time. This type of solutions are also termed flat-top
solitons as the soliton in the course of time becomes wider and
flatter [83]. An upper view of this propagation phenomenon
is presented in Fig. 4(e), together with its spatiotemporal
evolution in the entire spatial domain shown in Fig. 4(d).
Figure 4 clearly stresses the coexistence and propagation of
a bisoliton wave for the lower cutoff mode, together with
two propagating kinks at the upper cutoff mode. An intense
observation of these propagating modes in |�1| and |�2|
reveals that when reaching the boundary of the medium in
the neural network, the bisoliton waves collide and annihilate
each other. This has damaging effects on the transmission of
neuronal information in the network at lower cutoff mode.
By neural information, we mean action potential. Note that,
neural information is simply action potential which is the
variation of transmembrane voltage, triggered by complex
physiological mechanisms controlling the opening and closing
of selective ion channels. Each action potential is encoded with
specific instruction for effectors organs such as muscles or
glands. The action potential is the main signalling mechanism
to activate synaptic transmission at axon terminals. In fact,
the dynamic structure of electrical activities in the nervous
system is information rich, with action potentials consid-
ered by most neuroscientists to form the basis of electrical
signalling [1–4].

Fortunately, the two propagating kinks at the upper cutoff
mode also collide at the boundary of the spatial domain at the
same time of bisoliton annihilation. This collision obliterates
their structures and gives rise to the emergence of a plane
wave with the same amplitude as that of the two kinks [an
amplitude which saturates at the value of 0.5 as observed
on Fig. 4(f)], which subsequently continues to propagate all
through the spatial domain without any alteration. The system
supported just the upper cutoff mode after the collision since
the lower cutoff mode was completely annihilated. In fact,
subsequent to the collision, the amplitude of the lower cutoff
mode vanishes. Consequently, Eq. (16a) cancels out, and the
HR neural network is now governed by a single (uncoupled)
complex Ginzburg-Landau equation as obtained in Ref. [31]
while analyzing the single mode equation. This single mode
complex Ginzburg-Landau equation has been shown to support
stable plane waves [31]. Indeed, these observations typically
suggest that, prior to the collision, the information in the
neuronal network may be carried by the lower cutoff mode via
the propagation of a bisoliton wave, while after the collision,
the lower cutoff mode disappears and the information is now
relayed by the upper cutoff mode through the propagation
of a plane wave. These results are in agreement with the
results obtained experimentally by Follmann et al. [82] using
compartmental axon model. Similar results in other works also
indicate that all action potential collisions result in annihilation,
and that action potentials traveling in opposite directions never
crossed [3,5–10,49,50]. This clearly reinforces the idea of
refractory period preventing the crossing of action potential.
The action potentials at lower and upper cutoff modes de-
veloped in this work further support the conclusion from the
Hodgkin-Huxley model [30,82]. Our results also confirm the

FIG. 5. Effect of the linear gain � = �1 = �2 on the dynamics
of the lower and upper cutoff modes |�1| and |�2|, respectively, for
the coupled system of Eqs. (16). (a, d) � = 0.2, (b, e) � = 0.3, (c,
f) � = 0.4. These figures suggest that an increase in the linear gain
increases the propagation velocities of the bisoliton and the two-kinks
structures. The other parameter values are as on Fig. 4.

possibility that neuronal action potentials depicting solitonlike
behavior, annihilate during collisions under certain conditions
[6,49,50].

Interestingly, Fig. 5 shows the impact of the linear gain
on the propagation velocities of both the bisoliton and
the two-kinks structures. On this figure, we display the
upper views of the propagating coupled modes for different
values of the linear gain �. For the sake of simplicity and
without loss of generality, we assume that �1 = �2 = �. The
most important features highlighted on these figures are the
times for which both the bisoliton and the two-kinks waves
leave the spatial domain. Figures 5(a) and 5(d) correspond to
the upper views of the bisoliton and the two kinks for the value
of the linear gain � = 0.2. It is observed that the waves require
a propagation time duration slightly above the value of the
time t = 200, before they can completely leave the neuronal
network through its boundaries. Similarly, Figs. 5(b) and 5(e)
both correspond to the value of � = 0.3 and show that the
propagation time of the waves in this case is strictly found
between t = 150 and t = 200 (i.e., 150 < t < 200), indicating
that the propagating waves are moving faster, as they take
a lesser time to completely leave the medium as compared
to what was noticed in the case of � = 0.2. A subsequent
increase in the linear gain to � = 0.4 shows in Figs. 5(c)
and 5(f) that the new total propagation time is strictly found
between t = 100 and t = 150, indicating once more that the
wave structures are moving faster than what was observed
earlier at the two initial values of � = 0.2 and � = 0.3. At
the same time, we observe through the color bars in Fig. 5 that
there is a trend that the amplitudes of the different propagating
modes also increase with an increase in the linear gain. A
confirmation of these facts is highlighted on Fig. 6, where we
plot the amplitude [Fig. 6(a)], the total propagation time τp

[Fig. 6(b)], and the velocity vp [Fig. 6(c)] of the bisoliton and
two-kinks waves as a function of the linear gain �. Figure 6(a)
shows that as � increases, the amplitudes of both the bisoliton
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FIG. 6. Effect of the linear gain � = �1 = �2 on (a) the ampli-
tudes of the bisoliton (in blue) and the two kinks (in red), (b) the
total propagation time of both the bisoliton and the two kinks, (c) the
propagation velocity of both the bisoliton and the two kinks. The other
parameter values are as on Fig. 4.

(in blue online) and of the two kinks (in red online) increase.
Figure 6(b) shows that as � increases, the total propagation
time of both wave structures decreases tremendously, as a ho-
mographic function of the linear gain. This fact is supported by
Fig. 6(c) where we observe that as � increases, the propagation
velocity of both coupled modes increases notably. Therefore,
we can conclude that an increase in the linear gain � boosts the
propagation velocities of both the bisoliton and the two kinks.
The rise in the velocities also leads to a corresponding increase
in the amplitude of the different soliton structures, hence
rendering them to have sharper profiles. Finally, results from
Figs. 5 and 6 clearly establish that the linear gain � is inextrica-
bly linked to the complex electrochemical mechanisms which
controls the opening and closing of selective ion channels [30].
It is important to note that the linear gain � is directly related to
the burst variable of the model. The phenomenological neuron
model used here shows that spiking-bursting behavior is of
capital importance in the transmissions of information in neural
systems since it amplifies the amplitude and the velocity of
the action potential, and reduces its propagation time. This
is mainly due to the fact that there are many hypotheses
on the importance of bursting activity in neural transmission
[27,28]. Bursts overcome synaptic transmission failure, facil-
itate transmitter release, whereas single spikes do not, can be
used for selective communication if the postsynaptic cells have
subthreshold oscillations of membrane potential, have more
informational content than single spikes when analyzed as
unitary events [28,31,34].

For the second phase of our numerical analysis, it is crucial
to investigate on the condition when the amplitude of the neural
signal of one of the modes is very weak compared to the
other. For this purpose, we chose the upper cutoff mode to be
very weak relative to that at lower cutoff mode. Consequently,
the nonlinear term |�2|2 may be neglected, thereby reducing
Eqs. (16) to

i
∂�1

∂T2
+ P

′
1
∂2�1

∂X2
1

+ Q1|�1|2�1 − i�1�1 = 0, (21a)

FIG. 7. Dynamics of the lower and upper cutoff modes amplitudes
|�1| and |�2|, respectively, for the coupled system of Eqs. (21).
The lower cutoff mode |�1| is a localized (static) bright soliton
and the upper cutoff mode |�2| is a set of two static kinks: a kink
and an antikink emanating from an unstable plane wave and an
evanescent dark soliton. (a) Three-dimensional evolution of |�1| on
all the computational domain, (b) upper view of |�1|, (c) profiles of
|�1| at all times; (d) three-dimensional evolution of |�2| on all the
computational domain, (e) upper view of |�2|, (f) profiles of |�2|
at three different times. The parameter values are taken as: P

′
1 =

0.000011, Q1 = 0.02 + 0.0001i, �1 = 0.000001, P
′
2 = 0.000011,

C2 = −0.5 + 0.6i, and �2 = 0.000001.

i
∂�2

∂T2
+ P

′
2
∂2�2

∂X2
1

+ C2|�1|2�2 − i�2�2 = 0. (21b)

Thus, as it stands, the nonlinearity in the dynamics of the upper
cutoff mode |�2| is therefore induced by the lower cutoff mode
via the term |�1|2. Starting our numerical investigation from
a hyperbolic secant ansatz for |�1| and a small amplitude
plane wave for |�2|, we equally observe some remarkable
soliton solution structures as depicted in Fig. 7. Under suitable
coupling conditions, the lower cutoff mode yields a static
bright soliton, whose numerical observation through all the
computational domain is shown in Fig. 7(a). Its corresponding
upper view and profile are presented in Figs. 7(b) and 7(c),
respectively. At the same time, the upper cutoff mode |�2|
evolves as shown in Fig. 7(d). Starting from a weak amplitude
plane wave [see black line in Fig. 7(f)], it first evolves towards
an unstable dark soliton as depicted in Fig. 7(f) (blue line
online). This unstable dark soliton is then in a transient mode
because it subsequently collapses into two static kinks as
depicted (by the red line online) in Fig. 7(f). An upper cross-
sectional view of this phenomenon is shown in Fig. 7(e).

V. STABILITY ANALYSIS OF THE COUPLED MODE
EQUATIONS

Stability is a crucial property of a wave profile in a neural
network, since it determines whether such a pattern can be
observed experimentally, or utilized for diagnostic purposes.
Let us recall that the phenomenon of modulational instability
results when a steady-state solution is subjected to a weak
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perturbation, which eventually leads to its exponential growth
along the line of propagation. We investigate the linear stability
analysis of constant amplitude coupled modes of Eq. (13) by
seeking an equilibrium state of the form ψj = ψj0e

iωj t . Where
ψj0,j = 1,2, is a real constant amplitude and T2 → t, X1 →
x for convenience of notation. This gives ωj = Qj |ψj0|2 +
Cj |ψl0|2 + iRj/2, for j �= l = 1,2.

Let us consider a small perturbation around the stationary
state defined above by taking [84]

ψj = (ψj0 + εj (x,t))eiωj t , (22)

where εj � ψj0 is a complex number that includes both
amplitude and phase corrections. Substituting Eq. (22) in
Eq. (13), we obtain the first-order approximation,

i
∂εj

∂t
+ Pj

2

∂2εj

∂x2
+ Qj |ψj0|2Aj + Cjψj0ψl0Al = 0, (23)

where Aj = (εj + ε∗
j ) and Al = (εl + ε∗

l ).
Without loss of generality, we set �2

0 = λ1, γ1 = γ2 and
assume minimal dispersion in the neural network; i.e., D0 <<

�2
0. Consequently, the coefficients Qj and Cj becomes purely

real. This is physically acceptable because the effects of the
nonlinear gain/loss on the small perturbation εj around the
steady state solution are negligible in the neural network. Upon
substitution of εj = α′

j + iβ ′
j into Eq. (23), the imaginary part

yields

∂α′
j

∂t
+ Pj

2

∂2β ′
j

∂x2
= 0, (24)

while the real part gives

−∂β ′
j

∂t
+ Pj

2

∂2α′
j

∂x2
+ 2Qjr |ψj0|2α′

j + 2Cjrψj0ψl0α
′
l = 0.

(25)

The general solution of the linear system Eq. (24) can
be obtained analytically by considering the ansatz α′

j =
α′

j0 exp[i(k′x − �′t)], and we get

β ′
j = − 2i�′

Pjk′2 α′
j , (26)

where �′ and k′ are, respectively, the frequency and propaga-
tion constant of the modulated wave.

We now substitute α′
j and β ′

j into Eq. (25) to obtain the
linearly coupled system,(

m11 m12

m21 m22

)(
α′

10
α′

20

)
=

(
0
0

)
, (27)

with

m11 = 2�′2

P1k′2 − P1k
′2

2
+ 2Q1r |ψ10|2,

m12 = 2C1rψ10ψ20,

m21 = 2C2rψ20ψ10,

m22 = 2�′2

P2k′2 − P2k
′2

2
+ 2Q2r |ψ20|2.

The dispersion relation is obtained from the solvability
condition of the homogeneous matrix Eq. (27), when the

determinant of the coefficient matrix vanishes. Finally, we
obtain the dispersion relation of the amplitude modulation of
the plane wave as(

�′2 − �′2
1

)(
�′2 − �′2

2

) = �′2
12�

′2
21, (28)

where �′4
c = �′2

12�
′2
21, �′2

1 = P1k
′2

2 ( P1k
′2

2 − 2Q1r |ψ10|2),

�′2
2 = P2k

′2
2 ( P2k

′2
2 − 2Q2r |ψ20|2), �′2

12 =
P1C1r |ψ10|2k′2, �′2

21 = P2C2r |ψ20|2k′2.
The dispersion relation Eq. (28) obeys the biquadratic

polynomial equation

�′4 − T �′2 + D = 0, (29)

with solution

�′2
± = 1

2 [T ± (T 2 − 4D)1/2], (30)

or

�′2
± = 1

2

(
�′2

1 + �′2
2

) ± 1
2

[(
�′2

1 − �′2
2

)2 + 4�′2
12�

′2
21

]1/2
,

(31)

where T = �′2
1 + �′2

2 and D = �′2
1 �′2

2 − �′2
12�

′2
21. The right-

hand side of Eq. (31) is real or complex if the discriminant
quantity � = T 2 − 4D is positive or negative, respectively.

For any wave number k′, stability is guaranteed if both
solutions �′2

± are positive. This is valid provided the conditions
T > 0, D > 0, and � > 0 are satisfied.

First, we have that T = k′2/2
∑2

j=1 P 2
j ( k′2

2 − 2 Qjr

Pj
|ψj0|2),

where P1 > 0 and P2 < 0. This quantity is positive for any ψj0

and k′. Stability means

Q2r > Q1r , Q1r > 0. (32)

Second, D is an 8th-order polynomial in k′ which
can be factorized as D ∼ (k′4 + b′k′2 + c′), where
b′ = −4

∑2
j=1

Qjr

Pj
|ψj0|2 and c′ = −16 |ψ10|2|ψ20|2

P 1P2
(C1rC2r −

Q1rQ2r ) with b′2 − 4c′ > 0. For D to be positive (for any
value of k′ > 0 which depicts stability), this implies that
b′ > 0 and c′ > 0. since P1P2 < 0, this boils down to

C1rC2r − Q1rQ2r > 0. (33)

Finally, � > 0 is ensured for every value of k′ and |ψj0|
provided P1P2C1rC2r |ψ10|2|ψ20|2 > 0. Since P1P2 < 0, this
condition yields

C1rC2r < 0. (34)

Clearly, conditions Eqs. (32) and (33) are inconsistent with
Eq. (34). This shows that the perturbation frequency develops
a finite imaginary part and the solution blows up in time. The
coupled mode system is therefore modulationally unstable,
explaining thus the existence of spatially localized wave
profiles. Transmission of neural information by plane waves
in the coupled system is therefore very unreliable, as depicted
in Fig. 7(f), where the plane waves rapidly degenerates to a
dark soliton and then static kinks.
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FIG. 8. Membrane (or action) potential solutions of the discrete
HR Eqs. (2) in two different parameters conditions. The upper figures
depict a stationary localized pulse: (a) Three-dimensional view,
(b) upper view, (c) profile at all times. The parameters values are: k1 =
−14.0, �1 = 0.35, ω1 = 0.179, α1 = 0.15, k2 = −14.0, �2 = 0.35,
ω2 = 0.438, α2 = 0.15, r = 0.85202862571, λ1 = 0.01, λ3 = 0.01,
�2

0 = 0.32, b = 3.0, L = 50, R = 3.0, ω = 0.00001061064, γ0 =
721.0, γ1 = 0.00001, γ2 = −0.05, D0 = 0.002, D1 = 0.002. The
lower figures depicts a spatially localized standing wave with a time
period of about 706 time units: (d) Three-dimensional view, (e) upper
view, (f) profiles of the wave at different times. The parameters values
are the same as in the upper figures, with γ0 = 0.0 and �2

0 = 1.49.

VI. NUMERICAL ANALYSIS OF THE LIENARD FORM OF
THE DIFFUSIVE HR MODEL: EXCITABILITY AND

COLLISION

The aim of this section is to ascertain the ability of the
original HR neuronal network model to support the types of
solutions obtained in Sec. IV, as depicted by the numerical
treatment of the amplitude equations. For the purpose of
this investigation, we integrate the set of Eqs. (2), using the
fifth-order Runge-Kutta scheme with a time step of 0.01,
on a spatial domain supporting N = 101 dynamical units,
with periodic boundary conditions. To solve this initial value
problem, we take as initial condition the analytical solutions
un and vn obtained by using the modified Hirota deriva-
tives and presented as Eqs. (B2) and (B3) in Appendix B.
These solutions embed both lower and upper cutoff modes
features.

On the upper part of Fig. 8, it is observed that after sending
the pulse Ansatz in the system, the structure preserves this
excitation state permanently, with no event of propagation, for
the given set of the system parameters values. This suggests
that stationary localized pulses are accessible for our biological
system. This solution is indeed an asymmetric localized solu-
tion which intimates the existence of a stable stationary bright
envelope soliton solution for our discrete HR model equations.
Figures 8(a), 8(b), and 8(c) show, respectively, the three-
dimensional spatiotemporal display, the upper view, and the
profile of this static pulse solution at all times. It is noteworthy
that in other parameter conditions, this pulse solution turns into
a localized standing wave with a spatial profile which repeats

FIG. 9. Membrane (or action) potential solutions of the discrete
HR Eqs. (2). The figures depict a Bi-pulse solution traveling in oppo-
site directions, yielding after collision a spatially localized stationary
quadripulse or spikes. (a) Three-dimensional view, (b) upper view, (c)
profile at all times. The parameters values are the same as in Fig. 8,
with γ0 = 724.0 and �2

0 = 1.49.

itself after about 706 time units. Therefore, the temporal period
of this standing wave is T ≈ 7.06. These facts are highlighted
on Figs. 8(d), 8(e), and 8(f). Figure 8(f) shows the standing
wave profiles at different times.

Interestingly, a further numerical study in other parameters
conditions, exhibits scenarios whereby, subsequent to the
insertion of the Ansatz, it looses its stability and breaks down
into a bipulse (that is two pulses) propagating in opposite
directions within the lattice. This phenomenon is observed on
Fig. 9. For the given lattice setting, due to the imposed periodic
boundary conditions, these two pulses collide at the boundaries
of the neuronal lattice and annihilate each other, while leaving
in the lattice a stable localized stationary multipulse solution.
This multipulse solution is indeed a quadripulse, which can be
perceived as being indicative of a localized firing state, with the
occurrence of spatially localized static spiking structures in the
neuronal network, as shown on Fig. 9(f). These localized static
spikes structure in the neural network are well known as static
internal modes and are also called Goldstone modes. They are
present in any system with a broken continuous symmetry.
These Goldstone modes can become the dominant low-energy
excitation, showing that symmetry breaking has a profound im-
pact on the physical properties of the HR neural network [85].

The phenomena of wave collision and annihilation depicted
in this framework were previously reported in the case of
the amplitude equations. Therefore, in agreement with the
results derived in Sec. IV, we have shown beyond any
reasonable doubt that, our Liénard form of the diffusive HR
neuronal model supports coupled modes solutions, with the
emergence of a remarkable set of wave phenomena which
includes localized stationary pulses, standing waves, bipulse
propagation with collision and annihilation events, and the
appearance of spatially localized spiking states in the form of
multipulse solutions.
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VII. CONCLUSION

Communication in a neural network is usually effected by
the propagation of action potentials along the fiber of the
nerve cells, which has been long thought of as a unidirectional
phenomenon. Our current study addressing the crucial issue
of multimode propagation of action potentials, where results
of the numerical simulations clearly depicts the evolution of
action potential in two opposite directions along the nerve
axon is of capital importance in the understanding of signal
propagation in neural systems. We made use of the axonal
multicompartment HR model, where neurons are connected to
their nearest neighbors via electrical coupling in a linear chain
format. The nonlinearly CCGL equations were later on derived
from the Liénard form of the HR model using the multiple scale
expansion in the semidiscrete approximation. Such nonlinearly
coupled equations elegantly describe the evolution of coupled
mode solitons, which are copropagating and interacting with
one another in a neural network. We analytically solved the
nonlinearly CCGL equations using the modified Hirota bilinear
method, which imposes some constraints on the coefficients
of the coupled equations. The bright pulse solutions obtained
mimic the nerve impulses observed in a neural network, and we
believe this study will go a long way to improve the knowledge
on coupled modes oscillations in neural networks. Generally,
coherent vibrations of coupled oscillatory neural activity result
in amplitude changes like the synchronization of membrane
potential fluctuations of individual neurons [86]. We observed
the propagation of bisolitons in opposite directions at the lower
cutoff mode, while the upper cutoff mode supports a kink and
an antikink propagation. Upon collision at the boundaries of the
network, there is complete annihilation of the bisolitons while
the kinks evolve into propagating plane waves. The results sug-
gested that neural information is mainly transmitted at lower
cutoff mode by the bisolitons prior to collisions at boundaries.
After collision, the transmission of neural information in the
coupled system is therefore managed at upper cutoff mode via
plane waves. This was a very interesting result because in most
systems, neural information is completely lost after collision.
The linear gain was also shown to play vital physiological
roles during the exchange of ions across membranes. This is
because by varying the linear gain �, we saw how the speed
and profiles of the action potential was greatly modified. The
linear stability analysis of the coupled system shows that,
it does not support the propagation of stable plane waves.
However, It should be noted that during the propagation of
stable plane waves in the neural network, only the upper cut
off mode existed. That is, the system supported just this mode
since the lower cutoff mode was completely annihilated after
collision. Interestingly, the numerical analysis of the discrete
system confirmed that it supports the solutions obtained in
the continuum approximation (CCGL). Numerical simulations
also confirmed the annihilation of two pulses colliding at the
boundaries of the neuronal lattice, while leaving in the lattice
a stable localized stationary multi-pulse solution. This thus
demonstrated the robustness of the bisoliton and confirmed
the fact that the HR network supports the presence of static
internal modes.
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APPENDIX A

P1 = D0

ω1
,

P2 = −D0

ω2
,

Q1 = Q1r + iQ1i ,

Q2 = Q2r + iQ2i ,

C1 = C1r + iC1i ,

C2 = C2r + iC2i ,

R1 = R1r + iR1i ,

R2 = R2r + iR2i .
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R1i = rλ3�
2
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(
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) ,

R2r = γ0 + 4D1 − λ3�
2
0

r2 + ω2
2

,

R2i = rλ3�
2
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(
r2 + ω2

2

) .
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APPENDIX B

By using the modified Hirota derivatives, the appropriate solutions of the nonlinearly CCGL system Eq. (13) now reads

ψ1 = F−1/2G(ηr + iηi) exp
{
i(k1x − R1i t

2
− �1t − α1 ln F )

}
, (B1a)

ψ2 = F−1/2H (μr + iμi) exp
{
i(k2x − R2i t

2
− �2t − α2 ln F )

}
. (B1b)

We now obtain a refined analytic form of the propagating coupled nerve impulse un(t) and its corresponding bursting component
vn(t) as

un(t) = −2ελ1

|F |�2
0

[G2 + H 2] + 2F−1/2Gcos(�1) + 2ε

3�2
0

F−1G2{λ1 cos(2�1) − ω1γ1 sin(2�1)}

+ 2F−1/2H cos(�2) + 2ε

3�2
0 + 16D0

F−1H 2{λ1 cos(2�2) − ω2γ1 sin(2�2)}, (B2)

vn(t) = −2ελ1

|F |r [G2 + H 2] + 2�2
0

r2 + ω2
1

F−1/2G{r cos(�1) − ω1 sin(�1)}

+ 2ε

3
(
r2 + 4ω2

1

)F−1G2
{(

rλ1 + 2ω2
1γ1

)
cos (2�1) − ω1(2λ1 − rγ1)sin(2�1)

}

+ 2�2
0

r2 + ω2
2

F−1/2H {r cos(�2) − ω2 sin(�2)}

+ 2ε�2
0(

r2 + 4ω2
2

)(
3�2

0 + 16D0
)F−1H 2

{(
rλ1 + 2ω2

2γ1
)
cos(2�2) − ω2(2λ1 − rγ1)sin(2�2)

}
, (B3)

where

�j = kjx − Rjit

2
− �j t − αj ln F + θjn, j = 1,2,

and without loss of generality, we set η = 1 + 0i, μ = 1 + 0i to ease numerical computations. �j can always be transformed
back to the original reference coordinates, which contains the ε, n, and t parameters to obtain

�1 = ε k1n −
[
ε2 R1i

2
+ ε2�1 + ω1

]
t − α1 ln F, (B4a)

�2 = [ε k2 + π ]n −
[
ε2 R2i

2
+ ε2�2 + ω2

]
t − α2 ln F. (B4b)

This enables us to plot the various spatial profiles of the propagating coupled modes nerve impulses un(t) and the bursting
variable vn(t).
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