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Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with
self-regulated kinetics
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We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time
evolution of concentration of a species at any spatial location depends on the relative average concentration of
its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the
inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to
symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise
strength and the linear reaction terms has been analyzed for pattern selection.
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I. INTRODUCTION

Diffusion-induced instability of a homogeneous steady
state under far from equilibrium condition forms the basis
of the theory of morphogenesis proposed by Turing around
the middle of the last century. This instability is caused by
short-range activation and long range diffusion of the two
chemically interacting species which are governed by reaction-
diffusion equations [1–10]. Turing theory and its variants
have been applied to several areas of physical, chemical, and
biological sciences to understand a wide class of self-organized
structures, e.g., waves, targets, spirals, stationary, and non-
stationary patterns [1,2,11–15]. This has been the subject of
a large body of literature over the last several decades. We
refer to [1–15] for further details.

To put the present work in an appropriate perspective we
begin with a note that the kinetics of two interacting species is
an intrinsic characteristic of the reaction itself and the change in
concentration of any one of them at a spatial location depends
on their concentration at that site and hence the kinetics is local
in nature. It is the diffusion that couples the concentration at the
two different sites. In this paper we consider a class of kinetics,
where the change in concentration of a species at a spatial loca-
tion is guided by the average concentration of the two species
around its immediate neighborhood. Thus the time evolution of
concentration of the species is non-local and self-regulating in
nature. This self-regulating kinetics has a close resemblance
to self-propelled character of dynamical motion extensively
studied in the context of collective behavior of a system
of interacting particles resulting in an interesting class of
phenomena of self-organization [16–19], e.g., bird flocks, fish
schools, animal herds, movement of crowds, in general referred
to as ‘flocking’. These particles move at discrete time steps with
constant speed and depending on the average alignment of their
neighbors within an intermediate range of radius of interaction,
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align with them [16]. It is in this spirit that the kinetics of
the reaction-diffusion system considered here is self-regulatory
and points towards a close correspondence to the self-propelled
dynamical motion of the particles undergoing flocking. We
push this correspondence a little bit further to inquire whether
symmetry-breaking of an homogeneous state can arise due
to non-equilibrium transition in the reaction-diffusion system
of two species following self-regulatory kinetics in the same
way as symmetry-breaking gives rise to collective coherent
behavior of a system of self-propelled particles, due to order-
disorder non-equilibrium transition.

An important element in the study of the traditional
reaction-diffusion systems is that they are, in general, non-
linear in nature. The stability analysis of these systems is
based on linearization of the equations around the steady
state and depending on the nature of bifurcation one is led to
varying spatio-temporal scenarios, like waves, stationary, and
non-stationary pattern formation. In his original analysis of
stationary patterns and wave instability, Turing [1] considered
a simple linear system of two chemically interacting species
with diffusion. However, such a system although predicts
initiation of instability due to differential diffusivity under
certain constraints, is characterized by exponential divergence,
and neither saturation nor stationarity is ensured in the long
time limit. It is the non-linearity which brings in saturation
beyond the linear regime. Secondly, the nature of pattern itself
(like spot or stripe, etc.) is determined by the detailed nature
of non-linearity [13]. The first important point of the present
analysis is that the reaction-diffusion system considered here
is linear by construction but can lead to a stationary pattern.
Another pertinent point needs to be emphasized here. Non-
local interaction effects on pattern formation had been explored
earlier in population dynamics where the origin of non-local
aspects lies in the competitive interaction among individuals
[20]. In a related issue [21] the interacting Brownian particle
models with modification of birth and death rates have been
introduced to understand clustering, advection and pattern
formation. The non-local self-interaction arises in all these
cases [20–22] via a non-linear integro-differential term. The
non-local interaction in our proposed model of activator-
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inhibitor chemical dynamics, on the other hand is linear. Thus
the present model is naturally distinct from the earlier non-local
self-interaction models in terms of linearity and self-regulatory
non-local kinetics of two interacting components. The physical
origin of saturation in the long time limit here is thus not
non-linearity but an interplay of non-local correlation and
disparity of diffusion coefficients of these two species. Finally
due to this non-locality it is possible to observe the existence
of symmetry-breaking spatial structures beyond the limiting
conditions for Turing pattern.

In what follows we consider a reaction-diffusion system
governed by a linear, stochastic, self-regulatory kinetics of
activator and inhibitor. Our numerical simulation shows that
an interplay of spatial correlation of the reaction components
via self-regulatory nature of kinetics and disparity of diffusion
coefficients of the two species leads to symmetry-breaking
of the homogeneous state resulting in pattern formation in
a non-equilibrium steady state. This is independent of the
relative rate of activation and inhibition of the two species.
We examine the underlying instability in the light of Turing
condition to show that spatial correlation of the activation
and inhibition and diffusion play antagonistic role in the
mechanism of pattern formation.

The outline of the paper is as follows. We introduce a
model reaction-diffusion system with self-regulated activator-
inhibitor kinetics in Sec. II. In Sec. III we carry out detailed
numerical simulations to follow the spatio-temporal evolution
of the dynamics and demonstrate how the system makes a
non-equilibrium transition to reach a non-equilibrium steady
state with pattern formation. The paper is concluded in Sec. IV.

II. A REACTION-DIFFUSION SYSTEM WITH
SELF-REGULATED ACTIVATOR-INHIBITOR KINETICS

To begin with we consider a chemical reaction with two
species U and V , where U is the activator and V is the
inhibitor. In a generic activator-inhibitor model the kinetic
part is defined by some explicit functional form of a reaction-
diffusion equation as follows:

∂U

∂t
= F (U,V ) + DU∇2U, (2.1)

∂V

∂t
= G(U,V ) + DV ∇2V. (2.2)

Here, F (U,V ) and G(U,V ) are the mathematical functions
depending on U and V , which define the governing kinet-
ics of the two species U and V and ∇2 containing terms
represent the diffusion of the respective components. For
example, the functions F and G in the activator-inhibitor
type model, first proposed by Gierer and Meinhardt [9,23] to
describe morphogenesis in developmental biology have the
form F = U 2

V
− U + φ and G = μ(U 2 − V ). Here, φ is the

basic production term, μ is the relative removal rate. Activator
and inhibitor are antagonistic in nature: with increase in the
concentration of the activator U , the rate of formation of both
the species increases and with increase in concentration of the
inhibitor V , the rate of formation of both the species decreases.
In our proposed model, We do not consider any explicit form
of kinetics but assume that the reaction is non-local, i.e., the
change in concentration of the activator or inhibitor at any given

spatial location depends on the average local concentration of
their neighbors.

In the model, we construct an N × N grid and first locate
(U0,V0) number of activator, inhibitor at all the spatial sites of
the grid to start with. Time evolution of the system is started
by applying a gaussian white noise (η) of strength σ at each
site. In order to state mathematically the rules for successive
updating of the concentration of activator and inhibitor at each
time step, we first define a neighborhood R(r,t) of radius r

centering around the grid point (i,j ) at time t . Let 〈U 〉R,t and
〈V 〉R,t be the average concentrations of the activator (U ) and
the inhibitor (V ), respectively, within the region R and at time
t . The concentrations of the activator (U ) and the inhibitor (V )
at each site of the grid are updated in time by making use of
the following rules:

for 〈U 〉R,t � 〈V 〉R,t ,

Ui,j (t + �t) = {Ui,j (t) + αξ (t)�t} + D(∇2U )�t,

(2.3)

Vi,j (t + �t) = {Vi,j (t) + αξ (t)�t} + (∇2V )�t,

(2.4)

for 〈U 〉R,t < 〈V 〉R,t ,

Ui,j (t + �t) = {Ui,j (t) − βξ (t)�t} + D(∇2U )�t,

(2.5)

Vi,j (t + �t) = {Vi,j (t) − βξ (t)�t} + (∇2V )�t.

(2.6)

Where U,V � 0.

According to Eqs. (2.1) and (2.2) it follows, when the average
concentration of the activator within the finite region R(r,t)
is greater than or equal to that of the inhibitor, there will be
an increase in the concentration to both the activator and the
inhibitor of amount αξ (t) at the grid point (i,j ). Here, ξ (t)
has a random real value ranging from 0 to 1 with uniform
distribution and α is a constant defined as the rate of activation.

FIG. 1. Concentration profile of the activator U at 15000 time
units for D = 1.0, α = 400.0, β = 400.0, r = 1.0 (units arbitrary).
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FIG. 2. Concentration profile of the activator U for D = 0.05, α = 400.0, β = 400.0, r = 1.0 at the time units (a) t = 1000, (b) t = 5000,
(c) t = 12000, (d) t = 15000, and (e) three repeating profiles of (d) in x and y directions (units arbitrary).

The second terms of the equations incorporate diffusion into
our model, where ∇2 is the Laplacian, D is defined as the ratio
of diffusion coefficients of the activator and the inhibitor and
�t represents the time step. On the other hand the scenario in
which the inhibitor prevails within the region R(r,t), the rules
given by Eqs. (2.5) and (2.6) are followed. According to these

equations, both the activator and the inhibitor concentration
at the grid point (i,j ) decrease by an amount βξ (t). Here, β is
defined as the rate of inhibition. Since the noise ξ (t) is external
the dynamical system is characteristically non-equilibrium in
nature. Finally a clarification regarding the activator-inhibitor
dynamics is pertinent. The dynamics governed by Eqs. (2.3) to
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FIG. 3. Concentration profile of the activator U for D = 0.05, α = 200.0, β = 400.0, r = 1.0 at the time units (a) t = 1000, (b) t = 5000,
(c) t = 12000, (d) t = 15000, and (e) three repeating profiles of (d) in x and y directions (units arbitrary).

(2.6) is compatible with the linear reaction terms proportional
to (α − β) at the deterministic level without any spatial
resolution. This is in spirit with activator-inhibitor dynamics,
in general. We now point out several conspicuous features of
the present model.

First, we have not considered here any explicit form of
kinetics which is an essential element of a traditional reaction-
diffusion system. The growth and decay of concentration of
any species at a given location is the characteristics of the
reaction itself and is solely dependent, in general, on the
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FIG. 4. Concentration profile of the activator U for D = 0.05, α = 600.0, β = 400.0, r = 1.0 at the time units (a) t = 1000, (b) t = 5000,
(c) t = 12000, (d) t = 15000, and (e) three repeating profiles of (d) in x and y directions (units arbitrary).

concentration of each species at that site. Since in the present
model the growth and decay of a species at a spatial location is
guided by the relative average concentration of the two species
in its neighborhood, the kinetics is inherently non-local and
self-regulating in character.

Second, the model is linear and the spatio-temporal evolu-
tion of the two species is governed by an interplay of spatial
correlation in kinetics and diffusive transport.

Third, the kinetics considered here is stochastic rather than
deterministic. The spatio-temporal evolution of the two species
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FIG. 5. Concentration profile of the activator U for D = 0.05, α = 200.0, β = 400.0, r = 0.5 at the time units (a) t = 1000, (b) t = 5000,
(c) t = 12000, (d) t = 15000, and (e) three repeating profiles of (d) in x and y directions (units arbitrary).

is probabilistic in nature. The scheme does not make any
special reference to any homogeneous steady state which needs
to be specified for a typical reaction-diffusion system with
non-linear kinetics.

III. NUMERICAL SIMULATIONS: SPATIO-TEMPORAL
INSTABILITY AND STATIONARY PATTERN FORMATION

In order to explore the symmetry breaking non-equilibrium
transition leading to stationary pattern formation we have
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FIG. 6. Concentration profile of the activator U for D = 0.05, α = 200.0, β = 400.0, r = 1.5 at the time units (a) t = 1000, (b) t = 5000,
(c) t = 12000, (d) t = 15000, and (e) three repeating profiles of (d) in x and y directions (units arbitrary).

performed numerical simulations of this linear, stochastic, self-
regulating kinetic model with diffusion for different parameter
values. Throughout the simulations periodic boundary condi-
tion has been maintained and the standard central difference
formulas are used to evaluate the Laplacians (∇2U ) and (∇2V ).
For the present purpose a 250 × 250 array with grid size
�X = 0.4 and �Y = 0.4 has been chosen. To begin with a
homogeneous state the concentration of the activator U0 = 5.0
and that of the inhibitor V0 = 5.0 are set at all sites. This
state is perturbed by a Gaussian white noise, η(t) with zero
mean, 〈η〉 = 0 and noise correlation as 〈η(t)η(0)〉 = 2σδ(t),
σ being the strength of noise which is set as σ = 0.01. The
inhibition rate β and the time step for numerical simulation �t

are fixed at 400.0 and 0.0025, respectively, all throughout our
calculations.

To understand the role of diffusion coefficients which cou-
ple the concentration at different spatial sites, the simulation is
first carried out for activation rate α = 400.0 and r = 1.0 for
equal diffusivities, i.e., D = 1.0 for a long time. The results are
presented in Fig. 1 depicting the snapshot of the concentration
profile of u at t = 15000 time units. We observe that the system
remains homogeneous. The simulations have been repeated for
several other values of α to check that for equal diffusivities of
the activator and the inhibitor, homogeneity is not disturbed in
any such case. This observation is in agreement with the basic
condition for Turing instability of a homogeneous steady state.

We now introduce disparity in the values of diffusivities of
the activator and inhibitor by setting the ratio D = 0.05. The
simulations are carried out keeping all other parameters same
and the results are shown in Figs. 2(a)–2(d). The concentration
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FIG. 7. Concentration profile of the activator U for D = 0.05, α = 200.0, β = 400.0, r = 2.0 at the time units (a) t = 1000, (b) t = 5000,
(c) t = 12000, (d) t = 15000, and (e) three repeating profiles of (d) in x and y directions (units arbitrary).

profiles of activator U at t = 1000, 5000, 12000, and 15000
time units clearly reveal the emergence of inhomogeneity
resulting in stripe patterns which finally settle down to a
stationary or non-equilibrium steady state. We emphasize an

important point at this stage. Although disparity of diffusivities
has been maintained (D = DU

DV
< 1), the rate of activation

and rate of inhibition are set equal (α = 400.0,β = 400.0).
The realization of stationary patterns in Fig. 2 points out a
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FIG. 8. Stationary (t = 15000 t.u.) concentration profile of the activator U for D = 0.05, α = 400, β = 400, r = 1.0 for initial Gaussian
noise strength σ (a) 0.01, (b) 0.05, (c) 0.10, and (d) 0.20 (units arbitrary).

significant departure from the Turing condition that DU

DV
<

|FU |
|GV | < 1, where FU and GV are the partial first derivatives of F

and G of Eqs. (2.1)–(2.2) with respect to U and V , respectively.
The ratio |FU |

|GV | in the present case is α
β

= 1. In order to get a
clear view of the stationary pattern as shown in Fig. 2(d) we
arrange the profile in a sequence of three repeating units in
both x and y directions in Fig. 2(e). The pattern appears as
wavy stripes.

Keeping in view of the above observations we now consider
further two cases by putting the ratio of the rate of activation
to the rate of inhibition (α/β) less than and greater than unity.
To this end we first set α = 200.0 keeping all other parameters
as in Fig. 2. The simulation results are shown in Figs. 2(a)–
2(d) for α

β
< 1. The concentration profiles of U at time t =

1000, 5000, 12000, and 15000 time units clearly reveal how
the short-time honey-comb structure of the patterns change
over to a stationary profile. We extend our simulations for α =
600.0, i.e., for α

β
> 1, while the other parameters remain same.

From Figs. 4(a)–4(d) it is apparent that the homogeneous state
goes over to the stationary patterned state as in the above two

cases. Figures 3(e) and 4(e) where the stationary profiles of
Figs. 3(d) and 4(d) have been shown as three repeating units in
longitudinal and transverse directions, clearly reveal that the
stationary patterns in Figs. 3(d) and 4(d) are spots and wavy
stripes, respectively. The initial parameter ratio, α

β
, therefore

plays a determining role in pattern selection.
An important element of the present scheme is that the

concentration of a species at a space point is guided by that
of its neighbors. It would therefore seem that the radius of
the length of interaction would play an important role in
the spatio-temporal evolution due to non-local kinetics. To
explore this aspect we have varied the radius of interaction
over r = 0.5, 1.5 and 2.0 for numerical simulations. In Figs. 5,
6, and 7 we present the snapshots of concentration profiles
of activator U for α = 200.0 and β = 400.0, respectively, at
time t = 1000, 5000, 12000, and 15000 time units. The results
remain qualitatively same in all cases. The patterns as shown
in Figs. 5(e), 6(e), and 7(e) as in the earlier cases, appear to be
stationary honeycomb structures.

Another aspect of the present study is the role of the noise in
the simulation. The noise at the initial condition has a particular
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FIG. 9. (a) Three repeating profiles of Fig. 8(a) in x and y directions showing wavy stripe pattern for σ = 0.01, (b) same as in (a) but for
Fig. 8(b), (σ = 0.05) showing honey-comb-like spots, (c) same as in (a) but for Fig. 8(c), (σ = 0.10) showing honey-comb-like spots, and (d)
same as in (a) but for Fig. 8(d), (σ = 0.20) showing wavy stripes (units arbitrary).

influence on the nature of the spatio-temporal evolution leading
to stationary pattern, particularly pattern selection. To this end
we vary the strength (σ ) of the initial Gaussian noise over
σ = 0.01, 0.05, 0.10, 0.20 for α = 400.0, β = 400.0, D =
0.05, and r = 1.0. The results for the stationary patterns at t =
15000 t.u. shown in Figs. 8(a)–8(d) reveal that the nature of the
patterns changes from stripes for low and high intensity of noise
to honeycomb spots for intermediate range of noise strength
as apparent from Figs. 9(a)–9(d) where each of the profiles
of Figs. 8(a)–8(d) have been arranged as three repeating units
over x and y directions. This observation is indicative of the
fact that the pattern forming instability is due to the noise-
induced transition in the system and honeycomb-like structure
is formed for optimal strength of noise.

Summarizing the above observations, it is apparent that
non-locality of chemical reaction and diffusive transport of the
species with unequal diffusivities lead to a symmetry-broken
state, i.e., a stationary patterned state. The stationarity is
ensured by the fact that the nature of spatio-temporal profiles at
t = 12000 and t = 15000, i.e., in the long time limit remains
almost the same. The reason for attainment of stationarity

is not apparently obvious since model is linear and there is
no scope of nonlinear saturation which prevails in the long
time limit and normally overwhelms the linear divergence
at short time that initiates the instability in a non-linear
model. The primary condition for instability leading to the
formation of stationary pattern is the disparity of diffusivities
of the two species. This is irrespective of the ratio of the
rate of activation and the rate of inhibition. Another point
regarding non-locality of the kinetics is pertinent. The spatio-
temporal evolution of the activator and inhibitor appears to
be independent according to Eqs. (2.3)–(2.6) since there is no
explicit kinetic or diffusive coupling between them. However,
a closer look at the scheme makes it clear that non-locality of
the reaction term gives rise to spatial correlation between the
species at different sites and couples the concentration as the
updating of concentration of one species at a spatial location is
guided by that of its neighbors which include both the activator
and the inhibitor. In the spirit of self-propelled motion the
symmetry-breaking may be viewed as non-equilibrium transi-
tion between disordered homogeneous state to ordered pattern
state.
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IV. CONCLUSION

Non-linear reaction-diffusion systems with two reacting
components serve as prototypical models for study of self-
organization phenomena under far from equilibrium condition.
In this paper we have considered a linear reaction-diffusion
system with self-regulatory kinetics of activator and inhibitor
whose growth and decay of concentration depends on the
relative average concentration of their neighbors. The model
does not make use of any explicit form of deterministic kinetics
but relies on stochastic variations of concentration at each time
step. In presence of external noise the system undergoes a
non-equilibrium transition between the homogeneous and the
patterned state due to the symmetry-breaking, a scenario which
captures partly the features of Turing bifurcation and partly the
features of order-disorder transition in non-equilibrium system
of self propelled particles. To highlight this aspect we may term
the phenomena as non-equilibrium Turing transition. We now
summarize the main conclusions of this study.

First, linear, non-local and self-regulatory nature of the
kinetics brings in spatial correlation of concentration of ac-
tivator and inhibitor in the dynamics. This is a significant point
of departure from traditional kinetics in a reaction-diffusion
system, where diffusive transport is only responsible for spatial
correlation of concentration.

Second, the spatio-temporal instability of the homogeneous
state arises due to the spatial correlation of concentration and
disparity of diffusivities of the activator and inhibitor, rather
than local activation and long-range diffusion.

Third, the nature of stationary pattern is determined by the
linear reaction terms of the activator-inhibitor dynamics as well
as the strength of noise as initial condition. While low and

high noise intensity gives rise to wavy stripes, honeycomb-like
structure is favored for an intermediate range of noise strength.

Fourth, the non-equilibrium symmetry-breaking transition
gives rise to self-organized structures in the form of stationary
patterns irrespective of the rate of activation or inhibition. The
attainment of stationarity here cannot be due to non-linear
saturation in the long time limit in this linear model. This
is quite distinct from the stationarity in the usual reaction-
diffusion systems with non-linear kinetics.

Finally, we note that the present theoretical scheme also
serves as a bridge between the two classes of self-organization
phenomena, one, in the non-linear dynamics of reaction-
diffusion systems and other in the non-equilibrium statistical
mechanics of self-propelled particles where the common link
lies in the symmetry-breaking transition and formation of non-
equilibrium ordered structure. Since the reaction-diffusion sys-
tems encompass a variety of problems in chemical, biological
and ecological sciences, this simple model can be generalized
appropriately by suitable modification of the time-updating
rules and stochasticity of the governing kinetics.
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