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We formulate a theory for the phase reduction of a beating flagellum. The theory enables us to describe the
dynamics of a beating flagellum in a systematic manner using a single variable called the phase. The theory can
also be considered as a phase reduction method for the limit-cycle solutions in infinite-dimensional dynamical
systems, namely, the limit-cycle solutions to partial differential equations representing beating flagella. We derive
the phase sensitivity function, which quantifies the phase response of a beating flagellum to weak perturbations
applied at each point and at each time. Using the phase sensitivity function, we analyze the phase synchronization
between a pair of beating flagella through hydrodynamic interactions at a low Reynolds number.
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I. INTRODUCTION

A population of coupled limit-cycle oscillators exhibits
a rich variety of synchronization phenomena [1–3]. Each
oscillator is typically described by a limit-cycle solution to an
ordinary differential equation. A phase reduction method [1–
10], which enables us to describe the dynamics of an oscillator
using a single degree of freedom called the phase, has been
successfully applied to analyze the synchronization properties
of weakly coupled oscillators. Consequently, collective syn-
chronization exhibited by coupled phase oscillators has been
well investigated for globally coupled systems, nonlocally
coupled systems, and complex network systems [1–6,9–15].

Recently, hydrodynamic synchronization, which indicates
the synchronization of oscillators via hydrodynamic interac-
tions, has attracted considerable attention [16–21]. For exam-
ple, this synchronization phenomenon has been intensively
investigated through experiments such as Chlamydomonas
and Volvox [22–27], wherein their beating flagella can be
considered as limit-cycle oscillators. In particular, both the
experimental and theoretical studies [27,28] have clearly
demonstrated that a pair of adjacent beating flagella can be in-
phase synchronized only through hydrodynamic interactions
at a low Reynolds number. Further, the theoretical study [28]
described a beating flagellum using a limit-cycle solution to a
partial differential equation.

Moreover, we recently formulated a theory for the phase
reduction of limit-cycle solutions to the following partial
differential equations: nonlinear Fokker-Planck equations rep-
resenting collective oscillations of globally coupled noisy
dynamical elements [29,30], fluid equations representing os-
cillatory thermal convection in Hele-Shaw cells [31–33], and
reaction-diffusion equations representing rhythmic spatiotem-
poral patterns in chemical and biological systems [34,35]. The
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theory can be considered as a generalization of the conventional
phase reduction method for limit-cycle solutions to ordinary
differential equations.

In this paper, we formulate a theory for the phase reduction
of a beating flagellum represented by a partial differential
equation proposed by Goldstein et al. in Ref. [28]. The theory
can also be considered as a phase reduction method for limit-
cycle solutions to partial differential equations. We derive the
phase sensitivity function, which quantifies the phase response
of a beating flagellum to weak perturbations applied at each
point and at each time, and subsequently analyze the mutual
synchronization between a pair of beating flagella through
hydrodynamic interactions at a low Reynolds number.

This paper is organized as follows. In Sec. II, we formulate
a theory for the phase description of beating flagella. In Sec.
III with Appendixes A and B, we perform a numerical analysis
of beating flagella. Concluding remarks are given in Sec. IV.

II. PHASE DESCRIPTION OF BEATING FLAGELLA

In this section, we formulate a theory for the phase descrip-
tion of beating flagella represented by fourth-order nonlinear
partial differential equations. The formulation procedure is
similar to that performed in Refs. [29–33].

A. Dimensionless form of model equations

We consider the following phenomenological model pro-
posed by Goldstein et al. in Ref. [28] for a beating flagellum:

∂

∂t
h(x,t) = N (h). (1)

The variable h(x,t) denotes the vertical displacement at the
point x and time t . The right-hand side of Eq. (1) is given by
[36]

N (h) = −c
∂h

∂x
− 2

∂2h

∂x2
− ∂4h

∂x4
+

(
∂2h

∂x2

)3

. (2)
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FIG. 1. Snapshots of both the limit-cycle solution h0(x,θ ) and
phase sensitivity function Z(x,θ ) for (a) θ/π = 0.0, (b) θ/π = 0.5,
(c) θ/π = 1.0, and (d) θ/π = 1.5. The parameters are c = 1 and
L = 10. The frequency is ω � 0.67.

Note that Eq. (2) possesses the following property: N (−h) =
−N (h). The flagellum is assumed to be hinged at the left end
and free at the right end. In other words, the boundary condition
at the left end (x = 0) is given by

h(x,t)

∣∣∣∣
x=0

= ∂2h(x,t)

∂x2

∣∣∣∣
x=0

= 0 (3)

and the boundary condition at the right end (x = L) is given
by

∂2h(x,t)

∂x2

∣∣∣∣
x=L

= ∂3h(x,t)

∂x3

∣∣∣∣
x=L

= 0. (4)

In this model, the left-right symmetry, i.e., the reflection
symmetry with respect to x, does not exist, but the up-down
symmetry, i.e., the reflection symmetry with respect to h,
exists. In other words, the variable −h(x,t) satisfies exactly
the same equation for the variable h(x,t).

B. Limit-cycle solution and its Floquet-type system

In general, a stable limit-cycle solution to Eq. (1) can be
described by [e.g., see Figs. 1 and 2(a) in Sec. III]

h(x,t) = h0(x,θ (t)), θ̇ (t) = ω. (5)

The phase and frequency are denoted by θ and ω, respectively.
The limit-cycle solution h0(x,θ ) possesses the following 2π

periodicity in θ : h0(x,θ + 2π ) = h0(x,θ ). Substituting Eq. (5)
into Eq. (1), we determine that the limit-cycle solution h0(x,θ )
satisfies

ω
∂

∂θ
h0(x,θ ) = N (h0). (6)

Let u(x,θ,t) represent a small disturbance added to the
limit-cycle solution h0(x,θ ), and consider a slightly perturbed

solution

h(x,t) = h0(x,θ (t)) + u(x,θ (t),t). (7)

Equation (1) is subsequently linearized with respect to u(x,θ,t)
as

∂

∂t
u(x,θ,t) = L(x,θ )u(x,θ,t). (8)

Further, the linear operator L(x,θ ) is explicitly given by

L(x,θ )u(x,θ ) =
[
J (x,θ ) − ω

∂

∂θ

]
u(x,θ ), (9)

where

J (x,θ )u(x,θ ) = −c
∂u

∂x
− 2

∂2u

∂x2
− ∂4u

∂x4
+ 3

(
∂2h0

∂x2

)2
∂2u

∂x2
.

(10)

In Eq. (9), we omitted the t dependence of the function
u(x,θ,t) and denoted it as u(x,θ ) because we consider only
the eigenvalue problem of the linear operator L(x,θ ) and thus
the t dependence of the function u does not appear hereafter.
Note that the linear operator L(x,θ ) is periodic with respect to
θ . Therefore, Eq. (8) is a Floquet-type system with a periodic
linear operator L(x,θ ), which has the zero eigenvalue associ-
ated with the spontaneous breaking of temporal translational
symmetry.

C. Adjoint operator and adjoint boundary conditions

Defining the inner product of the two functions as

[[u∗(x,θ ), u(x,θ )]] = 1

2π

∫ 2π

0
dθ

∫ L

0
dx u∗(x,θ )u(x,θ ),

(11)

we introduce the adjoint operator of the linear operator L(x,θ )
by

[[u∗(x,θ ),L(x,θ )u(x,θ )]] = [[L∗(x,θ )u∗(x,θ ), u(x,θ )]]

+ S[u∗(x,θ ), u(x,θ )]. (12)

By partial integration, the adjoint operatorL∗(x,θ ) is explicitly
obtained as

L∗(x,θ )u∗(x,θ ) =
[
J ∗(x,θ ) + ω

∂

∂θ

]
u∗(x,θ ), (13)

where

J ∗(x,θ )u∗(x,θ ) = c
∂u∗

∂x
− 2

∂2u∗

∂x2
− ∂4u∗

∂x4

+ 3
∂2

∂x2

{
u∗

(
∂2h0

∂x2

)2 }
. (14)

The bilinear concomitant S[u∗(x,θ ), u(x,θ )] is given by
(see also, e.g., Refs. [37,38] for mathematical terms)

S[u∗(x,θ ), u(x,θ )]

= 1

2π

∫ 2π

0
dθ

[
−cu∗u − 2u∗ ∂u

∂x
+ 2

∂u∗

∂x
u − u∗ ∂3u

∂x3
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FIG. 2. (a) Limit-cycle solution h0(x,θ ). (b) Floquet zero eigenfunction U0(x,θ ) = ∂h0(x,θ )/∂θ . (c) Phase sensitivity function Z(x,θ ) =
U ∗

0 (x,θ ).

+ ∂u∗

∂x

∂2u

∂x2
− ∂2u∗

∂x2

∂u

∂x
+ ∂3u∗

∂x3
u

]x=L

x=0

+ 1

2π

∫ 2π

0
dθ

[
3u∗

(
∂2h0

∂x2

)2
∂u

∂x

− 3
∂

∂x

{
u∗

(
∂2h0

∂x2

)2 }
u

]x=L

x=0

+ 1

2π

∫ L

0
dx [−ωu∗u]θ=2π

θ=0 . (15)

The second term on the right-hand side of Eq. (15) is zero
owing to the following boundary conditions for the limit-cycle
solution h0(x,θ ):

∂2h0(x,θ )

∂x2

∣∣∣∣
x=0

= ∂2h0(x,θ )

∂x2

∣∣∣∣
x=L

= 0. (16)

The third term is zero owing to the 2π periodicity of both
u(x,θ ) and u∗(x,θ ) in θ as

u(x,θ )|θ=0 = u(x,θ )|θ=2π , (17)

u∗(x,θ )|θ=0 = u∗(x,θ )|θ=2π . (18)

As in the limit-cycle solution h0(x,θ ), the boundary condition
at the left end (x = 0) for u(x,θ ) is given by

u(x,θ )

∣∣∣∣
x=0

= ∂2u(x,θ )

∂x2

∣∣∣∣
x=0

= 0 (19)

and the boundary condition at the right end (x = L) for u(x,θ )
is given by

∂2u(x,θ )

∂x2

∣∣∣∣
x=L

= ∂3u(x,θ )

∂x3

∣∣∣∣
x=L

= 0. (20)

Since the first term on the right-hand side of Eq. (15) is zero,
the adjoint boundary condition at the left end (x = 0) is given
by

u∗(x,θ )

∣∣∣∣
x=0

= ∂2u∗(x,θ )

∂x2

∣∣∣∣
x=0

= 0 (21)

and the adjoint boundary condition at the right end (x = L) is
given by

(
2 + ∂2

∂x2

)
u∗(x,θ )

∣∣∣∣
x=L

=
(

−c + 2
∂

∂x
+ ∂3

∂x3

)
u∗(x,θ )

∣∣∣∣
x=L

= 0. (22)

Under these conditions, the bilinear concomitant is zero,
S[u∗(x,θ ), u(x,θ )] = 0.

D. Floquet zero eigenfunctions and their normalization

In the calculation below, we use the Floquet eigenfunctions
associated with the zero eigenvalue of L(x,θ ) and L∗(x,θ );
these eigenfunctions satisfy [e.g., see Figs. 2(b) and 2(c) in
Sec. III]

L(x,θ )U0(x,θ ) =
[
J (x,θ ) − ω

∂

∂θ

]
U0(x,θ ) = 0, (23)

L∗(x,θ )U ∗
0 (x,θ ) =

[
J ∗(x,θ ) + ω

∂

∂θ

]
U ∗

0 (x,θ ) = 0. (24)

The Floquet zero eigenfunction U0(x,θ ) can be chosen as

U0(x,θ ) = ∂

∂θ
h0(x,θ ), (25)

which is confirmed by differentiating Eq. (5) with respect to θ .
From Eqs. (6) and (25), the Floquet zero eigenfunction U0(x,θ )
satisfies

ωU0(x,θ ) = N (h0). (26)

Using the inner product with the Floquet zero eigenfunction
U0(x,θ ), the adjoint zero eigenfunction U ∗

0 (x,θ ) is normalized
as

[[U ∗
0 (x,θ ), U0(x,θ )]]

= 1

2π

∫ 2π

0
dθ

∫ L

0
dx U ∗

0 (x,θ )U0(x,θ ) = 1. (27)
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Note that the following equation holds (see also
Refs. [4,29–33]):

∂

∂θ

[∫ L

0
dx U ∗

0 (x,θ )U0(x,θ )

]

=
∫ L

0
dx

[
U ∗

0 (x,θ )
∂

∂θ
U0(x,θ ) + U0(x,θ )

∂

∂θ
U ∗

0 (x,θ )

]

= 1

ω

∫ L

0
dx [U ∗

0 (x,θ )J (x,θ )U0(x,θ )

−U0(x,θ )J ∗(x,θ )U ∗
0 (x,θ )] = 0. (28)

Therefore, the following normalization condition is
independently satisfied for each θ :∫ L

0
dx U ∗

0 (x,θ )U0(x,θ ) = 1. (29)

Further, we note a numerical method for obtaining the
adjoint zero eigenfunction U ∗

0 (x,θ ). From Eq. (24), the adjoint
zero eigenfunction satisfies

ω
∂

∂θ
U ∗

0 (x,θ ) = −J ∗(x,θ )U ∗
0 (x,θ ), (30)

which can be transformed into
∂

∂s
U ∗

0 (x,−ωs) = J ∗(x,−ωs)U ∗
0 (x,−ωs) (31)

by substituting θ = −ωs. A relaxation method using Eq. (31),
which can also be called the adjoint method (see Refs. [4–10]
for ordinary differential equations and Refs. [29–34] for partial
differential equations), is convenient to obtain the adjoint zero
eigenfunction. In the following two subsections, we derive
the phase equations of beating flagella using the limit-cycle
solution h0(x,θ ), Floquet zero eigenfunction U0(x,θ ), and
adjoint zero eigenfunction U ∗

0 (x,θ ).

E. Beating flagella with weak perturbations

In this subsection, we consider a beating flagellum with a
weak perturbation described by the following equation:

∂

∂t
h(x,t) = N (h) + εp(x,t). (32)

The weak perturbation is denoted by εp(x,y,t). Here, we
assume that the perturbed solution is always near the orbit of
the limit-cycle solution h0(x,θ ). Further, using the adjoint zero
eigenfunction U ∗

0 (x,θ ), we project the dynamics of the per-
turbed equation (32) onto the unperturbed solution h0(x,θ ) as

θ̇ (t) =
∫ L

0
dx U ∗

0 (x,θ )[N (h) + εp(x,t)]

�
∫ L

0
dx U ∗

0 (x,θ )[N (h0) + εp(x,t)]

=
∫ L

0
dx U ∗

0 (x,θ )[ωU0(x,θ ) + εp(x,t)]

= ω + ε

∫ L

0
dx U ∗

0 (x,θ )p(x,t), (33)

where we approximated h(x,t) by the unperturbed solution
h0(x,θ ) and used Eqs. (26) and (29). Therefore, the phase
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FIG. 3. (a) Periodic motion of the flagellar tip, h0(L,θ ).
(b) Effective phase sensitivity function ζ (θ ).

equation describing the beating flagellum with weak
perturbation is approximately obtained in the following form:

θ̇ (t) = ω + ε

∫ L

0
dx Z(x,θ )p(x,t), (34)

where the phase sensitivity function is defined as [e.g., see
Figs. 1 and 2(c) in Sec. III]

Z(x,θ ) = U ∗
0 (x,θ ). (35)

The phase equation (34) is the main result of this paper. The
phase sensitivity function Z(x,θ ) quantifies the phase response
of the beating flagellum to weak perturbations applied at each
point and at each time.

When the perturbation is given by p(x,t) = q(t), Eq. (34)
can also be written in the following form:

θ̇ (t) = ω + εζ (θ )q(t), (36)

where the effective phase sensitivity function is given by [e.g.,
see Fig. 3(b) in Sec. III]

ζ (θ ) =
∫ L

0
dx Z(x,θ ). (37)

F. Hydrodynamically coupled beating flagella

In this subsection, we consider a pair of hydrodynam-
ically coupled beating flagella described by the following

022212-4
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FIG. 4. Hydrodynamic interaction function H (θj ,θk).

equation [28]:

∂

∂t
hj (x,t) = N (hj ) + ε N (hk), (38)

for (j,k) = (1,2) or (2,1). The second term on the right-hand
side of Eq. (38) represents hydrodynamic interactions. The
effective coupling intensity is denoted by ε, which is a small
parameter [39]. Here, we assume that the waveforms of two
flagella are only slightly perturbed and persist even when
hydrodynamic interactions between the two flagella exist. As
in Sec. II E, using the adjoint zero eigenfunction U ∗

0 (x,θj ), we
project the dynamics of the equation (38) onto the unperturbed
solution as

θ̇j (t) =
∫ L

0
dx U ∗

0 (x,θj )[N (hj ) + ε N (hk)]

�
∫ L

0
dx U ∗

0 (x,θj )[N (h0(x,θj )) + ε N (h0(x,θk))]

=
∫ L

0
dx U ∗

0 (x,θj )[ωU0(x,θj ) + εωU0(x,θk)]

= ω + εω

∫ L

0
dx U ∗

0 (x,θj )U0(x,θk), (39)

where we approximated hj (x,t) by the unperturbed solution
h0(x,θj ) and used Eqs. (26) and (29). Therefore, the phase
equation describing a pair of hydrodynamically coupled beat-
ing flagella is approximately obtained in the following form:

θ̇j (t) = ω + εωH (θj ,θk), (40)

where the hydrodynamic interaction function is given by (e.g.,
see Fig. 4 in Sec. III)

H (θj ,θk) =
∫ L

0
dx U ∗

0 (x,θj )U0(x,θk). (41)

From Eq. (29), the hydrodynamic interaction function takes
the value of unity for θj = θk = θ , i.e.,

H (θ,θ ) =
∫ L

0
dx U ∗

0 (x,θ )U0(x,θ ) = 1. (42)

The hydrodynamic interaction function H (θj ,θk) given by
Eq. (41) depends on the phases of both beating flagella.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.0 -0.5 0.0 0.5 1.0
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FIG. 5. (a) Phase coupling function �(ψ). (b) Antisymmetric
component of the phase coupling function, �a(ψ).

By applying the averaging method [2], Eq. (40) can be
written in the following form:

θ̇j (t) = ω + εω�(θj − θk), (43)

where the phase coupling function is given by [e.g., see
Fig. 5(a) in Sec. III]

�(θj − θk) = 1

2π

∫ 2π

0
dλ H (λ + θj ,λ + θk). (44)

The phase coupling function �(θj − θk) depends only on the
phase difference, θj − θk .

Let the phase difference be defined as ψ(t) = θ1(t) − θ2(t).
From Eq. (43), we obtain the following equation by subtrac-
tion:

ψ̇(t) = εω�a(ψ), (45)

where the antisymmetric component of the phase coupling
function is defined as [e.g., see Fig. 5(b) in Sec. III]

�a(ψ) = �(ψ) − �(−ψ). (46)

By definition, �a(−ψ) = −�a(ψ) holds. From Eqs. (41) and
(44), the phase coupling function �(ψ) can also be written in
the following form:

�(ψ) = 1

2π

∫ 2π

0
dλ

∫ L

0
dx U ∗

0 (x,λ + ψ)U0(x,λ). (47)
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FIG. 6. Comparison of the effective phase sensitivity function
ζ (θ ) between the two direct numerical simulations (ε = 0.01,0.02)
and the theoretical curve (theory).

From Eq. (29), the phase coupling function satisfies

�(0) = 1

2π

∫ 2π

0
dλ

∫ L

0
dx U ∗

0 (x,λ)U0(x,λ) = 1. (48)

In summary, a pair of hydrodynamically coupled beating
flagella represented by a set of partial differential equations
(38) can be reduced to a single ordinary differential equation
(45). Note that the theory can be extended to include effects of
frequency mismatch and/or noise.

Finally, from Eqs. (40) and (42), for the in-phase syn-
chronized state (θj = θk = θ ), the phase equation can be
written in the following form: θ̇(t) = (1 + ε)ω, which is also
derived from Eqs. (43) and (48). Further, for the in-phase
synchronized state (hj = hk = h), Eq. (38) can be written in
the following form: ∂th(x,t) = (1 + ε)N (h), which also gives
the frequency as (1 + ε)ω. Under the situation considered
in this subsection, the hydrodynamic interaction leads to
the positive frequency shift for the in-phase synchronized
state.

III. NUMERICAL ANALYSIS OF BEATING FLAGELLA

In this section, we perform a numerical analysis of beat-
ing flagella to illustrate the theory formulated in Sec. II.
The numerical methods for model equations and adjoint
equations are summarized in Appendixes A and B, respec-
tively. The parameters are fixed at c = 1 and L = 10. The
number of grid points is N + 1 = 201 for the theoretical
values shown in Figs. 1–7, whereas it is N + 1 = 101 for
the simulation results with a small parameter ε shown in
Figs. 6 and 7.

A. Phase sensitivity functions

Figure 1 shows the snapshots of both the limit-cycle solution
h0(x,θ ) and phase sensitivity function Z(x,θ ) for θ/π =
0.0, 0.5, 1.0, and 1.5. The limit-cycle solution h0(x,θ ) is
represented by points (x,h), and the phase sensitivity function
Z(x,θ ) is shown in colors. The frequency is ω � 0.67.

Figure 2 shows the limit-cycle solution h0(x,θ ), Floquet
zero eigenfunction U0(x,θ ) = ∂h0(x,θ )/∂θ , and phase sen-
sitivity function Z(x,θ ) = U ∗

0 (x,θ ). Owing to the up-down

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

ψ
 (t

) /
 π

ω t

0.001
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FIG. 7. Comparison of the time evolution of the phase difference,
ψ(t)/π vs εωt , between the two direct numerical simulations (ε =
0.001,0.002) and the theoretical curve (theory).

symmetry mentioned in Sec. II A, these functions satisfy

h0(x,θ + π ) = −h0(x,θ ), (49)

U0(x,θ + π ) = −U0(x,θ ), (50)

U ∗
0 (x,θ + π ) = −U ∗

0 (x,θ ). (51)

As shown in Fig. 2(c), the absolute values of the phase
sensitivity function Z(x,θ ) in the left region (x < L/2) are
larger than those in the right region (x > L/2).

Figure 3(a) shows the periodic motion of the flagellar tip,
h0(L,θ ). As in Eq. (49), the periodic motion of the flagellar tip
possesses the following symmetry: h0(L,θ + π ) = −h0(L,θ ).

Figure 3(b) shows the effective phase sensitivity function,
ζ (θ ) = ∫ L

0 dx Z(x,θ ), given by Eq. (37). Owing to Eq. (51),
the effective phase sensitivity function satisfies

ζ (θ + π ) = −ζ (θ ). (52)

B. Phase coupling functions

Figure 4 shows the hydrodynamic interaction function
H (θj ,θk) given by Eq. (41). As shown in Eq. (42), the hy-
drodynamic interaction function satisfies H (θ,θ ) = 1. Owing
to Eqs. (50) and (51), the hydrodynamic interaction function
also possesses the following symmetry:

H (θj + π,θk) = −H (θj ,θk), (53)

H (θj ,θk + π ) = −H (θj ,θk). (54)

Figure 5(a) shows the phase coupling function �(ψ) given
by Eq. (47). As shown in Eq. (48), the phase coupling function
satisfies �(0) = 1. Owing to Eq. (51), the phase coupling
function also possesses the following symmetry:

�(ψ + π ) = −�(ψ). (55)

Figure 5(b) shows the antisymmetric component of the
phase coupling function, �a(ψ), given by Eq. (46). It is
observed that the in-phase synchronized solution (ψ = 0) is
globally stable.
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C. Direct numerical simulations

Figure 6 shows the comparison of the effective phase sensi-
tivity function ζ (θ ) between the direct numerical simulations
of Eq. (32) and the theoretical curve shown in Fig. 3(b). In the
simulations, we measured the phase response of the beating
flagellum at the phase θ by applying a weak impulse uniformly
to all the points; subsequently, normalizing the phase response
curve by the weak impulse intensity ε, we obtained the effective
phase sensitivity function ζ (θ ). The simulation parameters
representing the impulse intensity are ε = 0.01,0.02. The
simulation results are quantitatively consistent with the theory.

Figure 7 shows the comparison of the time evolution of the
phase difference, ψ(t)/π vs εωt , between the direct numerical
simulations of Eq. (38) and the theoretical curve obtained
from Fig. 5(b). The simulation parameters representing the
effective coupling intensity of hydrodynamic interactions are
ε = 0.001,0.002. The simulation results are quantitatively
consistent with the theory [40]. It was also confirmed that the
in-phase synchronized solution (ψ = 0) is globally stable.

IV. CONCLUDING REMARKS

In this paper, we formulated a theory for the phase reduction
of a beating flagellum, derived the phase sensitivity function
of a beating flagellum, and analyzed the phase synchroniza-
tion between a pair of beating flagella. The phase reduction
theory enabled us to prove the global stability of the in-phase
synchronized solution.

Herein, we provide some concluding remarks. First, as
observed from Fig. 2(c), the absolute values of the phase sensi-
tivity in the left region are larger than those in the right region.
Intuitively, this is because waves propagate from left to right
owing to the linear advection term given in Eq. (2). In other
words, the upstream region of waves has large absolute values
of the phase sensitivity. This property is similar to the results
of target waves [34,41,42], in which the pacemaker region as
a wave source has large absolute values of phase sensitivity.

Second, as observed from Fig. 5(b), the antisymmetric com-
ponent of the phase coupling function, �a(ψ), is remarkably
close to a sinusoidal function [43]. It will be important to
quantitatively compare antisymmetric components of phase
coupling functions, �a(ψ), between theoretical results [e.g.,
see Fig. 5(b)] and experimental ones (e.g., see Ref. [27]) under
the condition in which the two parameters (i.e., c and L) are
optimally chosen such that theoretical waveforms of beating
flagella most closely resemble experimental ones. It will also
be interesting to compare effective phase sensitivity functions
ζ (θ ) between theory [e.g., see Fig. 3(b)] and experiments.

Third, other than the model proposed by Goldstein et al.
in Ref. [28], there exist some flexible models for a beating
flagellum described by partial differential equations [44–50].
A similar theory for phase reduction of such a model can also
be formulated. It will be interesting to compare both phase
sensitivity functions and phase coupling functions between
different flexible models. Moreover, there also exist some
models based on a rigid body such as a rigid sphere [51–53]
and a rigid cylinder [54,55]. It will also be interesting to
examine the difference between the phase coupling functions
of a flexible model and a rigid model.

Fourth, as mentioned by Goldstein et al. in Ref. [28],
Eq. (38), which represents a pair of hydrodynamically coupled
beating flagella, can be generalized to an equation that repre-
sents a group of hydrodynamically coupled beating flagella
exhibiting metachronal waves [56–58]. The phase reduction
theory formulated in this paper will also be useful to analyze
the equation as well as Eq. (38).

Finally, sponges (Porifera) are known to create water flows
by means of beating flagella of choanocytes (collar cells)
[59–63]. It is an interesting and challenging problem to reveal
whether flagella of choanocytes are synchronized through
hydrodynamic interactions and, if so, whether the efficiency
of a sponge pump is related to the degree of synchronization.
The theory developed in this paper will help us to derive a phase
equation that represents beating flagella within a choanocyte
chamber, and the derived phase equation will play a vital role
in solving the problem.
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APPENDIX A: NUMERICAL METHODS FOR
MODEL EQUATIONS

In this Appendix, we describe the numerical scheme for the
model equation represented by

∂

∂t
h(x,t) = −c

∂h

∂x
− 2

∂2h

∂x2
− ∂4h

∂x4
+

(
∂2h

∂x2

)3

, (A1)

where the boundary condition at the left end (x = 0) is given
by

h(x,t)

∣∣∣∣
x=0

= ∂2h(x,t)

∂x2

∣∣∣∣
x=0

= 0 (A2)

and the boundary condition at the right end (x = L) is given
by

∂2h(x,t)

∂x2

∣∣∣∣
x=L

= ∂3h(x,t)

∂x3

∣∣∣∣
x=L

= 0. (A3)

Further, the position x is discretized as xi = ia for i =
0,1, . . . ,N with a = L/N , and the variable h at the point xi

is denoted by hi . As in Refs. [28,64], we apply a second-
order finite-difference scheme based on symmetric stencils
for the partial differential equation and one-sided stencils
for the boundary conditions as follows. First, the central
finite-difference scheme of Eq. (A1) is given by the following
equation for i = 2,3, . . . ,N − 2:

dhi

dt
= − c

hi+1 − hi−1

2a
− 2

hi+1 − 2hi + hi−1

a2

− hi+2 − 4hi+1 + 6hi − 4hi−1 + hi−2

a4

+
(

hi+1 − 2hi + hi−1

a2

)3

. (A4)
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Second, the forward finite-difference scheme of Eq. (A2) is
given by

h0 = 0, (A5)

h1 = 4h2 − h3

5
. (A6)

Finally, the backward finite-difference scheme of Eq. (A3) is
given by

hN = 48hN−2 − 52hN−3 + 15hN−4

11
, (A7)

hN−1 = 28hN−2 − 23hN−3 + 6hN−4

11
. (A8)

APPENDIX B: NUMERICAL METHODS FOR
ADJOINT EQUATIONS

In this Appendix, we describe the numerical scheme for the
adjoint equation represented by

∂

∂s
z(x,−ωs) = c

∂z

∂x
− 2

∂2z

∂x2
− ∂4z

∂x4
+ 3

∂2(zg)

∂x2
,

g(x,−ωs) =
[
∂2h0(x,−ωs)

∂x2

]2

, (B1)

where the adjoint boundary condition at the left end (x = 0) is
given by

z(x,−ωs)

∣∣∣∣
x=0

= ∂2z(x,−ωs)

∂x2

∣∣∣∣
x=0

= 0 (B2)

and the adjoint boundary condition at the right end (x = L) is
given by(

2 + ∂2

∂x2

)
z(x,−ωs)

∣∣∣∣
x=L

=
(

−c + 2
∂

∂x
+ ∂3

∂x3

)
z(x,−ωs)

∣∣∣∣
x=L

= 0. (B3)

Further, the position x is discretized as xi = ia for i =
0,1, . . . ,N with a = L/N , and the variable z at the point xi

is denoted by zi . As in Appendix A, we apply a second-order
finite-difference scheme based on symmetric stencils for the
adjoint equation and one-sided stencils for the adjoint bound-
ary conditions as follows. First, the central finite-difference
scheme of Eq. (B1) is given by the following equation for
i = 2,3, . . . ,N − 2:

dzi

ds
= + c

zi+1 − zi−1

2a
− 2

zi+1 − 2zi + zi−1

a2

− zi+2 − 4zi+1 + 6zi − 4zi−1 + zi−2

a4

+ 3
zi+1gi+1 − 2zigi + zi−1gi−1

a2
. (B4)

Second, the forward finite-difference scheme of Eq. (B2) is
given by

z0 = 0, (B5)

z1 = 4z2 − z3

5
. (B6)

Finally, the backward finite-difference scheme of Eq. (B3) is given by

zN = (48 − 22a2)zN−2 − (52 − 8a2)zN−3 + 15zN−4

11 + 22a2 + 10ca3 + 16a4
, (B7)

zN−1 = (28 + 28a2 + 8ca3 + 4a4)zN−2 − (23 + 22a2 + 2ca3)zN−3 + (6 + 6a2)zN−4

11 + 22a2 + 10ca3 + 16a4
. (B8)

Moreover, from Eq. (29), the normalization condition for z is given by

a

2
z0u0 +

N−1∑
i=1

aziui + a

2
zNuN = 1, (B9)

where ui is the value of the Floquet zero eigenfunction U0 at the point xi .
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