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Adaptive control of dynamical synchronization on evolving networks with noise disturbances
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In real-world networked systems, the underlying structure is often affected by external and internal unforeseen
factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining
synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008)],
which yet does not consider the noise disturbances widely existing in networks’ environments. We provide here
strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to
noise disturbances which are observed at the node and at the communication channel level. With our strategy, the
nodes’ coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only
to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by
introducing an error potential function to seek for the minimization of the synchronization error. Then, we show
numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is
effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states
of all the nodes would diverge to infinity).

DOI: 10.1103/PhysRevE.97.022211

I. INTRODUCTION

Many real-world systems can be represented as complex
networks [1–3], where nodes are dynamical systems that
may organize to display collective and emergent dynamics,
as for instance synchronization. Since Pecora and Carroll
introduced the “Master Stability function” approach for the
assessment of stability of the synchronous motion of units
in a graph [4], many studies followed and extended that
theory [3]. Network-mediated synchronization has today many
applications in different fields, such as biological systems and
neuroscience, engineering and computer science, or economy
and social sciences. Imposing a synchronous behavior by
judicious interventions (or controlling synchrony whenever it
is lost) may be, therefore, sometimes desirable. However, a
challenging problem of today’s science is still finding the way
to properly and effectively control the dynamical evolution of
a distributed, networked, system [5–7].

Following studies on adaptive networks (i.e., on graphs
where an interplay between structure and dynamics is explic-
itly taken into account [8,9]), strategies to pursue network
synchronization have been proposed in which the coupling
strengths are adaptively adjusted, based on some information
about the nodes’ dynamical state [10–14]. However, most of
those strategies do not reflect the evolution of the connectivity

*yuanwj2005@163.com
†zhenwang0@gmail.com

commonly observed in many real-world networks [12,15,16].
For instance, the topology of wireless networks is constantly
changing on the fly, in order to perform a given task or due to
unforeseen numerous external and internal factors.

As the network structure evolves, the synchronized state
one wants to target can be even destroyed, as network structure
strongly impacts the stability of the dynamical synchronization
[4]. The control strategies introduced so far, as for instance
pinning control [17–20] and adaptive pinning control [21,22],
rely on having access to some knowledge of the network topol-
ogy. It is crucial to address the problem of control in evolving
networks, and especially when information on the evolution
of the network structure is not accessible. In Ref. [15], a
first attempt was given for maintaining synchronization in
a time varying network, which however does not consider
unpredictable noise disturbances, which instead are typically
present in a network environment [23,24].

In general, both intrinsic noise sources affecting each single
unit of a network and communication noise affecting signal
transmission over the network links [23,24] are unavoidable,
and both sources of uncertainty should be simultaneously
considered in the study of realistic networks. In our paper,
we then provide an adaptive strategy to control dynamical
synchronization on slowly evolving networks, under the ex-
plicit presence of such a type of fluctuations and under the
explicit condition that the information on the graph structure
is unavailable. In contrast with Ref. [15] (where only network
changes were considered), we here try explicitly to cope
with situations where two kinds of noise disturbances occur
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FIG. 1. (a) Time evolution of the x variable of eight randomly
chosen nodes and (b) synchronization error in a random network with
the Rössler model as the node dynamics, by using the adaptive strategy
defined in Eq. (15). For comparison, panels (c) and (d) show the same
quantities of panels (a) and (b), respectively, but calculated in the case
of the fully nonadaptive strategy [i.e, σi(t) ≡ γ /Vi(0)]. Parameter
values are the following: N = 50, 〈k〉 = 10, γ = 2.0, D = 0.5, C =
0.5, B1i(0) = 104, B5i(0) = 0, B4i(0) = B1i(0)/Vi(0), and ν = 1/1.4.

simultaneously in the network. The nodes’ coupling strength
is adaptively adjusted according to their received signal and
noise disturbances. Although the separation of noise from the
signals is a challenging task in experimental realizations, our
aim is just to point out that the adaptive control strategy is able,
in principle, to outperform with respect to other, nonadaptive,
control methods. In what follows, we will first describe the
proposed control strategy (and give its detailed theoretical
analysis) and then we will assess effectiveness of the proposed
method by means of numerical simulations that fully verify the
theoretical predictions.

II. ADAPTIVE STRATEGY

We here consider a network of dynamical units, where nodes
are chaotic oscillators, and the coupling is in general a complex
graph architecture. It is known that, in such conditions, an
interesting interplay between individual and collective dynam-
ics indeed takes place, and especially as far as synchronized
collective behavior is concerned [3]. The dynamics under study
refers to a generic weighted network, consisting in N identical
coupled chaotic oscillators, and described by [3]

Ẋi = F (Xi) + γ∑N
j=1 Gij

N∑
j=1

Gij [H (Xj ) − H (Xi)]

= F (Xi) + γ

Vi

N∑
j=1

GijH (Xj ) − γH (Xi), (1)

where F (X) denotes the dynamics of each individual chaotic
unit, H (X) is the coupling function, and γ is a coupling
parameter which is equal for all nodes in the network. Here
G = (Gij ) is a real valued matrix, accounting for the weights
of the network’s connections. More precisely, Gij = 0 if nodes

FIG. 2. (a), (b) Time average synchronization error Ēx , and (c),
(d) the adaptation tracking error Ēσ as a function of the noise intensity
D (a), (c) and the structure change strengthC (b), (d) for three different
adaptive strategies: the method proposed in our paper, the SO strategy
in Ref. [15], and a fully nonadaptive strategy (see legends for color
codes). Each point is an average of 20 network realizations and initial
conditions. The parameters are given by C = 0.5 in (a), (c) and D =
0.5 in (b), (d). Other parameters are the same as in the caption of
Fig. 1.

i and j are not connected, Gii ≡ 0 (∀i), and Gij �= 0 for each
pair of connected units in the graph.

The communication (coupling) capacity of each node is
likely to saturate when the number of nodes connected to
it becomes too large [25]. For example, in neural systems,
the transmitter resources of the vesicles responsible for the
synaptic coupling strength in a neuron are invariant, no matter
how many other neurons are connected through synapses.
Therefore, the coupling matrix is here normalized by Gij/Vi ,
where Vi = ∑N

j=1 Gij denotes the intensity (strength) of node
i. While heterogeneity in the network topology or/and weights
may eventually hamper synchronization when Gij is regarded
as a straight coupling matrix [26], when the normalization
factor Gij/Vi is accounted for, the graph’s synchronizability
can be instead enhanced [3].

Model (1) is not taking into account environmental noise,
whose incorporation leads to

Ẋi = F (Xi) + γ

Vi

N∑
j=1

GijH (Xj ) − γH (Xi)

+K(Ui) +
N∑

j=1

GijK(Uj ). (2)

Now, Eq. (2) includes a signal coupling term
γ

Vi

∑N
j=1 GijH (Xj ) − γH (Xi), and the noise term

K(Ui) + ∑N
j=1 GijK(Uj ). Here K(Ui) quantifies the effect

of the intrinsic noise disturbance Ui occurring at node i,
while

∑N
j=1 GijK(Uj ) accounts for the communication noise

disturbance to node i from other connected nodes j .
In order to control (or maintain) synchronization, we

consider a slowly time varying network in which the avail-
able external information at node i includes the signal
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FIG. 3. Time average synchronization error Ēx as a function of (a) the dispersion c in the initial conditions for two different initial values
of B1i(0), (b) the number of controlled nodes, and (c) the average degree of the nodes being controlled. In panels (a) and (b) the network
topology is random with a homogeneous degree distribution (N = 100 and 〈k〉 = 20), and in panel (c) it is a BA scale-free network (N = 100
and 〈k〉 = 12). Each point is an average over 20 network realizations and initial conditions. Other parameters are the same as in Fig. 1, except
for the two different values B1i(0) = 1 and B1i(0) = 3 × 104 in panel (a).

Si = ∑N
j=1 GijH (Xj ) and the noise

∑N
j=1 GijK(Uj ) trans-

mitted through the network connections, whereas direct knowl-
edge of Vi = ∑N

j=1 Gij (that is, the network structure) is
unavailable. For the purpose of our adaptive synchronization
strategy, we assume that Si is adaptively modified to reach a
synchronous condition. The adaptive network can be described
by

Ẋi = F (Xi) + σiSi − γH (Xi) + Mi, (3)

where σi is the coupling strength of the network signal
Si received by node i and Mi = K(Ui) + ∑N

j=1 GijK(Uj )
accounts for the total noise disturbances acting on node i.
Assuming the network synchronous state to be described by
X1(t) = X2(t) = · · · = XN = Xs , the sum of the last three
terms in Eq. (3) is required to be identically zero. The
synchronous dynamics is therefore governed by the equation
describing the evolution of a single, isolated, system

Ẋs = F (Xs). (4)

According to Eq. (1), in the time varying network without
noise disturbances, the synchronous solution exists if all σi

adaptively evolve as

σ̄i(t) = γ

Vi(t)
, (5)

as reported in Ref. [15]. Reference [4] introduced a power-
ful method to assess synchronization stability of networked
oscillators (for any linear coupling) by the use of the master
stability function. The same arguments apply for our adaptive
model and the stability of the synchronous evolution depends
essentially on the choice of an appropriate coupling γ . We start
by choosing an adequate value of γ , for which the synchronous
state is stable in the absence of noise and in a static network.
When σi(t) is changed by Eq. (5), then the adaptive scheme
admits in general a stable synchronous solution [15]. Here,
we focus only on the maintenance of synchronization for low
values of additional noise intensities. In order to better monitor
the case of a time varying network with noise disturbances, our
contribution is to control the time evolution of σi(t) so that the

sum of the last three terms in Eq. (3) tends to relax toward
zero. To that purpose, we define a mean squared exponentially
weighted synchronization error (as a potential error function)
for each node i,

�i(t) =
∫ t

0
e−ν(t−t ′)|σi(t

′)Si(t
′) − γH (Xi(t

′)) + Mi(t
′)|2dt ′,

(6)

where ν−1 denotes the temporal extent over which the averag-
ing synchronization error is performed.

Here, we consider the case in which the time scale τS of the
node dynamics Xi(t) is much smaller than the time scale τN

for the evolution of network structure Gij (t) [i.e., the time
scale on which Vi and hence σ̄i(t) change]. The value of
ν−1 will be chosen such that τS < ν−1 < τN . Following this
assumption, one can replace σi(t ′) in Eq. (6) by σi(t), which
can be approximated as

�i(t) ≈
∫ t

0
e−ν(t−t ′)|σi(t)Si(t

′) − γH (Xi(t
′)) + Mi(t

′)|2dt ′

= σ 2
i (t)B1i(t) + γ 2B2i(t) + B3i(t)

− 2γ σi(t)B4i(t) + 2σi(t)B5i(t) − 2γB6i(t), (7)

where

B1i(t) =
∫ t

0
e−ν(t−t ′)S2

i (t ′)dt ′, (8)

B2i(t) =
∫ t

0
e−ν(t−t ′)H 2(Xi(t

′))dt ′, (9)

B3i(t) =
∫ t

0
e−ν(t−t ′)M2

i (t ′)dt ′, (10)

B4i(t) =
∫ t

0
e−ν(t−t ′)Si(t

′)H (Xi(t
′))dt ′, (11)

B5i(t) =
∫ t

0
e−ν(t−t ′)Si(t

′)Mi(t
′)dt ′, (12)

and

B6i(t) =
∫ t

0
e−ν(t−t ′)H (Xi(t

′))Mi(t
′)dt ′. (13)

022211-3



YUAN, ZHOU, SENDIÑA-NADAL, BOCCALETTI, AND WANG PHYSICAL REVIEW E 97, 022211 (2018)

FIG. 4. (a) Time evolution of the x variable of eight randomly
chosen nodes and (b) synchronization error in the presence of noise,
for the Foodweb model. For comparison, panels (c) and (d) show the
same quantities of panels (a) and (b), respectively, but calculated in
the case of a fully nonadaptive strategy. In panel (c) it is shown that
the network is explosive for the case of a nonadaptive strategy and
the states of all the nodes tend to infinity. Parameter values are N =
50, 〈k〉 = 10, γ = 2.0, D = 0.5, C = 0.5, B1i(0) = 104, B5i(0) = 0,
B4i(0) = B1i(0)/Vi(0), and ν = 1/1.4.

One way to engineer σi(t) (to minimize the potential function
�i) is by the following gradient descent relaxation [15]:

dσi(t)

dt
= −α

d�i

dσi

= −2α(σiB1i − γB4i + B5i), (14)

where α denotes the relaxation time scale. Taking α → +∞,
one gets

σi(t) = γB4i − B5i

B1i

. (15)

To further simplify the calculation, one can transform the
integrals (8), (11), and (12) into the following differential
equations:

dB1i(t)

dt
= −νB1i + S2

i , (16)

dB4i(t)

dt
= −νB4i + SiH (Xi), (17)

dB5i(t)

dt
= −νB5i + SiMi. (18)

According to the above analysis, one thus gets an effective way
for controlling network synchronization by means of Eqs. (3)
and (15)–(18).

III. NUMERICAL EXPERIMENTS

To check for effectiveness of our adaptive strategy, we
practically implement it on a random network of N nodes
with mean degree 〈k〉, where each node is described by
a chaotic Rössler oscillator [27]: X = (x,y,z) and F (X) =
[−y − z,x + 0.165y,z(x − 10.0) + 0.2]. For practical pur-
poses, one assumes the following time dependence of the links’
weights:

Gij = 1 + Cεij sin(ωij t), (19)

FIG. 5. (a), (b) Time average synchronization error Ēx and (c), (d)
the adaptation tracking error Ēσ as a function of the noise intensity D

(a), (c) and the structure change strength C (b), (d) for the Foodweb
model and three different adaptive strategies: the method proposed
in our paper, the SO strategy, and a fully nonadaptive strategy (see
legends for color codes). Each point is an average of 20 network
realizations and initial conditions. C = 0.35 in (a), (c) and D = 0.5
in (b), (d). Other parameters as in the caption of Fig. 4.

where εij and ωij are chosen from uniform distributions
(between 0 and 1 and between 0.01 and 0.02, respectively), and
C stands for the amplitude of the modulation of the network
weights’ change.

For the sake of simplicity, one can consider the coupling
and disturbing functions to be linear. This is tantamount to
fixing H (X) = HX and K(U ) = KU . In particular, one can
choose H = K = [1 0 0; 0 0 0; 0 0 0]) and Ui = (Dμi 0 0),
where μi(t) is a white noise of zero mean uniformly distributed
between −0.5 and 0.5 and D is the noise intensity.

In all simulations, the network is in a synchronous state at
t = 0 and the time synchronization error Ex(t) is defined as

Ex(t) = 1

Nρx

N∑
i=1

| xi(t) − x̄(t) | , (20)

where x̄(t) = 1
N

∑N
i=1 xi(t) and ρx is the standard deviation of

x̄(t), i.e., ρx = [ 1
t

∫ t

0 x̄2(t ′)dt ′ − ( 1
t

∫ t

0 x̄(t ′)dt ′)2]
1/2

.
The results are shown in Fig. 1 and confirm that our adaptive

strategy is able to maintain the initial synchronous state. In
Fig. 1(a), in particular, one can see the coincidence of the
trajectories of eight randomly chosen nodes in the network.
In Fig. 1(b), the vanishing of the synchronization error Ex(t)
can be easily seen in the whole time window explored. It is
found that the synchronization error remains always close to
zero in the evolving network. For comparison, we also show in
Figs. 1(c) and 1(d) the same case, where however the adaptive
strategy is not implemented. There, the synchronous trajectory
is instead abandoned and the synchronization error is getting
larger and larger in the course of time.

A better understanding comes from exploring the effect
that (i) the noise intensity D and (ii) the network parameter
C have on the controllability of the network synchronization.
Results are provided in Fig. 2, where we introduce an average
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FIG. 6. Same quantities as in the caption of Fig. 4, but for Lorenz
model. γ = 20.0, while the other parameters of the control method
are the same as in the caption of Fig. 4.

synchronization error Ēx , defined as Ēx = 1
t

∫ t

0 Ex(t)dt and
we compare our adaptive strategy [as described in Eq. (15)]
with the Sorrentino and Ott (SO) adaptive method [as described
by σi(t) = γB4i

B1i
in Ref. [15]], as well as with a nonadaptive

strategy [i.e, σi(t) ≡ γ

Vi (0) ].
It is observed in Fig. 2(a) that the average synchronization

error Ēx increases as D increases (as expected in the three
cases), but its value remains much lower when using the adap-
tive strategy proposed in this paper. On the other hand, when
studying the impact of introducing a change in the network’s
links, the error remains bounded with the parameter C in the
two adaptive cases, while it increases when a nonadaptive
strategy is adopted [see Fig. 2(b)].

The success of the controlling scheme depends on the fact
that σi(t) keeps tracking the dynamics of σ̄i(t). In order to
verify this, one can define a tracking error,

Ēσ = 1

Nt

∫ t

0

N∑
i=1

| σi(t) − σ̄i(t) | dt. (21)

In Figs. 2(c) and 2(d) one sees that (in the presence of noise)
our adaptive strategy is the best for tracking the state of
σ̄i(t). The tracking is instead totally lost when nonadaptive
strategies are adopted. Moreover, one can see that both the
synchronization error and the tracking error Ēσ are in our
case always smaller than those obtained by the use of the
SO strategy, thus indicating that our method outperforms the
SO one when one has to control synchronization on evolving
networks with noise disturbances.

In the Appendix, the reader can find extensive numerical
simulations, which verify our theoretical results in other three
dimensional chaotic dynamics, such as the Foodweb model
[28] and the Lorenz model [29]. Furthermore, our results are
also verified with the Mackey-Glass equation [30,31], a time
delay differential equation exhibiting high dimensional chaotic
dynamics. The Appendix also displays results for a Rössler
network with other linearly coupling functions. In particular,
it is found that our adaptive strategy is effective even for the
case in which the dynamics of the uncontrolled network would

FIG. 7. Same quantities as in the caption of Fig. 5, but for Lorenz
model. Parameter values are the same as in Fig. 5, except for γ = 20.0
and C = 0.5 in (a), (c).

be explosive (i.e., the states of all the nodes would diverge to
infinity).

We further address the issue of the robustness of the adaptive
strategy in different scenarios. In the first one, we examine
how robust is the control of the synchronous state against
the choice of initial conditions for the state Xi and control
B1i variables. According to Ref. [15], when selecting the
initial conditions for the state variables close to the basin
of attraction of the targeted synchronous solution, one has
B1i(0) � 〈S2

i 〉 = 〈k2〉〈x2
s 〉, with 〈k2〉 being the second moment

of the degree distribution and 〈x2
s 〉 the time average of xs(t)

for the synchronous chaotic dynamics. For the case we are
here considering (a random network of N = 100 Rössler
oscillators coupled through the x variable and 〈k〉 = 20), one
has B1i(0) = 104. In order to investigate how the setting of
such an initial value depends on the Xi(0) variables, we prepare
the network state as xi(0) = x0 + cρxεix , yi(0) = y0 + cρyεiy ,
and zi(0) = z0 + cρz|εiz|. In the latter expression (x0,y0,z0)
is a random point in the Rössler attractor; εix , εiy , and εiz are
random numbers taken from a normal distribution of zero mean
and unit variance. Furthermore, ρx = 7.45, ρy = 7.08, and
ρz = 4.25 are the standard deviations of the time evolutions
of the synchronous states xs , ys , and zs , and the parameter c

reflects the degree to which the initial conditions vary among
nodes.

Figure 3(a) compares the result at B1i(0) � 104 (3 × 104

is given) with that at B1i(0) = 1. It is clearly seen that good
synchronization is achieved when B1i(0) � 104 for different c

values, whereas the network fails to synchronize as c increases
above 0.1 when B1i(0) = 1.

Finally, we investigate the impact of a pinning control
strategy, which is limited to just a given percentage of the
network’s nodes. In a random network characterized by a
homogeneous degree distribution, it is not surprising that
the control becomes progressively more and more effective
as the number of controlled (pinned) nodes increases, as
shown in Fig. 3(b). In order to highlight the role of network
heterogeneity, we apply our method to a Barabási-Albert (BA)
scale-free network [32]. The procedure consists in ranking
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FIG. 8. Same quantities as in the caption of Fig. 4, but for Mackey-
Glass chaotic dynamics. Panel (c) shows that the network is explosive
for a nonadaptive control strategy. The parameter values are the same
as in Fig. 4.

the nodes according to their degree and dividing them in five
different communities, each community containing the 20%
of the nodes. In other words, community one will contain
the 20% of nodes with highest degree, community two will
contain the second 20% of nodes in the degree ranking, etc.,
up to community five, which will contain the 20% of nodes of
lowest degree. Then, the control is successively applied to each
community. The results are summarized in Fig. 3(c), where
one can observe that the synchronization error decreases as
the average degree of each block of nodes increases, meaning
that the adaptive strategy is more effective when applied to the
hubs of the network.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have introduced an effective strategy
which controls synchronization on slowly evolving networks

FIG. 9. Same quantities as in the caption of Fig. 5, but for Mackey-
Glass chaotic dynamics. Here the case of nonadaptation is not shown,
as the network is explosive there [see Fig. 8(c)]. Parameter values are
the same as in Fig. 5, except for C = 0.5 in (a), (c).

FIG. 10. Same quantities as in the caption of Fig. 4, but
for Rössler oscillators networked with a coupling function H =
[1 0 0; 0 1 0; 0 0 0]). Panel (c) shows that the network is explosive
for the nonadaptive case. Parameter values are the same as in Fig. 4.

in the presence of noise disturbances and which accounts
for both the intrinsic fluctuations at the single node level
and the communication noise over the network connections.
In our strategy, when the evolution of the network structure
is unknown, the coupling strengths of nodes are adaptively
adjusted for controlling network synchronization according
only to their received input signal and noise disturbance
from neighboring nodes. It is worth noticing that, in order
to calculate the adaptive coupling, we need to have access
to the noise source separately from the signal in real time.
However, despite the fact that acquisition of noise is not a trivial
task experimentally, some techniques for real-time separation
of noise from signals are available today and, therefore, our
control strategy could be used as long as the time scale of the

FIG. 11. Same quantities as in the caption of Fig. 5, but
for Rössler oscillators networked with a coupling function H =
[1 0 0; 0 1 0; 0 0 0]). The nonadaptive case is not shown, because
the network is explosive there [see Fig. 10(c)]. Parameter values are
the same as in Fig. 5, except for C = 0.2 in (a), (c) and D = 2.0 in
(b), (d).
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FIG. 12. Same quantities as in the caption of Fig. 4, but
for Rössler oscillators networked with a coupling function H =
[1 0 0; 0 1 0; 0 0 1]). Panel (c) shows that the network is explosive
for the nonadaptive case. Parameter values are the same as in Fig. 4.

dynamics to be controlled is slow enough to warrant real-time
processing of the signal to extract the noise sources.

We not only give theoretical analysis, but also show numer-
ical examples for verifying the effectiveness of our adaptation
strategy. We deal with the issue of keeping a synchronous
state in the presence of noise. It is found that our method
outperforms with respect to the previous strategies considered
in the literature [15], and as so it is a good candidate for
applications in real world networked systems.
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APPENDIX: EXTENSIVE NUMERICAL SIMULATIONS

In order to provide a verification of our theoretical results
for the generic use of dynamical systems as network’s nodes,

FIG. 13. Same quantities as in the caption of Fig. 5, but
for Rössler oscillators networked with a coupling function H =
[1 0 0; 0 1 0; 0 0 1]). The nonadaptive case is not shown, because
the network is explosive there [see Fig. 12(c)]. Parameter values are
the same as in Fig. 5, except for C = 0.5 in (a), (c).

we present here the results of extensive numerical simulations
which were done with other three (or higher) dimensional
chaotic dynamics.

The considered models (using the same notations as in the
main text) are as follows.

(i) The Foodweb model: F (X) = [x − 0.2xy/(1 +
0.05x),−y + 0.2xy/(1 + 0.05x) − yz,−10(z − 0.006) + yz]
(the results are reported in Figs. 4 and 5).

(ii) The Lorenz model: F (X) = [10(y − x),28x − y −
xz,xy − 8

3z] (the results are reported in Figs. 6 and 7).
(iii) The Mackey-Glass equation (results reported in Figs. 8

and 9). This latter chaotic dynamics is the result of a time-delay
ordinary differential equation: dx(t)

dt
= ax(t−τ )

1+x10(t−τ ) − bx(t). The
system shows chaotic behavior when τ > 17, and the di-
mensionality of its chaotic attractor is very well known to
grow linearly with τ . In our simulations, we adopted τ = 18,
a = 0.2, and b = 0.1.

(iv) The same Rössler model as in the main text, but
on networks with other linearly coupling functions: H =
[1 0 0; 0 1 0; 0 0 0]) (results shown in Figs. 10 and 11) and
H = [1 0 0; 0 1 0; 0 0 1]) (results reported in Figs. 12 and
13).

In all cases our adaptive strategy is extraordinarily effective.
Remarkably, also when the dynamics of the uncontrolled
network would be explosive [i.e., the states of all the nodes
would diverge to infinity; see Figs. 4(c), 8(c), 10(c), and
12(c)], our method can successfully control synchronization
[see Figs. 4(a), 8(a), 10(a), and 12(a)].

[1] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[2] L. A. N. Amaral, A. Scala, M. Barthélemy, and H. E. Stanley,

Proc. Natl. Acad. Sci. USA 97, 11149 (2000).
[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.

Huang, Phys. Rep. 424, 4 (2006).

[4] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).
[5] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, Nature (London)

473, 167 (2011).
[6] Z. Yuan, C. Zhao, Z. Di, W.-X. Wang, and Y.-C. Lai, Nat.

Commun. 4, 2447 (2013).

022211-7

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1073/pnas.200327197
https://doi.org/10.1073/pnas.200327197
https://doi.org/10.1073/pnas.200327197
https://doi.org/10.1073/pnas.200327197
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/ncomms3447
https://doi.org/10.1038/ncomms3447
https://doi.org/10.1038/ncomms3447
https://doi.org/10.1038/ncomms3447


YUAN, ZHOU, SENDIÑA-NADAL, BOCCALETTI, AND WANG PHYSICAL REVIEW E 97, 022211 (2018)

[7] Y.-Y. Liu and A.-L. Barabási, Rev. Mod. Phys. 88, 035006
(2016).

[8] T. Gross and B. Blasius, J. R. Soc. Interface 5, 259 (2008).
[9] W.-J. Yuan, J.-F. Zhou, Q. Li, D.-B. Chen, and Z. Wang,

Phys. Rev. E 88, 022818 (2013).
[10] C. Zhou and J. Kurths, Phys. Rev. Lett. 96, 164102 (2006).
[11] Q. Ren and J. Zhao, Phys. Rev. E 76, 016207 (2007).
[12] F. Sorrentino, Phys. Rev. E 80, 056206 (2009).
[13] J.-F. Zhu, M. Zhao, W. Yu, C. Zhou, and B.-H. Wang, Phys. Rev.

E 81, 026201 (2010).
[14] W.-J. Yuan and C. Zhou, Phys. Rev. E 84, 016116 (2011).
[15] F. Sorrentino and E. Ott, Phys. Rev. Lett. 100, 114101 (2008).
[16] B. Ravoori, A. B. Cohen, A. V. Setty, F. Sorrentino, T. E. Murphy,

E. Ott, and R. Roy, Phys. Rev. E 80, 056205 (2009).
[17] X. F. Wang and G. Chen, Physica A (Amsterdam) 310, 521

(2002).
[18] X. Li, X. Wang, and G. Chen, IEEE Trans. Circuit Syst. 51, 2074

(2004).
[19] J. A. Almendral, I. Sendiña-Nadal, D. Yu, I. Leyva, and S.

Boccaletti, Phys. Rev. E 80, 066111 (2009).
[20] R. Gutiérrez, I. Sendiña-Nadal, M. Zanin, D. Papo, and S.

Boccaletti, Sci. Rep. 2, 396 (2012).

[21] L. Wang, H. P. Dai, H. Dong, Y. Y. Cao, and Y. X. Sun,
Eur. Phys. J. B 61, 335 (2008).

[22] J. Zhou, J.-A. Lu, and J. Lü, Automatica 44, 996 (2008).
[23] K. Natori and K. Ohnishi, IEEE Trans. Ind. Electron. 55, 5

(2008).
[24] J. Lu and D. W. C. Ho, Nonlin. Anal.: Real World Appl. 12, 1974

(2011).
[25] A. E. Motter, C. S. Zhou, and J. Kurths, Europhys. Lett. 69, 3

(2005).
[26] T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. C. Hoppensteadt,

Phys. Rev. Lett. 91, 014101 (2003).
[27] O. E. Rössler, in Synergetics (a workshop), edited by H. Haken

(Springer, Berlin, 1977), p. 184.
[28] B. Blasius, A. Huppert, and L. Stone, Nature (London) 399, 354

(1999).
[29] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[30] M. C. Mackey and L. Glass, Science 197, 4300

(1977).
[31] I. Rojas, H. Pomares, J. L. Bernier, J. Ortega, B. Pino,

F. J. Pelayo, and A. Prieto, Neurocomputing 42, 267
(2002).

[32] A.-L. Barabási and R. Albert, Science 286, 509 (1999).

022211-8

https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1098/rsif.2007.1229
https://doi.org/10.1098/rsif.2007.1229
https://doi.org/10.1098/rsif.2007.1229
https://doi.org/10.1098/rsif.2007.1229
https://doi.org/10.1103/PhysRevE.88.022818
https://doi.org/10.1103/PhysRevE.88.022818
https://doi.org/10.1103/PhysRevE.88.022818
https://doi.org/10.1103/PhysRevE.88.022818
https://doi.org/10.1103/PhysRevLett.96.164102
https://doi.org/10.1103/PhysRevLett.96.164102
https://doi.org/10.1103/PhysRevLett.96.164102
https://doi.org/10.1103/PhysRevLett.96.164102
https://doi.org/10.1103/PhysRevE.76.016207
https://doi.org/10.1103/PhysRevE.76.016207
https://doi.org/10.1103/PhysRevE.76.016207
https://doi.org/10.1103/PhysRevE.76.016207
https://doi.org/10.1103/PhysRevE.80.056206
https://doi.org/10.1103/PhysRevE.80.056206
https://doi.org/10.1103/PhysRevE.80.056206
https://doi.org/10.1103/PhysRevE.80.056206
https://doi.org/10.1103/PhysRevE.81.026201
https://doi.org/10.1103/PhysRevE.81.026201
https://doi.org/10.1103/PhysRevE.81.026201
https://doi.org/10.1103/PhysRevE.81.026201
https://doi.org/10.1103/PhysRevE.84.016116
https://doi.org/10.1103/PhysRevE.84.016116
https://doi.org/10.1103/PhysRevE.84.016116
https://doi.org/10.1103/PhysRevE.84.016116
https://doi.org/10.1103/PhysRevLett.100.114101
https://doi.org/10.1103/PhysRevLett.100.114101
https://doi.org/10.1103/PhysRevLett.100.114101
https://doi.org/10.1103/PhysRevLett.100.114101
https://doi.org/10.1103/PhysRevE.80.056205
https://doi.org/10.1103/PhysRevE.80.056205
https://doi.org/10.1103/PhysRevE.80.056205
https://doi.org/10.1103/PhysRevE.80.056205
https://doi.org/10.1016/S0378-4371(02)00772-0
https://doi.org/10.1016/S0378-4371(02)00772-0
https://doi.org/10.1016/S0378-4371(02)00772-0
https://doi.org/10.1016/S0378-4371(02)00772-0
https://doi.org/10.1109/TCSI.2004.835655
https://doi.org/10.1109/TCSI.2004.835655
https://doi.org/10.1109/TCSI.2004.835655
https://doi.org/10.1109/TCSI.2004.835655
https://doi.org/10.1103/PhysRevE.80.066111
https://doi.org/10.1103/PhysRevE.80.066111
https://doi.org/10.1103/PhysRevE.80.066111
https://doi.org/10.1103/PhysRevE.80.066111
https://doi.org/10.1038/srep00396
https://doi.org/10.1038/srep00396
https://doi.org/10.1038/srep00396
https://doi.org/10.1038/srep00396
https://doi.org/10.1140/epjb/e2008-00081-5
https://doi.org/10.1140/epjb/e2008-00081-5
https://doi.org/10.1140/epjb/e2008-00081-5
https://doi.org/10.1140/epjb/e2008-00081-5
https://doi.org/10.1016/j.automatica.2007.08.016
https://doi.org/10.1016/j.automatica.2007.08.016
https://doi.org/10.1016/j.automatica.2007.08.016
https://doi.org/10.1016/j.automatica.2007.08.016
https://doi.org/10.1109/TIE.2008.918635
https://doi.org/10.1109/TIE.2008.918635
https://doi.org/10.1109/TIE.2008.918635
https://doi.org/10.1109/TIE.2008.918635
https://doi.org/10.1016/j.nonrwa.2010.12.013
https://doi.org/10.1016/j.nonrwa.2010.12.013
https://doi.org/10.1016/j.nonrwa.2010.12.013
https://doi.org/10.1016/j.nonrwa.2010.12.013
https://doi.org/10.1209/epl/i2004-10365-4
https://doi.org/10.1209/epl/i2004-10365-4
https://doi.org/10.1209/epl/i2004-10365-4
https://doi.org/10.1209/epl/i2004-10365-4
https://doi.org/10.1103/PhysRevLett.91.014101
https://doi.org/10.1103/PhysRevLett.91.014101
https://doi.org/10.1103/PhysRevLett.91.014101
https://doi.org/10.1103/PhysRevLett.91.014101
https://doi.org/10.1038/20676
https://doi.org/10.1038/20676
https://doi.org/10.1038/20676
https://doi.org/10.1038/20676
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1126/science.267326
https://doi.org/10.1126/science.267326
https://doi.org/10.1126/science.267326
https://doi.org/10.1126/science.267326
https://doi.org/10.1016/S0925-2312(01)00338-1
https://doi.org/10.1016/S0925-2312(01)00338-1
https://doi.org/10.1016/S0925-2312(01)00338-1
https://doi.org/10.1016/S0925-2312(01)00338-1
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509



