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We study the dynamics of a Josephson junction connected to a dc current supply via a distributed parameter
capacitor, which serves as a resonator. We reveal multistability in the current-voltage characteristic of the system;
this multistability is related to resonances between the generated frequency and the resonator. The resonant pattern
requires detailed consideration, in particular, because its basic features may resemble those of patterns reported in
experiments with arrays of Josephson junctions demonstrating coherent stimulated emission. From the viewpoint
of nonlinear dynamics, the resonances between a Josephson junction and a resonator are of interest because of the
specificity of the former; its oscillation frequency is directly governed by control parameters of the system and
can vary in a wide range. Our analytical results are in good agreement with the results of numerical simulations.
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I. INTRODUCTION

Josephson junction—a contact between two superconduc-
tors optionally separated by a thin insulator layer—is a macro-
scopic element the dynamics of which is essentially quantum
one [1,2]. These elements are natural voltage-to-frequency
transducers. One can distinguish two regimes of operation of a
Josephson junction (JJ): direct supercurrent with zero voltage
applied across a junction and oscillations of supercurrent when
the voltage is non-zero. The oscillation cyclic frequency for a
dc voltage Vdc is ω = 2eVdc/h̄, where e is the electron charge
and h̄ is the Planck constant, and noteworthily indicates that
charge carriers in superconductors are Cooper pairs.

From the viewpoint of nonlinear dynamics, JJ is a nonlinear
oscillator with a very special property: its oscillation frequency
in the ac mode is directly governed by a control parameter,
the input current [2]. Though for the majority of nonlinear
oscillators the frequency depends on the oscillation amplitude
and control parameters, its variation is restricted to a certain
range which rarely exceeds a few octaves. Hence, for the
dynamics of a given nonlinear oscillator connected to a res-
onator, only a few or even none of resonant frequencies can be
relevant. In contrast, the oscillation frequency of a JJ oscillator
varies nearly linearly with the input current, and any resonant
frequencies are accessible and relevant as operation modes.
Thus, the dynamics of a single JJ connected to a resonator can
be of generic interest.

Interconnected JJs were predicted to be able to self-
synchronize with a common radiation field and emit coherently
[3]. The suggested synchronization mechanism was a quantum
one and analogous to the one in the case of super-radiant atoms
in resonant cavity. Even more similarity between these two
quantum systems was revealed with further studies [4,5].

Later on, observations of coherent emission for one- and
two-dimensional arrays of junctions were reported [6,7], al-
though the underlying synchronization mechanism was shown
to be a classical one [6,8]. Arrays of JJs turned out to be
a remarkable object for the study of the classical synchro-

nization and collective dynamics in populations of nonlinear
oscillators. The reason for that is the property of popula-
tions of identical overdamped JJs which admit the employ-
ment of the Watanabe-Strogatz and Ott-Antonsen approaches
[9–12]. These approaches allow deriving a low-dimensional
self-contained system of ordinary differential equations for
the order parameter and lend the opportunity for a significant
advance in the study of generic laws of self-organization in
collective dynamics on the basis of a rigorous mathematical
treatment (e.g., see [13–15]).

Observations for two- and one-dimensional arrays of JJs
(see Fig. 1), where stimulated emission was causing coher-
ence, were presented in Refs. [16–18]. These observations
could not be explained by classical coupling mechanisms and
experimentally confirmed the predictions from Tilley [3] and
Rogovin and Scully [4]. The conclusion on the quantum nature
of coherence in these experiments was firmly supported by the
features of the current-voltage characteristics, the dependence
of the emission power on the dc input power (also see [19]),
and subtle analysis of the experimental set-ups.

It is interesting, that the electric circuits used in experi-
ments [16–19] contained a capacitor which could serve as a
resonator with distributed parameters under certain conditions.
All the components of the circuit were high-Q elements. In
a high-Q distributed parameter capacitor, the signals prop-
agate with nearly no dispersion and decay. The interaction
of self-sustained nonlinear oscillators with a neutrally stable
dispersion-free waveguide is known to be able to lead to a rich
and sophisticated resonant dynamics [20].

The diversity in complex behavior of arrays of JJs cre-
ates a demand for a comprehensive picture of possible ele-
mentary collective and resonant phenomena in these arrays:
macroscopic quantum coherence, classical synchronization,
and resonances between JJ and high-Q distributed-parameter
elements. In this paper we consider the dynamics of a single
JJ connected with a high-Q resonator. As we will show below,
the current–voltage characteristic of the latter system exhibits
patterns with multiple resonances; some features of these
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FIG. 1. Circuit of the array of Josephson junctions connected to
an extensive capacitor used in Ref. [16].

patterns may distantly resemble those of the patterns reported
for coherent states of junction array (cf. Fig. 3 of this paper
and Fig. 2 in [18]). The detailed knowledge on the current-
voltage characteristics of a single high-Q JJ connected with a
high-Q resonator will complement the picture of elementary
phenomena.

From the engineering point of view, the resonances in the
system under our consideration are important for operation of
JJ as a voltage-to-frequency or current-to-frequency transducer
[21]; they can either affect susceptibility of the system to con-
trol or enhance the stability of generated frequencies. Growing
practical interest to JJs is also related to the construction of new
tunable metamaterials [22–24].

In this paper we derive the governing equations for the
Josephson junction connected to a resonator (distributed pa-
rameter capacitor). Then the analytical solutions are obtained
for the case of high generation frequency (or high input current)
and low energy dissipation and confirmed with the results of
numerical simulations. Further, we develop the weakly nonlin-
ear analysis, which explains non-linear resonances observed
with numerical simulation at low frequencies. Finally, we
discuss the results and derive conclusions.

II. JOSEPHSON JUNCTION WITH A RESONATOR

A. Basic physical and mathematical model

Let us consider an elongate resonator (distributed parameter
capacitor) of length l along the x axis, connected to the
Josephson junction at x = 0 and an external current supply
at x = l. The inductance L, the capacity c, the resistance r for
the current along the resonator, and the conductance σ for the
leakage current between its plates are distributed as shown in
Fig. 2. For the infinitesimal interval dx the voltage increment
du and the current increment di are

du = dL it + dr i , di = dc ut + dσ u , (1)

R+
−

+
−

+
−

C
U

dc
u

dc
u+du

dd

I i i+didL dr dL dr

x

σ σ

FIG. 2. Josephson junction connected to a resonator with dis-
tributed capacity, induction, and ohmic resistance.

where subscript t indicates the partial time derivative. Hence,

it + rxL
−1
x i = L−1

x ux , ut + σxc
−1
x u = c−1

x ix , (2)

where subscript x indicates the partial x-derivative; Lx , cx , rx ,
and σx are the inductance, capacity, resistance, and leakage
conductance per the unit length of the capacitor, respectively.

The net current I through the Josephson junction is con-
tributed by the tunneling current I0 sin φ, the leakage current
U/R, and the bias current C(dU/dt) due to the junction
electrical capacity [2]:

I = I0 sin φ + U

R
+ CUt , φt = 2e

h̄
U , (3)

where U is the potential drop on the junction, φ is the phase
difference across the junction of the Ginzburg-Landau complex
order parameter associated to the macroscopic current in a
superconductor, I0 is determined by physical properties of the
junction, R is the ohmic resistance of the junction, C is the
junction capacity, e is the elementary charge, h̄ is the Planck
constant.

It is convenient to make the following rescaling of coordi-
nates and variables and introduce dimensionless parameters:

x = lx̃, t = t∗ t̃ , I = I0Ĩ , U = U∗Ũ ,

t∗ =
√

h̄C

2eI0
, U∗ = I0

√
Lx

cx

, v = t∗
l
√

cxLx

,

γi = rxt∗
Lx

, γu = σxt∗
cx

, β = t∗
2RC

, F =
√

h̄cx

2eCLxI0
.

(4)

Henceforth, the sign tilde is omitted.
In dimensionless form, Eqs. (2) and (3) constitute the

governing equation system with distributed parameters (one-
dimensional) and boundary conditions:

ut + γuu = vix , (5)

it + γii = vux , (6)

x = 0 : i(0,t) = sin φ + 2βφt + φtt , (7)

φt = F−1u(0,t) , (8)

x = 1 : i(1,t) = I1(t) , (9)

where I1(t) is the external input current.

B. Waves in resonator

We first focus on the case of γi = γu = γ . In this case
we can seek for an analytical solution in form of a pair of
counterpropagating decaying waves:

i(x,t) = e−γ t (g(t − x/v) + h(t + x/v)) . (10)

Equation (9) yields

h(t) = I1(t − T ) eγ (t−T ) − g(t − 2T ) , (11)
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FIG. 3. The current-voltage characteristic is plotted for (a) β = 0.05, γ = 0.01, F = 1; (b) β = 0.005, γ = 0.001, F = 0.5. The average
input voltage V1 is determined by Eq. (21). Red circles: the results of numerical simulation of Eq. (18), black solid line: the analytical solution
(28),(29). In the insert graph the same current-voltage characteristic from numerical simulations is plotted with the log-linear scale to show the
properties of peaks at non-large values of V1. For non-large values of V , one can notice two small sharp stripes in numerical results deviating
from the analytical solution; analytical description of these stripes requires the higher order corrections to be accounted for. With a recursive
delay feedback, even weak anharmonicity is known to be able to lead to strong resonant effects [25]. However, for moderate and large values of
V1 these high-order resonances are not detectable and the analytical theory describes the system dynamics well. The dynamics of the Josephson
junction in different resonant regimes is illustrated in Fig. 4.

where T = v−1. Substituting the latter equation into Eq. (10),
one can find

i(x,t) = I1(t − T + x/v) e−γ (T −x/v)

+ e−γ t (g(t − x/v) − g(t − 2T + x/v)). (12)

One can seek for u(x,t) in the same form as i(x,t);
specifically, u(x,t) = e−γ t (g1(t − x/v) + h1(t + x/v)). From
Eq. (5) or Eq. (6), g′

1(ξ ) = −g′(ξ ) and h′
1(ξ ) = h′(ξ ) (here the

prime denotes derivative); therefore,

u(x,t) = e−γ t (−g(t − x/v) + h(t + x/v) + const) , (13)

where const can be set to zero by renormalization of g and h.
Substituting h, one obtains

u(x,t) = I1(t − T + x/v) e−γ (T −x/v)

+ e−γ t (−g(t − x/v) − g(t − 2T + x/v)) . (14)

For the general case of γi �= γu and a weakly dissipative
resonator (which is of practical interest), i.e., γi � v and γu �
v, Eqs. (12) and (14) are still valid with

γ = γi + γu

2

up to corrections O((γi − γu)2/v2).

C. Dynamics of Josephson junction

Now we can recast the full set of the governing equations
of our dynamic system, some of which are partial differential
equations, into the form of an ordinary differential equation

for phase φ(t) with time-delay terms. Using Eq. (14) one can
rewrite Eqs. (7) and (8) as

φtt (t) + 2βφt (t) + sin φ(t)

= I1(t − T )e−γ T + f (t) − e−2γ T f (t − 2T ) , (15)

Fφt (t) = I1(t − T )e−γ T

− f (t) − e−2γ T f (t − 2T ) , (16)

where f (t) = e−γ tg(t). From Eq. (16),

f (t) = −Fφt (t) + I1(t − T )e−γ T − e−2γ T f (t − 2T ) .

In this equation, one can substitute f (t − 2T ) in the latter term
with the expression for f (t) taken for the time instant t −
2T , and repeat this procedure for t − 4T , t − 6T , etc., finally
obtaining f (t) = ∑∞

n=0 (−e−2γ T )
n
(−Fφt (t − 2nT ) + I1(t −

(2n + 1)T )e−γ T ). Substituting f (t) into Eq. (15), one finds

φtt (t) + (2β + F )φt (t) + sin φ(t)

= 2
∞∑

n=0

(−1)ne−(2n+1)γ T I1(t − (2n + 1)T )

− 2F

∞∑
n=1

(−1)ne−2nγ T φt (t − 2nT ) . (17)

For a constant in time input current I1(t) = I1 the first sum
in Eq. (17)

∑∞
n=0(−1)ne−(2n+1)γ T = (2 cosh γ T )−1; thus one
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FIG. 4. The dynamics of voltage across the Josephson junction
u(0,t) is simulated numerically for different resonant regimes, in-
dicated with n, for input current I1 = 0.2 and parameter values as
in Fig. 3b. The basic frequency of oscillations increases with n as
∝ (n + 1/2).

obtains

φtt (t) + (2β + F )φt (t) + sin φ(t)

= I1

cosh γ T
− 2F

∞∑
n=1

(−1)ne−2nγ T φt (t − 2nT ). (18)

Here, and hereafter, we consider the case of constant input
current I1, which corresponds to typical experimental set-ups
with dc current supplies. The chain of delayed terms of the form∑∞

n=1 ρnx(t − nτ ) (where coefficient |ρ| < 1, x(t) is some
system variable, and τ is the delay time) frequently appears
for resonators, including interferometers, and is referred to as
“recursive delay feedback” or “extended delay feedback”.

The nonlinear differential equation (18) with a linear re-
cursive delay feedback governs the dynamics of the system we
consider. Our further study is focused on solving this equation,
examining properties of its solution, and their interpretation.

Average (measured) input voltage. Let us consider the
average value of the input voltage, which can be treated as
a measured input voltage as oscillations about this value are
high-frequency ones,

V1 = 〈u(1)〉 = 〈I1(t) − 2e−γ tf (t − T )〉 , (19)

where 〈· · · 〉 denotes averaging over time. From Eq. (16), one
can find

−e−γ T f (t − T ) =
∞∑

n=1

[I1(t − 2nT )e−2nγ T (−1)n

− Fφt (t − (2n − 1)T )e−(2n−1)γ T (−1)n] .

(20)

Since 〈φt 〉 is constant in time by definition, Eqs. (19) and (20)
yield

V1 = I1 tanh 2γ T + F 〈φt 〉
cosh γ T

. (21)

III. THE CASE OF HIGH INPUT CURRENT

When the net current I through the junction is large
compared to the maximal tunneling current I0 [see Eq. (3)],
the ohmic contribution in the current is dominating. The nearly
constant ohmic current yields a nearly constant voltage U

across the junction and, according to Eq. (3), phase φ(t) rotates
quickly with some oscillations about the linear growth trend;
one can seek for the solution in form

φ(t) = φ0 + ωt + a cos ωt + . . . , (22)

assuming I1 � 1, ω � 1, and a � 1, where the dots stand for
higher-order harmonics, which are to be neglected. The term
sin ωt is removed by means of shifting the time offset; this shift
is represented by constant φ0, which is yet to be found.

For calculation of sin φ in Eq. (18), we employ the Jacobi-
Anger expansion

cos(a cos ωt) = J0(a) + 2
∞∑

n=1

(−1)nJ2n(a) cos 2nωt ,

sin(a cos ωt) = 2
∞∑

n=0

(−1)nJ2n+1(a) cos (2n + 1)ωt ,

where Jn(a) is the n-th order Bessel function of the first kind.
Keeping only the constant-in-time term and the first harmonics
in the Jacobi-Anger expansion, one finds

sin φ = sin(φ0 + ωt) cos(a cos ωt)

+ cos(φ0 + ωt) sin(a cos ωt)

= J1(a) cos φ0 + J0(a) cos φ0 sin ωt

+ J0(a) sin φ0 cos ωt + · · · . (23)
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Then Eq. (18) reads

−ω2a cos ωt + (2β + F )ω(1 − a sin ωt)

+ J1(a) cos φ0 + J0(a) cos φ0 sin ωt

+ J0(a) sin φ0 cos ωt + . . .

= I1

cosh γ T
− 2F

∞∑
n=1

(−1)ne−2nγ T

×ω(1 − a sin ω(t − 2nT )). (24)

Collecting constant-in-time terms and terms proportional to
sin ωt and cos ωt in Eq. (24), to the leading order, one finds

(2β + F tanh γ T )ω + J1(a) cos φ0 = I1

cosh γ T
, (25)

ω α1(ω) = J0(a)

a
cos φ0 , (26)

ω α2(ω) = J0(a)

a
sin φ0 , (27)

where

α1(ω) ≡ 2β + F sinh 2γ T

cosh 2γ T + cos 2ωT
,

α2(ω) ≡ ω + F sin 2ωT

cosh 2γ T + cos 2ωT
.

One can recast Eqs. (25)–(27) in the form free from φ0:

(2β + F tanh γ T )ω + ω α1(ω)
a J1(a)

J0(a)
= I1

cosh γ T
, (28)

a

J0(a)
= 1

ω

√
α2

1(ω) + α2
2(ω)

. (29)

For given value of ω, Eq. (29) can be treated as a tran-
scendental equation with respect to a. This equation possesses
unique solution for a within the range from a = 0 to 2.4048 . . .,
which is the first zero of the Bessel function J0(a). Since
our derivations are valid for non-large a, we should restrict
ourselves to the interior of the latter range. Thus, Eq. (29)
dictates single-valued dependence of a on ω. With known a(ω),
Eq. (28) yields the value of I1 and Eq. (21) yields the value of
V1. Summarizing, the high-frequency solution is parametrized
by frequency ω, which determines the amplitude a of phase
oscillation via transcendental equation (29), and Eqs. (28) and
(21) yield values of the corresponding input current I1 and the
time-average input voltage V1.

A. The case of low energy dissipation in resonator

Let us consider the case of γ T ≡ ε � 1 in detail. In this
case, one can simplify

α1 = 2β + Fε

ε2 + cos2 ωT
, α2 = ω + F tan ωT

1 + ε2 tan2 ωT
.

The expression α2 can turn to zero, which can result in
resonantly high values of I1. Let us find frequencies ω, where
α2 attains zero value. Condition α2 = 0 yields

ω + ε2ω tan2 ωT + F tan ωT = 0 ,

which can be viewed as a quadratic equation with respect to
tan ωT . Hence, one can write

(tan ωT )1,2 = −F ± √
F 2 − 4ω2ε2

2ε2ω
.

For ε → 0, these two branches of roots take the limiting forms

tan ω1,nT = −ω1,n

F
, (30)

cot ω2,nT = −ε2ω2,n

F
. (31)

The roots of these equations are

ω1,n = π

T

(
n + 1

2

)
+ F

π

(
n + 1

2

) + · · · ,

ω2,n = π

T

(
n + 1

2

)(
1 + ε2

FT
+ · · ·

)
.

For these roots, one finds

α1(ω1,n) ≈ 2β + ε

F

(
F 2 + ω2

1,n

)
, α1(ω2,n) ≈ 2β + F

ε
.

At points where α2 = 0, Eq. (28) also simplifies to

I1 = (2β + εF )ω + J1(a) . (32)

One can see, that for the first group of roots, ω = ω1,n,
the value of α1 is small and Eq. (29) yields non-small values
of a. Hence, J1(a) makes a non-small correction to the trend
(2β + εF )ω. Meanwhile, for the second group of roots, ω =
ω2,n, α1 is large and, according to Eq. (29), a is small. Hence,
a(ω2,n) ≈ (ωα1)−1 and

I1(ω2,n) ≈ (2β + εF )ω2,n + ε

2ω2,nF
.

The increase of I1 compared to the trend (2β + εF )ω is small
(∝ ε); there is no resonant peaks at ω2,n. Thus, there is a
resonant increase of the input current I1 at resonant frequencies
ω = ω1,n, this increase is especially strongly pronounced for
small ohmic dissipation at the Josephson junction (β � 1).

The physical mechanism of the increase of the input current
required to maintain oscillations with resonant frequencies is
as follows. With no dissipation and at resonant frequency, one
can excite in the resonator a standing wave with zeros at the
boundaries. For small dissipation and frequency mismatch,
there are heirs of the resonant standing wave, which are the
oscillating patterns with nearly zero values of fields at the
boundaries. When one maintains not small, but moderate val-
ues of the fields at the boundaries (which are, in our case, due to
inherent dynamics of the Josephson junction and external input
current), the patterns in resonator are proportionally increased
and become large-amplitude. Hence, even for small values
of dissipation coefficients, the dissipation at the resonator
becomes non-small and one requires stronger energy supply to
the system to maintain the regime with a resonant frequency.
This energy is supplied to the system with external input
current, which has to be consequently increased.
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B. Comparison with numerical results and interpretation

In Fig. 3, one can see the results of the analytical theory
[Eqs. (21), (28), (29)] to match the results of numerical
simulation well (the relative error of numerical simulations
is below 10−12). The analytical theory inaccurately estimates
the height of one or two low-frequency resonant peaks (while
their position with respect to V1 and, therefore, frequency
are predicted accurately) and misses the nonlinear resonances
which are non-negligible in the same low-frequency domain of
parameters. The nonlinear corrections to the analytical theory
are derived in the next section and with these corrections
the nonlinear resonances appear where they are observed
with numerical simulations. However, in the low-frequency
domain, the series with respect to powers of ω−1 does not
converge at the centres of peaks and the weakly nonlin-
ear analytical theory does not describe the system behav-
ior; only the position of nonlinear resonances is predicted
accurately.

It turns out that the analytical theory describes the resonant
behavior very well immediately above the low-frequency
domain (see Fig. 3).

The analytical solution provides steady states, which can
be either stable or unstable. At the solution branching points
the tangential bifurcation occurs meaning the one of solu-
tions is stable while the other is unstable. Since in numeri-
cal simulations, one observes only stable solutions, we can
surely conclude that for resonant peaks the lower branch
is stable, while the upper one is unstable (see Fig. 3). A
small distance between stable and unstable branches on the
current-voltage plane does not mean that the attraction basin
of the stable state is small; the branches are close only in
the projection to this plane, while in the full phase space
they are well remote from each other. With arbitrary ini-
tial conditions, the system frequently arrives to the stable
resonant states.

IV. NONLINEAR CORRECTIONS OF HIGHER ORDER

In this section we develop a perturbation analysis account-
ing for higher order terms. It will be convenient to read Eq. (18)
in the form

L̂φ + sin φ = I1

cosh γ T
, (33)

where

L̂φ ≡ φtt (t) + (2β + F )φt (t)

+ 2F

∞∑
n=1

(−e−2γ T )nφt (t − 2nT ) .

One can evaluate

L̂ωt = 2βω + Fω tanh γ T (34)

and

L̂φω = ω cos ωt

[
− ωaω + 2βbω

+ F (−aω sin 2ωT + bω sinh 2γ T )

cosh 2γ T + cos 2ωT

]

+ω sin ωt

[
− ωbω − 2βaω

+ F (−bω sin 2ωT − aω sinh 2γ T )

cosh 2γ T + cos 2ωT

]
, (35)

where φω = aω cos ωt + bω sin ωt .
After lengthy but straightforward calculations, one can find

from Eq. (33), to the third order,

I1 = (2β cosh γ T + F sinh γ T )ω

+ cosh γ T

(
a

(1)
1 + a

(3)
1

2
+ b

(1)
1 a

(2)
2 − b

(2)
2 a

(1)
1

4

− a
(1)
1

[(
a

(1)
1

)2 + (
b

(1)
1

)2]
16

)
+ O(ω−4), (36)

where a(k)
n and b(k)

n are determined by the following linear
equations: (

α2(ω) −α1(ω)

α1(ω) α2(ω)

)(
a

(1)
1

b
(1)
1

)
= 1

ω

(
0

1

)
, (37)

(
α2(2ω) −α1(2ω)

α1(2ω) α2(2ω)

)(
a

(2)
2

b
(2)
2

)
= 1

4ω

(
a

(1)
1

b
(1)
1

)
, (38)

(
α2(ω) −α1(ω)

α1(ω) α2(ω)

)(
a

(3)
1

b
(3)
1

)

= 1

ω

(
a

(2)
2 /2 − a

(1)
1 b

(1)
1 /4

b
(2)
2 /2 − [(

a
(1)
1

)2 + 3
(
b

(1)
1

)2]
/8

)
. (39)

The average value of the input voltage is determined by Eq. (21)
exactly

V1 = I1 tanh 2γ T + Fω

cosh γ T
.

Weakly nonlinear solution (21), (36)–(39) provides cor-
rections to the solution derived without accounting for 2ω

and higher harmonics. This solution is parametrized by fre-
quency ω. The weakly nonlinear solution correctly pinpoints
the position of nonlinear resonances which can be seen in
Fig. 3 (stripes without number n) for low frequencies which
correspond to small average voltage V1. Unfortunately, the
weakly nonlinear solution helps only with identification of
the position of nonlinear resonant peaks and confirming their
nature; it does not reproduce the shape of peaks well, because
of the divergence of the expansion with respect to ω−1 at low
frequency domain.

V. CONCLUSION

A high-Q circuit of a Josephson junction connected to
resonator (a lengthy capacitor) has been found to exhibit
multistability in regimes of operation and the current-voltage
characteristic. The multistability is associated with tall peaks
at the current-voltage characteristic emerging at generated os-
cillation frequencies which are resonant ones for a distributed
parameter capacitor.
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In resonant regimes, variation of the input current, which
is a control parameter for this system in practice, makes a
minor impact on the average input voltage and generation
frequency. The resonant frequencies are given by Eq. (30),
ω1,n ≈ (π/T )(n + 1/2), and the corresponding average volt-
age determined by Eq. (21) reads V1,n ≈ (πF/T )(n + 1/2).

The detailed knowledge on features of the current-voltage
characteristic we derived assists one to surely distinguish the
resonant patterns we consider from the patterns reported for
arrays of Josephson junctions in the lasing regimes of operation
in [16–18]. Currently, a thorough knowledge of the physical
parameters of junctions is sufficient to identify the lasing
regimes, as well as the dependence of the emission power on
the dc input power for these regimes possesses recognizable
properties. The information we report is most beneficial in the
situations of the lack of quantitative information on the system
parameters.

Considering Josephson junctions as natural voltage-to-
frequency or current-to-frequency transducers, we would like

to notice the possibility to strongly stabilize or efficiently
control the generation frequency by means of a resonator. The
stabilized generation frequencies are determined by generator
properties; ω1,n ≈ (π/T )(n + 1/2), where T is the time of
signal travel along the resonator.
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