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From localization to anomalous diffusion in the dynamics of coupled kicked rotors
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We study the effect of many-body quantum interference on the dynamics of coupled periodically kicked
systems whose classical dynamics is chaotic and shows an unbounded energy increase. We specifically focus
on an N-coupled kicked rotors model: We find that the interplay of quantumness and interactions dramatically
modifies the system dynamics, inducing a transition between energy saturation and unbounded energy increase. We
discuss this phenomenon both numerically and analytically through a mapping onto an N-dimensional Anderson
model. The thermodynamic limit N — oo, in particular, always shows unbounded energy growth. This dynamical
delocalization is genuinely quantum and very different from the classical one: Using a mean-field approximation,
we see that the system self-organizes so that the energy per site increases in time as a power law with exponent
smaller than 1. This wealth of phenomena is a genuine effect of quantum interference: The classical system for
N > 2 always behaves ergodically with an energy per site linearly increasing in time. Our results show that
quantum mechanics can deeply alter the regularity or ergodicity properties of a many-body-driven system.
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I. INTRODUCTION

Deterministic chaos is a powerful scientific paradigm to
understand the natural world [1,2]. Since the first works by
Lorenz [3] and May [4], it has become suddenly clear that
nonlinearities in very simple maps or systems of differential
equations could give rise to a complex aperiodic behavior,
strongly dependent on initial conditions. The works by Feigen-
baum [5,6] and Ruelle-Takens [7] showed that there is a uni-
versal way in which nonlinear systems undergo the transition
to a chaotic regime; those theories have found spectacular
experimental demonstrations in the context of turbulence [8,9].
The dynamics of chaotic dissipative systems in phase space
converges towards sets called “strange attractors” [10,11]
whose fractal structure [12] challenge traditional geometric
descriptions. Chaos is extremely pervasive and applies to fields
like meteorology [13], chemistry [11,14], economics [15], and
medicine [13,16-21] to the extent that even life could be
thought as a chemical system self-organizing at the border
between order and chaos [22].

The focus of this work is the relation between chaotic
dynamics from one side and ergodicity and thermalization
from the other in quantum many-body Hamiltonian systems.
This is a rather well-studied topic in classical physics (see
Refs. [23,24] for a review): After the first studies by Poincaré
[23], interest in these topics was renewed by Fermi, Pasta, and
Ulam [25], who numerically simulated a chain of nonlinear
oscillators, finding a complex nonthermalizing behavior. The
theoretical explanation of this fact came from Kolmogorov,
Arnold, and Moser [26,27], who demonstrated that, for
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moderate nonintegrable perturbations, the phase space is partly
regular and partly chaotic (KAM theorem). In this intermediate
situation, when there are many degrees of freedom, slow diffu-
sion is possible in the connected chaotic cluster, giving rise to
exponentially slow deviations from nearly integrable behavior
encoded in Nekhoroshev theory [28]. These studies are of
huge theoretical importance, because they put the concept of
ergodicity necessary for thermalization of isolated classical
systems on solid mathematical foundations [29,30]. If a many-
body system is ergodic, then all the phase space is chaotic
and there is a strong dependence on initial conditions, with
nearby trajectories deviating from each other exponentially
fastin time [24,31]. Chaotic trajectories are extremely complex
fractal objects; in the ergodic case they uniformly fill all the
available phase space [23] and time averages over them equal
the microcanonical ones; in this case thermalization can occur.

Thanks to the progress of experimental techniques, which
can nowadays study the coherent dynamics of many-particle
quantum systems for long times [32-34], it has become
natural to study ergodicity and thermalization in Hamiltonian
quantum systems (see Ref. [35] for a review), a problem dating
back to von Neumann [36]. The natural tools to study these
problems are those developed to analyze the chaotic properties
of quantum systems (see Refs. [37-39] for a review). The
dynamics of states in the Hilbert space is linear and therefore
cannot be chaotic; chaos can only emerge in the properties
of the observables. For instance, the exponential deviations
characteristic of chaotic trajectories can be studied through the
overlap of the time evolution of the same initial quantum state
with two slightly different Hamiltonians (the Loschmidt echo)
[40]. Systems whose classical counterpart is chaotic show a
Hamiltonian looking like a random matrix and this can be
probed from the properties of the level-spacing distribution,
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which is Poisson like for integrable-like systems and Wigner-
Dyson for fully ergodic ones [41,42]. This analysis has become
a probe for chaoticity also in quantum systems without a
classical counterpart [43], especially in connection with the
recent developments on many-body localization [44,45].

A very interesting question addressing the difference be-
tween classical and quantum systems is whether quantumness
can modify the chaotic properties of a physical system. A
remarkable example is the quantum kicked rotor [46—48]. As
discussed in detail in Sec. II, the quantum dynamics of this
nonlinear Hamiltonian model can differ considerably from
the corresponding classical one in terms of ergodicity and
energy absorption. In the classical case the system behaves
ergodically for kicks’ amplitudes larger than a critical value:
The dynamics explores all the available phase space, and the
energy steadily increases linearly in time without a bound
(dynamical delocalization). Imposing quantization of conju-
gated variables, one sees that the energy increases until a
certain point and then fluctuates around a finite value (quan-
tum dynamical localization). Therefore, quantum interference
makes the dynamics of the kicked rotor more regular. This
phenomenon is intimately connected to Anderson localization:
quantum interference and chaotic dynamics make the system
localized in momentum space (and in energy) in a way similar
to one-dimensional Anderson localization in real space [49].
The connection between the two phenomena has be discussed
in Refs. [50,51]. Dynamical localization in the quantum kicked
rotor and in other small chaotic quantum system has also been
experimentally observed [52-56].

The pioneering studies on the quantum kicked rotor done
in the 1970s and 1980s are at the roots of the research field of
periodically driven quantum many-body systems. Indeed, the
relation between quantum chaos and ergodicity from one side
and energy absorption from the other in this class of systems
has recently attracted a lot of interest. This is a very important
point for experiments, because periodically driven systems
allow us to simulate quantum many-body Hamiltonians of
physical interest and the dynamics must be stable and nonther-
malizing for long times in order to see phenomena like quantum
phase transitions and topological effects (see Ref. [57] for
a review). As in the autonomous case, integrability plays
here an important role. General many-body-driven quantum
systems have been found to attain an asymptotic periodic
steady regime described by the so-called Floquet diagonal
ensemble [58]. In the integrable case the steady regime is
nonthermal [58,59] (see also Ref. [60]) and is described by a
peculiar form of generalized-Gibbs-ensemble density matrix
[61,62]. On the other hand, nonintegrable driven quantum
systems “thermalize” at T = oo, i.e., heat up indefinitely,
because of the absence of energy conservation. Consistently,
the eigenstates of the stroboscopic dynamics (the Floquet
states) are random delocalized states, locally equivalent to
the T = oo thermal ensemble [63,64], and the level-spacing
distribution of the corresponding eigenvalues (the Floquet
quasienergies) is of Wigner-Dyson form [63]. For high values
of the driving frequency, many-body-driven quantum systems
can show a long-lived prethermal metastable regime described
by the Magnus expansion [65], which has been shown to be
valid only for a finite time [66,67]. In some systems there is a
crossover between thermalizing and integrable-like behavior

for finite size, though it is believed that the dynamics is
always eventually thermalizing in the thermodynamic limit
[63], possibly after a prethermalization regime [68,69]. In
other cases, a transition between a regular and an ergodic
dynamics persists also in the thermodynamic limit [70-72].
Very peculiar is the case of disordered periodically driven
quantum systems, where the transition between a many-body
localized regime with dynamical localization and an ergodic
thermalizing behavior is clearly seen [73,74]. This transition
has been experimentally observed [75] and its existence has
been put in connection with the absence of a mobility edge in
the undriven many-body localized model [76]. In the many-
body localized systems, dynamical localization is induced by
quantum interference and the disorder imposed externally on
the system. An extremely interesting question is how dynami-
cal localization in clean many-body-driven systems [70-72] is
generated by the interplay between quantum mechanics and the
disorder spontaneously generated by the deterministic chaotic
dynamics.

In this work we address this question considering a gen-
eralization of the quantum kicked rotor to the many-body
case. Specifically, we study the dynamics of many quantum
kicked rotors nonlinearly coupled through the kicking. Until
now only the case of two rotors [77-82] and the interacting
linear [83] have been considered in the literature and a clear
picture of the effect of quantum mechanics on the dynamics of
the general nonlinear case is missing. Our goal is to to consider
the case of a generic number N of coupled rotors, considering
also the thermodynamic limit N — oo. Our first result is
to establish a connection between a chain of N interacting
rotors and an N-dimensional disordered lattice exhibiting
Anderson localization, extending the results found with N = 1
[50,51] to a generic N. This implies that although the classical
system always shows unbounded energy growth, the quantum
system can undergo a localization-delocalization transition:
Also, in the many-body case, quantum mechanics deeply
changes the ergodic properties of the system. The connection
is first explored analytically and afterwards numerically in
the cases N = 2 and N = 3 using exact diagonalization and
a time-evolving-block-decimation algorithm. For N = 2, we
find that the energy initially increases in time, as was previously
found [77,81], eventually stopping to a finite asymptotic value
exponentially large in the kicking strength, therefore exhibiting
dynamical localization. This result is in agreement with the
results for the two-dimensional Anderson model [84]. For N >
2 it is known that a disordered lattice undergoes a transition
from Anderson localization [84]: We numerically observe this
in the case of N = 3. These results for the rotors are pictorially
represented in Fig. 1.

Finally, we move to the large-N limit. We first study an
oo-dimensional Anderson model: Using the scaling theory
of localization by Abrahams et al. [84], we show that this
model always exhibits delocalization. Therefore, we expect,
due to the mapping introduced above, that also the many
kicked rotors model is always dynamically delocalized in the
thermodynamic limit: The energy per site always increases
without a bound.

We perform a numerical study of this limit with a mean-field
approximation which is exact when the coordination number of
the system goes to infinity: We focus on a specific case in which
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FIG. 1. The behavior of our kicked rotors system is sketched. For
N = 1,2 rotors the system is localized for all the values of the kick
strength K. For N > 2 but finite a transition occurs from localized
to delocalized. For N — oo the system is always delocalized and the
mean-field approach gives that the kinetic energy of the system grows
subdiffusively in time (E, ~ t*, witha < 1).

this fact occurs, the one of infinite-range interactions in the
thermodynamic limit. With the mean-field approach, we can
use an effective single rotor Hamiltonian to infer the dynamics
of the long-range interacting system. We remarkably find
that the system is not localized: The momentum distribution
spreads in time and the kinetic energy grows. This growth
is described by an anomalous diffusion, namely the energy
increases like #* with o < 1. For high values of kicking
amplitude and interaction we find that subdiffusion tends to
become diffusion: « — 1. The subdiffusion we observe is a
genuinely quantum phenomenon: For the same parameters the
classical counterpart of the system is ergodic and its energy
grows linearly in time (diffusive behavior).

The peculiarity of the effective single rotor model is that
the kick amplitude evolves in time: It is modulated by a
mean-field parameter which is computed at each time step
and depends on the evolution of the system itself. The
breaking of the dynamical localization in a single quantum
kicked rotor via a modulation of the kick amplitude has
already been considered. Examples are a modulation via
d — 1 incommensurate frequencies [85-89] which induces
an Anderson localization-delocalization transition and a kick
with modulated amplitude which undergoes decoherence and
a quantum-to-classical transition [90-92]. In all the cases,
the properties of the modulation are crucial in determining
the response of the system, especially if the modulation is
noisy [93-98]. In our case the modulation does not come
from an external signal but is self-consistently determined.
Moreover, the mean-field parameter introduces a nonlinearity
in the effective Hamiltonian, which plays a crucial role in
destroying the dynamical localization of the single rotor. The
nonlinearity induces a self-reorganization during the system
evolution, giving rise to the anomalous diffusion of the kinetic
energy.

Nonlinearities have already been considered in the kicked
rotor [99-101] and related disordered lattices [102—-105] and
they are indeed found to turn the dynamical or Anderson
localization into a subdiffusive spreading of the wave function.

The work is organized as follows. In Sec. II we introduce
the interacting kicked rotors model we discuss in this work.

We also briefly review the single kicked rotor, focusing on
the different behaviors that the classical and quantum versions
of this model manifest. In Sec. III we discuss the analytical
mapping of the N-rotors model on an N-dimensional Anderson
model and numerically verify it in N = 2 and N = 3 rotors
cases. A comparison with the results for the classical case is
reported in Appendix A. Section IV discusses the behavior
of the coupled kicked rotors in the thermodynamic limit. We
predict that in this case there is always dynamical delocaliza-
tion: We show this in Ssec. IV A where we use the mapping
introduced in Sec. III and demonstrate the absence of Anderson
localization for an co-dimensional disordered lattice. Section
IVB contains the numerical study of the N — oo limit of
the fully connected model: We define the effective mean-field
model (for a demonstration of its exactness when N — oo
see Appendix B) and describe its dynamics. We study the
dynamics of the effective model by looking at the kinetic
energy growth and at the properties of the time-dependent
mean-field parameter. Under Conclusions, we summarize the
results henceforth presented, discussing the outlook and the
implications coming from this work.

II. KICKED ROTORS MODELS

The kicked rotor (KR) is a paradigmatic model both in
classical and quantum mechanics, widely studiedsince its
appearance in the first works [47,50,51,106]. For a review one
could see Ref. [107]. Here we study a many-body generaliza-
tion of this model, whose adimensional Hamiltonian is

R 1 N R +00
A@)= 3 pi+V®) Y o6 —ny; (1)
i=1

n=—00

with

N

V(@) =K Zcosé,- — %Zeij cos(éi — éj) .2
i=1 i#j

In this work we specifically address two cases: the one with

nearest-neighbor interactions where €;; = € §; j_; and that of

infinite-range interactions ¢€;; = ﬁ In the latter case, the

mean-field approximation is exact in the thermodynamic limit.

Notice the commutation rules

[6;,p;]1 = iké; j, 3)
where the effective Planck’s constant k = /& T /I is directly
proportional to 7 and to the physical kicking period 7' and in-
versely proportional to the momentum of inertia I of the rotors
[46]. This adimensional constant is obtained by expressing the
Hamiltonian Eq. (1) in units of 7/ T2, defining the following
adimensional quantities: t' =¢/T,K' =T K/I,p'=pT/I.
After this rescaling, the kicking period is 1, as can be seen in
Eq. (1). We will henceforth be interested in the stroboscopic
evolution of the system at each period of time: We consider the
state of the system only at discrete times f, = n.

The momentum operators p; have discrete eigenvalues
km; (m; € Z) as a result of the corresponding angle operator
being periodic §; = 6; + 27 and the wave function in the
angle representation being single valued (see, for instance,
Ref. [108]). A possible basis of the Hilbert space is therefore
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easily constructed from tensor products of local momentum
eigenstates {|m, ..., my)}m,.  myez. We will write this basis
also in the form {|m)},czv where we have defined the vector
m= (ml, ...,mN).

Before moving to the analysis of the many-rotors models,
let us review what is known about the single KR (N = 1).
Classically, this model can either show energy localization
or unbounded energy growth depending on the value of K.
This can be seen by studying the stroboscopic kinetic energy
of the system evaluated immediately before the nth kick
which is E(n) = p2(n)/2 [the average (1) is taken over an
ensemble of randomly chosen initial conditions]. The energy
will not increase in time if K < K. = 0.971635 (classical
dynamical localization) due to the presence of stable KAM
trajectories separated by chaotic regions [109]. These stable
trajectories disappear for K 2 K. and the dynamics becomes
fully chaotic; as a consequence, E(n) starts growing linearly
in time with a coefficient Dgg ~ K?/4. In this regime the
system is ergodic: Nearby trajectories separate exponentially
and explore the entire phase space for generic initial condi-
tions. As a consequence, there is diffusion in the momentum
space, as it can be seen looking at the momentum variance
U;(I’l) = p%(n) = 2E(n) [110] which increases linearly with
n. Since this object coincides with the kinetic energy up to a
factor, from a classical point of view ergodicity implies energy
delocalization.

The quantum counterpart of this model (quantum kicked
rotor, QKR) is obtained by imposing the commutation rules
Eq. (3) to the case N = 1. Through the suppression of ergod-
icity, quantum mechanics dramatically changes the behavior
of this model and constrains the energy dynamics so that
the system behaves as an integrable one. Indeed, we pass
from the unbounded steady heating of the classical system
to dynamical localization for all values of K exhibited by its
quantum counterpart. The kinetic energy, after a linear growth
for a time n* [51,111], reaches an asymptotic condition and
fluctuates around a finite value [112]. Dynamical localization
has been experimentally observed with a cloud of ultracold
atoms moving in a pulsed, one-dimensional periodic optical
lattice [55].

The dynamical localization in the QKR can be better un-
derstood with the mapping introduced in Refs. [50,51], which
connects this model to the time-independent Hamiltonian of
a single particle hopping on a disordered one-dimensional
lattice. This last model is known to show Anderson localization
[49]: The eigenfunctions at energy € are localized in space,
Ye(x) ~ exp(—x/&), where & is the localization length. Such
construction will be generalized to the many-rotors models
defined in Eq. (2) in the next section, making it possible to
interpret dynamical localization and delocalization in these
models in terms of Anderson localization of a particle hopping
over an N-dimensional lattice.

III. FLOQUET STATES AND MAPPING TO
ANDERSON LOCALIZATION

Our first step in the analysis of the behavior of coupled
quantum kicked rotors is to develop a mapping of a model of
N kicked rotors to a single particle hopping in a N-dimensional
disordered lattice model (Ssec. IITA). Using Floquet states in

a way similarly to what Refs. [50,51] do for a single rotor, we
will show that the hopping in the lattice model is short ranged
for all the cases we are interested in, allowing us to apply the
existing knowledge on the localization-delocalization transi-
tion. We show that localization and delocalization in the lattice
model precisely corresponds to dynamical localization and
delocalization in the rotors model (Sec. I1I B). We can therefore
make the following predictions: For N < 2, the lattice model
is always Anderson localized—and so should be the rotors
dynamics in the energy space. For N > 2, the lattice model
undergoes a transition from localization to delocalization as
the hopping strength is increased [84], implying a dynamical
localization-delocalization transition for the rotors. For N = 2,
we expect the asymptotic energy to be exponentially large
in the kicking strength. In Sec. IIIC we numerically verify
our predictions for the kicked rotors in the cases N = 2 and
N = 3. Wedo this by studying the energy dynamics, the inverse
participation ratio of the Floquet states, and the level-spacing
distribution.

A. Localization of the Floquet states

In order to present the mapping of our model to an Anderson
one, let us start by studying the properties of the time-evolution
operator over one period. We consider the evolution from
the instant immediately before the nth kick to the instant
immediately before the n + 1th. The desired time evolution
operator is therefore

Y .
U = exp <_21_k Z ﬁf) exp [—;;V(é)], 4)

where & is the effective Planck’s constant introduced in Sec II.
Let us now focus on the properties of the eigenstates of this
evolution operator, the so-called Floquet states |¢,) [113,114].
In other words,

Ulpe) = e | ¢y), ®)

where i, are the Floquet quasienergies. The Floquet states | ¢y, )
are eigenstates of the stroboscopic dynamics which therefore
are left invariant up to a phase factor by the action of U. Let
us now define Hy = % lN:l p? [see Eq. (1)] and apply the
unitary transformation |¢y) = /%0/®|¢,). We can apply this
transformation without altering the localization structure of
the Floquet state in the momentum basis, because the operator
I:IO is diagonal in this basis. After the transformation, we can
rewrite the eigenvalue equation as a pair of equations [115]

e¥1/OR) exp (:F% V(f))) eFID|G,) = eFhely).  (6)
Using the resolution of the identity

1= |m)(m| @)

in terms of the momentum eigenstates and performing some
simple formal manipulations, we can finally rewrite the Floquet
eigenvalue equation as

D W (m'|60) + €(m)(m| ) = 2cos(q)(mldy), (8)

m’'#m
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with
Wi = 2Re[e—i<w<m’>+w(m>> / ‘ﬂv_oe—iwo)//?e—i(m’—m)-a],
Qm)N
)
and

2ig(m) d"e iV (0)/F kv 2
e€(m)= 2Re|:e i —e }; @(m) = 2 gm,

@m)N

(10)
Equation (8) can be seen as the static Schrodinger equation
of a particle hopping in an N-dimensional potential ¢(m) =
Wmm- This potential behaves as a true disorder for localization
purposes in a one-dimensional next-nearest-neighbor tight-
binding model [116]. This is true for all values of k but the
integer multiples of 4m: In this case the potential e(m) is
uniform and cannot induce any localization. The mapping we
propose is different from the one introduced in Refs. [50,51] for
the single kicked rotor: In our case, the hopping does not show
unphysical divergences which instead occur in Refs. [50,51]
due to the small convergence radius of the Fourier series of the
tangent. Our wave function (m’|¢, ) is normalized by construc-
tion and there is no risk for spurious unphysical divergences in
the hopping because the integrand in Eq. (9) is always bounded
in modulus. In the single-rotor (N = 1) case, the hopping is

W = 20— <¥>Re[i”’ TmelWmretmy (1)

(Jow—m 1s the Bessel function of order m’ — m). The modulus
of this expression always decays faster than exponentially
[117] with m" — m and never shows unphysical divergences.
We have therefore a one-dimensional Anderson model which
is always localized [49].

Now we go through the analysis of the hopping coefficients
Wmm for N > 1. We observe that, although they depend on
m and m’ separately, they are symmetric under the parity
transformation (m,m’) — (—m,—m’) and the permutation of
the Cartesian components of m — m’ (obtained permuting the
Cartesian components of m and those of m’ in the same way).
Also, the Wy, depend on the direction given by the vector
m — m’. The behavior of Wy as |m — m’| is varied cannot
be established analytically for N > 1 and needs to be studied
numerically. In order to apply existing results on the Anderson
model, we need to verify that the hopping is short ranged,
as it is for N = 1. In order to answer this question, we first
check the behavior of the hopping coefficients as a function of
l[m — m’| for N = 2and N = 3: by evaluating numerically the
integral we want to verify that it decays exponentially. This is
confirmed in Fig. 2, where we set m’ = 0 [119], and plot the
behavior of the hopping coefficients |Wy | as a function of
the distance |m| for K /& = 0.1 and K /k = 1.5; m are taken
along two orthogonal directions (dashed and continuous lines
in Fig. 2). We find that the exponential decay is clearly seen
and is smaller for increasing values of K /k. This behavior is
the same along the two directions even if the values of |Wy, |
are different due to the space anisotropy.

In order to quantify the strength of the hopping we define
two quantities: The first is the hopping integral ¥

=) Waol (12)

meZN

[ Waol
0.001% * -
N ~ . —
105 . \ S
N [
LY
1077 \\ T e
N
\ ~
1070 AN .
N o K/k=15
10-1 AN
. = K/E=0.1
- Im|
2 4 6 8 10

FIG. 2. The modulus of Wy is plotted as a function of jm| for
K /k = 0.1 (blue squares) and K /k = 1.5 (red circles) for N = 3. The
continuous and dashed lines correspond to two orthogonal directions
in m space. We see the slope of the exponential decaying which
decreases as K /k is increased; an analogous behavior is found with
N =2.

For a short-ranged lattice we expect this quantity to be finite
at fixed K /k, while it diverges if the hopping is long ranged.
The second is the hopping range, defined as

»— Tz Wanol lml. .

)

We say that the hopping strength of the lattice model increases
when the hopping integral and the hopping range are increased.
We first check that the hopping in the lattice Eq. (8) is short
ranged and therefore well defined. In addition, the hopping
strength, estimated through the hopping integral and range [see
Egs. (15) and (13)], is found to be monotonously increasing as
a function of K /k.

Let us discuss the numerical computation leading to these
results (in the rest of the discussion ¥ = 400 and € = —2 for
definiteness).

The exponential decay of the hopping strength makes the
hopping integral defined in Eq. (15) finite: We compute it by
taking the asymptotic value ¥, = X of the series

Su= Y [Wml, MeN, (14)
meC(M)

where C(M) is the N-dimensional cube with edge length2M +
1 centered in 0. The hopping integral is plotted in Fig. 3 as a
function of K for N =2 and N = 3. The inset shows some
examples of convergence of X, for increasing values of M,
for some values of K/k and N = 3. In the case N = 2 the
behavior is the same, except that higher values of M have to be
considered to achieve the convergence (the limitation on the
value of M has computational reasons due to the possibility to
compute Wy, up to a certain m with a maximum error ~10%).
In a similar way we compute the hopping range defined in
Eq. (13) to find that it is finite: We consider the series

| Wano| m|
g = 2zmecon Wl lml- = o (15)
Xm

and check its convergence as M is increased. In Fig. 4 p is
plotted as a function of K /k for N = 2 and N = 3. The inset
shows also in this case the convergence of p as a function of
M for some values of K /k. These results make us conclude
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FIG. 3. The hopping integral ¥ vs. K /k is plotted for N =2
(green squares) and N = 3 (yellow circles). At fixed N a maximum
value of M exists for which the convergence of the integrals Wy, can
be numerically achieved: This imposes a limit to the maximum value
of K /k for which ¥ can be computed. This is shown in the inset
for N = 3; since for N = 3 the maximum value is M = 7, then the
convergence of py can be observed only up to K /k = 1.5. For the
N = 2 case the maximum value is M = 20. The resulting hopping
integral ¥ is a monotonically increasing function of K /k as shown in
the main figure.

that the lattice model is short ranged in the interval of K /k we
have access to and that the hopping strength (i.e., both X and p)
increases with K /k. Therefore we can apply the general theory
on Anderson localization [49,84] and we predict that for N = 2
our model will display localization with a localization length
exponentially large in K /k, while it will undergo a localization-
delocalization transition at some value of (K /k).(N) when
N > 3.

In the next subsection we are going to show how the
localization properties of the Floquet states in the momentum
space do indeed reflect on the dynamical localization of the
energy.

zZz

W N

K/k

FIG. 4. The hopping range p vs. K /k for N = 2 (green squares)
and N = 3 (yellow circles): It grows as K /k is increased. As for the
computation of ¥, in the the numerical computation of W,,, we have
a maximum M = 7 for N = 3, implying that the convergence of p
is observed only for K /k < 2.0 (see inset). For the case N = 2 the
interaction range is plotted up to K /k = 3.0 where convergence is
observed with M = 18. Notice that also in this case p is an increasing
function of K /k.

B. Dynamical localization and Floquet states

In order to understand the connection between localization
in momentum space and dynamical localization, let us express
the energy in terms of the Floquet states. We start the dynamics
from the ground state of the kinetic energy operator, the state
with all vanishing local momenta |\W,) = |0); we can therefore
expand the time-evolved state immediately before the nth
kick—|W(n)) = U"|¥y)—on the basis of the Floquet states
as [120]

W) = D e "y} (ul0). (16)

o=—00

Using this expansion, we can express the energy per site imme-
diately before the nth kick—E (n) = (V(n)|Hy| ¥ (n))/ N—in
the form
1 [e.¢]
Em) = 7 (0160 (9410 (@al Holg)e ¥ . (17)

o,f=—00

The system is dynamically localized if, after a transient, this
object fluctuates around a finite value given by the infinite-time
average

.
Ea(00) = Jim E(T)= lim =Y Ee.  (8)
n=0

Using Eq. (17) for E(n), the resolution of the identity Eq. (7)
and assuming no degeneracies in the Floquet spectrum, we can
evaluate this average as

k2
Ea(00) = 7= 3 1016} 3 limge) > Y Jm3 . (19)

j=1

If the Floquet states are localized in the momentum basis,
then the wave function in this basis will behave as (m|¢,) =~
Ne~Im=mal/% for some A and m, (N is some normalization fac-
tor). Assuming that the localization centres m,, are uniformly
distributed with density o in the N-dimensional space, we can
give an estimate of the time-averaged energy [121]

,0(N+1) ,
A ,
4

which is finite if the momentum localization length of the
Floquet states A is finite. Therefore localization of Floquet
states in the momentum basis implies dynamical localization
of energy. Therefore the mapping of Sec. III A makes us
predict the existence of adynamical localization-delocalization
transition at some K.(N) when N > 3, while the system is
always dynamically localized for N < 2: In the next subsection

we are going to numerically verify these predictions for the
cases N =2and N = 3.

Eq(00) ~k (20)

C. Numerical results
1. Energy dynamics

For the study of the dynamics of the model Eq. (2) we
use two numerical methods: exact diagonalization for N =
2 and time-evolving block decimation (TEBD) on matrix
product states (MPS) [122,123] for N = 3. In both cases
we need to truncate the Hilbert space, whose dimension is

022202-6



FROM LOCALIZATION TO ANOMALOUS DIFFUSION IN ...

PHYSICAL REVIEW E 97, 022202 (2018)

7
(a)
6 |
<
L
2 K
i1 K/k=02 —— |
K/%=0.5
o K/E=0.9 -~
0 500 1000 1500 2000 2500
n
10
1k
3
= 01F
[
L
0.01
0.001

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K/E

FIG. 5. (a) Energy dynamics for N = 2 and different values of K
obtained with exact diagonalization. For the considered values of K /k
we always see dynamical localization. (b) Time-averaged E,,(00) vs.
K /k: We see that it increases exponentially. In all the cases we take
M < 24, big enough so that the time traces have converged in M.
Numerical parameters: k = 400, € = —2.

a countable infinity. We truncate it in the momentum basis:
Selecting a cutoff M (called “local truncation dimension”),
we impose that the time-evolving state is a superposition of
momentum states |my,...,my) with —M <m; < M. We
evolve with the Hamiltonian restricted to this subspace. If the
system is dynamically localized, then high momentum will
never be involved in the dynamics: Provided that M is big
enough, our numerics will correctly describe the dynamics
even for long times. In contrast, if there is dynamical delo-
calization, our simulations will be meaningful up to a certain
time.

In Fig. 5 we report exact diagonalization results for N = 2.
In Fig. 5(a) we show some examples of energy evolution: We
always observe localization (we take M big enough so that
the energy time-trace is converged). In order to estimate the
infinite-time-averaged energy Eq. (18), in Fig. 5(b) we plot
the time-averaged energy E,,(7) over a time 7 > 1 versus
K /k. Since for large 7T this function tends to converge when
choosing a large-enough 7 we can extract a good estimate
of E,,(00). We see that E,,(c0) exponentially increases with
K, giving rise to a localization length A exponentially large
in K [see Eq. (20)]; this confirms our predictions in the
case N = 2. This constitutes a step forward for the preceding

40 T T T T

oL K/E
25 1
£ 20+t .

15 | 1

0 200 400 600 800 1000
n

FIG. 6. Energy dynamics for N = 3 and different values of K
obtained with TEBD algorithm. For the considered values of K /k we
see a dynamical localization transition at K /k = 0.6. In all the cases
we take M < 8, big enough so that the time traces have converged in
d.k =400, = —2.

results concerning these models [77,81], where the exponential
growth of the asymptotic energy was not found.

InFig. 6 we show results for N = 3 obtained with the TEBD
algorithm [124]: We see that for K /k < 0.6 the energy tends
to an asymptote and the system is dynamically localized; on
the other side, for K /k > 0.6 the energy increases up to the
bound imposed by the truncation dimension and the system
is thus delocalized. While these results suggest the presence
of alocalization-delocalization transition, conclusive evidence
may come only from an analysis of the localization properties
of the Floquet states and the Floquet level-spacing distribution
which are the focus of the next subsections.

2. Inverse participation ratio of the Floquet states

Let us start by using the inverse participation ratio [125]
(IPR) in the momentum basis: For a single Floquet state |¢,),
this object is defined as

Ty =) [(mlgy)[". @1

We will consider its average over the Floquet states in the
truncated Hilbert space

= 1
IM:WZIO(' (22)
o

If the Floquet states are localized in the momentum basis, then
this object does not scale with the local truncation dimension
and tends to a limit Z., which is finite for M — oo: Each
Floquet state has nonvanishing overlap only with a finite
number of momentum eigenstates. In turn, if the Floquet states
are delocalized in the momentum basis, then we expect that
the averaged IPR scales to 0 when the local dimension d tends
to 00.

We show numerical results in Fig. 7: In Figs. 7(a)-7(c) we
plot 7_.'M versus 1/M in the cases N =1, N =2,and N = 3,
respectively. We report curves obtained for increasing values
of K =0.1,0.2,...,1.0: The values of K/k range from 0.1
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FIG. 7. Plot of 7, versus 1/M for K /k = 0.1,0.2, ...,1.0 (see the legend in the lower left panel) in the three cases: N = 1 (a), N = 2 (b),
and N = 3 (c¢). Numerical parameters: ¢ = —2 and k = 400. (d) Behavior of (/). vs. K/k for N = 1 and N = 2; notice that its nonvanishing
value is consistent with localization and that ()., decays exponentially fast in K.

to 1 spaced by intervals of 0.1 and the curves are always in
a monotonously decreasing order in K (see the color legend
in the lower left panel). In the case N =1 [Fig. 7(a)] the
averaged IPR is almost constant in 1/M and tends to a finite
To for 1/M — 0: The Floquet states are localized in the
momentum basis. For N =2 [Fig.7(b)] the (approximately
linear) dependence on 1/M is more marked, but also in this
case, extrapolating to 1/d — 0, the limit is finite. In Fig. 7(d)
we show the dependence of the limit Z,, on K for N = 1 and
N = 2. They are both obtained through linear interpolation of
the data in the left and central upper panels. We see that they are
both different from O but appear to decrease towards zero as K
increases: For N = 1 the dependence is ~e~*K and for N = 2
itis ~e Pk’ (see theinset). For N = 3, see Fig. 7(c), we cannot
clearly see the localization-delocalization transition point, due
to the limits on the values of M which we can numerically
consider. Nevertheless, for large K we see delocalization: Tu
smoothly depends on 1/M and is consistent with a vanishing
limit for 1/M — 0. To further explore the transition, let us
now turn to level spacings.

3. Level spacing statistics

Another tool we use to investigate the localized and delo-
calized behaviors of the system is the level-spacing statistics.
The distribution of the Floquet level spacings jtq+1 — to (the
4 are in increasing order) normalized by the average density
of states gives information on the integrability and ergodicity
properties of the system [38,41-43,126,127]: If the distribution

is Poisson, then the system is integrable; if it is Wigner-Dyson,
then the system is ergodic. The level-spacing distribution is
therefore a probe for the system dynamics being integrable-like
(regular) or ergodic.

This object is important to consider because there is a
strict connection between ergodicity-regularity on one side and
energy absorption-energy localization on the other, both in the
classical and the quantum perspectives. Classically, a system is
ergodic if all the trajectories uniformly explore the accessible
part of the phase space. If energy is conserved, then this part is
the energy shell: As a consequence, the system thermalizes
(time averages equal microcanonical averages). If energy
is not conserved (as in a periodically driven system), then
ergodicity implies uniform exploration of all the phase space
and then thermalization at 7 = oo. Therefore, if the energy
spectrum is unbounded, then ergodicity is strictly connected
with infinite energy absorption [128]. In ergodic quantum
systems the same phenomena result from the eigenstates of
the dynamics being locally equivalent to the microcanonical
ensemble: This is a consequence of them behaving as the
eigenstates of a random matrix (eigenstate thermalization;
see, for instance, Refs. [41,129-131]). In the kicked case
the Floquet states are locally equivalent to the completely
mixed density matrix and this fact gives rise to 7 = 0o
thermalization [63,64,71,74,132]. As a consequence, they are
extended in any basis of “simple” states: The IPR evaluated in
that basis will vanish with the dimension of the Hilbert space, as
observed in the subsection above for the case of the momentum
basis.

022202-8



FROM LOCALIZATION TO ANOMALOUS DIFFUSION IN ...

PHYSICAL REVIEW E 97, 022202 (2018)

O e ——
L= N=1 M=2000 _ __ _ Jo7—]
= N=2 M=31

0.5 N=3 M="7

02 04 06 08 1 1.2
K/k
FIG. 8. Level spacing ratio averaged over the whole Floquet
spectrum vs. K /k: Dynamical localization corresponds to Poisson-
like behavior. The lower dashed line is the Poisson value r = 0.386,
corresponding to integrability, while the upper one is Wigner-Dyson,

r =0.5295, corresponding to ergodicity. Numerical parameters
k=400, = —2.

On the opposite, in the case of classical dynamical localiza-
tion, there are constraints for the dynamics which forbid the
system to uniformly explore the phase space and thermalize.
This is the case of integrable systems which have an extensive
amount of integrals of motion with vanishing Poisson brackets
[23,133]. For instance, in the case of a classical kicked rotor
with small amplitude kicking, a significant portion of the phase
space behaves regularly, giving rise to dynamical localization.
From the quantum point of view, the trajectories being con-
strained in a small portion of the phase space reflect in the
eigenstates of the dynamics not being random superpositions
of elements of some local basis but being localized in this basis.
Therefore, we expect to see signatures of integrable behavior
also in the case of quantum dynamical localization, especially
in the properties of the level-spacing distribution which should
be Poisson like.

In order to probe the integrability and ergodicity properties
through the level-spacing distribution, we consider the so-
called level-spacing ratio r,. If we define &y = totr1 — Kas
then we have

min{dy,8a+1}

<1, (23)

O0Sre=———7F—<
& max{aaa&rkl}

The different level-spacing distributions are characterized by
a different value of the average r = (r,) over the distribution.
From the results of Ref. [45], we expect r = 0.386 if the
system behaves integrably and the distribution is Poisson;
on the other side, if the distribution is Wigner-Dyson and
the system behaves ergodically, then r = 0.5295. As the
Hamiltonian Eq. (1) is symmetric under on-site inversion
(p; — —Pj, 0; — —0;) and under global reflection (p; —
Pr—j+1, éj — éL_j+1) we need to evaluate the level-spacing
distribution and the corresponding » only over Floquet states
in one of the symmetry sectors of the Hamiltonian [126]. We
show numerical results obtained through exact diagonalization
in Fig. 8. We see that, for N =1, r is always near the
Poisson value: This is consistent with the system being always
dynamically localized. For N = 2, r is close to the Poisson

value in the interval where we are able to see dynamical
localization in Fig. 5: Also in this case our hypothesis of
connection between the integrable behavior of the system and
the energy localization is confirmed. Around K /k =1.5, r
deviates from the Poisson value: The momentum localization
length increases exponentially with K and at a certain point
it is larger than the truncation dimension M. When N = 3,
although we can only numerically consider a quite small
value of M, we see that r increases with K and eventually
sets to the Wigner-Dyson value. There is indeed a crossover
between Poisson and Wigner-Dyson; we see that K* /k >~ 0.6,
the localization-delocalization transition point seen through
the energy dynamics in Fig. 6, falls in the intermediate region,
at a value where r is near to Poisson. In the limit M — oo,
most probably r tends to the Poisson value for K < K*, but
we do not know if the crossover develops into a clear-cut
transition. If some intermediate region persisted in this limit,
then localized and delocalized Floquet states would appear
in different parts of the spectrum (though not coexisting at
the same quasienergy). Something similar happens in classical
chaotic systems, where regular and chaotic trajectories exist
together when the system is in the transition region between
integrability to ergodicity. Nevertheless, when N > 1, the
system eventually thermalizes also in the transition region
[134] (this is a manifestation of the Nekhoroshev theorem
and the Arnold diffusion [26]). Of course, further research is
needed to clarify this point.

IV. ABSENCE OF LOCALIZATION FOR N — oo

In this section we discuss the behavior of the coupled rotors
model in the thermodynamic limit N — oo and show that the
mapping introduced for finite N in the previous section is valid
also in this limit. Applying the scaling theory of localization
[84], we find in Sec. IV A that the localization-delocalization
transition of a disordered N-dimensional lattice disappears
for N — oo: The system is always delocalized in this
limit.

In Sec. IVB, we study numerically the behavior of the
kicked rotors for N — oo using a time-dependent mean-
field approach. This approach is exact when the coordination
number is infinite; this can happen, for instance, when the
interactions in the model of Eq. (1) are infinite range and
we are in the thermodynamic limit. By changing the kick
amplitude and the interaction coupling, we find two regions in
the parameter space, one in which the dynamics is diffusive and
one in which it is subdiffusive. Focusing on the time evolution
of the mean-field parameter, which in the MF approximation
is controlling the effective kicking strength, we study the
relation between its behavior and the subdiffusive or diffusive
growth of the kinetic energy. Considering the average over
an ensemble of different initial conditions, we see that the
mean-field parameter behaves as a nonstationary signal, with
a variance decreasing as a power law. We also consider the
spectral properties of the mean-field parameter: The parameter
itself and its time correlator exhibit power-law behaviors at
small frequencies when the dynamics is subdiffusive. The
exponents of the power laws decrease as the kicking strength
is increased and completely disappear when the dynamics is
diffusive: In this case the power spectra are completely flat.
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A. Delocalization in the infinite-dimensional Anderson model

We start our discussion showing that there is no Anderson
localization in an N-dimensional disordered lattice like the
one in Eq. (8) when the dimension N tends to infinity. To that
purpose, we use the scaling theory of localization introduced
in Ref. [84] which we briefly summarize to fix the notation.
Consider a system with conductivity ¢ and focus on the
properties of the dimensionless conductance g = e%LN 2.
We make the assumption that g only depends on the scale L at
which the system is probed and on the dimensionality N and
we start at some scale L, where the dimensionless conductivity
is go: We see how g flows as L is increased. For that purpose,
it is crucial to focus on the properties of the logarithmic
derivative 8(g) = leggi and in particular on its dependence on
g: Knowing the form of B(g) and integrating this flow equation,
the bulk behavior for L — o0 is obtained. It is possible to find
the behavior of S(g) in the limits g < 1 and g > 1. When
g < 1 there is Anderson localization, and the conductance
obeys the law g(L) ~ Ae~ /¢ for some localization length :
This relation implies

B(g) =log g + const. (24)

In this limit, B(g) versus log g is a line whose slope is inde-
pendent of the localization length and equals 1. In the opposite
limit of g > 1, there is ohmic conductivity, o does not depend
on L, and B(g) = N — 2. The question is how to interpolate
between these two limits. One can show [84,135,136] that,
because of the quantum corrections to Ohm’s law, in the limit
of large g it is

C(N
ﬂ(g):N—Z—% 25)

for some C(N) depending on the dimension. Connecting this
large-g behavior with the small-g linear one [Eq. (24)] in a
continuous and derivable way, one gets a 8(g) which is always
monotonously increasing. (The physical assumption behind
this connection is that at some point the “weak localization”
due to the quantum corrections to Ohm’s law becomes the
strong Anderson localization). Therefore, we always have

ddﬁ)% > 0. This gives rise to interesting consequences. For
N < 2 we find as a consequence that 8(g) = 21112% < 0 for

all g: When larger and larger values of L are considered,
whichever are the initial values L and go, they always flow
towards small values of g, those corresponding to Anderson
localization. If instead N > 2, then there is some value gy,
where B(gy) = 0. For g > g% we have f(g) > Oand g < gy
implies B(g) < 0. Therefore, if go < gy, then the system flows
towards small values of g for L — oo and there is Anderson
localization in the bulk; if instead go > g}, then the flow moves
towards large values of g and there is an ohmic behavior.
Therefore, for N > 2, the bulk of the system undergoes a
localization-delocalization transition. We have observed ex-
actly this phenomenon in Sec. III for the model with three
rotors mapped over the N = 3-dimensional disordered lattice
Eq. (8): In this case K played the role of gyo. Now we would
like to explore the behavior of g} in the limit N — oo. To
that purpose, we study the behavior of the conductivity: Its

quantum corrections to the ohmic behavior are [135,136]

5 (L) @2 1/1 dNQ 1
o = —— _—
wh 1/L Qm)N Q?

2¢2 Sn_ 1 1
= o = . 6)
ahQm)N N =2\ IN-2 [N-2
where
2 J2)N/
Sy = ——— 27
N-1 F(N/2) 27

is the measure of the N — 1-dimensional unit sphere and [ is
the classical mean free path in the disordered potential (its
precise value is not important because it will disappear in the
next formulas). Using that g(L) = % LN~2[¢(c0) + 8o (L)],
we easily find that B(g) has the form given in Eq. (25) with

(/2N

NEIIR)

(28)
Connecting Eq. (25) in a continuous and derivable way with
the Anderson-localized behavior Eq. (24) valid at small g, we
find that the critical value g5 is given by

2 1 1
1 r=—N+3+1 —
o8 &n o Og[n 2720V T(N/2)

for N large enough. For N > 1, using the Stirling approxima-
tion for the Gamma function, we find

] . (29

log gy = —N + 3 +log(2/m) — N log(2+/27)

(o))

We see therefore that limy_. o gy = —00: For N — o0, the
critical value of g is zero and therefore the system is always
delocalized.

B. Mean-field approach

To study directly the large- N limit, we apply the mean-field
approximation which is exact for infinite coordination number
or infinite range interactions. We will focus on the latter case.
Henceforth throughout this subsection we will consider the
Hamiltonian Eq. (2) with €;; = 5%;. We then perform a mean-
field ansatz: Starting from a factorized state, we assume that
the system remains factorized during the whole time evolution.
Corrections to this behavior turn out to be negligible in the
limit N — oo. The many-body initial state we are considering
is therefore of the form

[WnE(0) = [ ] 1:(0)). €1y

We assume translation invariance; therefore all the initial
[¥:(0)) are equal to some |¢(0)), and all of them evolve to
the same single-site state. We define this single-site state just
before the nth kick as |y(n)): The corresponding many-body
state is the tensor product of N copies of this state. In this way,
we can describe the dynamics of the system via an effective
single-particle Hamiltonian containing a time modulation of
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the kick:
1 +00
o1y _
Hyg = 5 p°+ K nzgioo 8(t —n)

x {cosé - %[wMF(n)e*"é + H.c.]}, 32)
where we have defined the complex mean-field parameter

Unr(n) = (Y () e [y (n), (33)

This description is exact for infinite-range interactions in
the thermodynamic limit. To see this, rewrite the interaction
term in Eq. (2) as

€ iy —ib;
ST 1);[@ Yae % +He.]

€ 6\ 12
+§Z|<e Yl —

V) =

€ A A
- 8:8: + %:%:1,
N =) E '[ o + XXl
i#]
(34)

where §; = cosé; — (cos éi)n and ¥, = sin 0, — (sin éi)n and
(), is the expectation value over the exact solution of the
Schrodinger equation. Imposing translation invariance, the first
sum gives the single-particle mean-field potential of Eq. (32).
The second sum is in turn a time-dependent c-number term that
can be neglected. The third sum contains terms in the form § ;4
and %; %; with i # j: Their expectation value (é jSl-) at time n
is a spatial connected correlator for the cosine ((%; ;) is the
same for the sine). These connected correlators vanish in the
thermodynamic limit for each i and j (see Appendix B): More
precisely, we explicitly compute (cos §; cos 9 ), and show that
it can be factorized up to corrections Wthh vanish at the
leading order as O (n/N) if the state at time n = 0 is separable.
Therefore the expectation value of the sum of § jSi grows in

a nonextensive way (~+/N) and therefore is negligible in the
limit N — oo. We see therefore that spatial correlations vanish
for N — oo: The Ansatz that we made above is valid and
therefore the separability of the initial state is preserved during
the evolution. This definitively allows us to study our system
via the effective mean-field single-particle model described by
the Hamiltonian in Eq. (32).

It is convenient at this point to express the initial wave
function in the momentum basis: In the angle representation
we have

@1y (0) =

Z ape™? (35)

m=—00

and average over many random initial conditions with a fixed
kinetic energy [the average symbol is (-)]. The initial conditions
are obtained by applying one kick to the zero-momentum
state and then randomizing the phases of the amplitudes in
the momentum basis. We consider initial states such that
a, = a_p: It follows that yr\r(n) is real and that the evolution
operator over one period at time n can be written as [137]

~ B — - elpMp(n)]cosé?

Uvp(n) =e t2e i (36)
UMF(n) depends on the state at time n through the mean-
field parameter Y\p(n2), which is evaluated according to the

prescription given in Eq. (33). By iterating this procedure we
generate the dynamics of the system starting from the initial
state [Eq. (35)].

As a result of the mean-field approach, the many-rotors
model is effectively described by a single rotor with a time-
dependent kicking strength given by

K[l — eyvr(n)]. (37)

Below we focus on the analysis of the dynamics of the
following quantities:

(1) the kinetic energy E(n) = (p?),/2 averaged over the
initial conditions [for each evolution we define (p?), =
(Y| p* 1Y (m))];

(2) the power spectrum P(w) =
Fourier coefficients of y¥ryr(n);

Kn) =

|V |2, Where ¥, are the

(3) the power spectrum P,.(w;ng) = |cmp(w; no)|?, where
we define the correlator
emr(k; no)=¥mr(no)Ymr(mo + k) — Ymr(no) Yme(no + k);
(38)

(4) the variance of the mean-field parameter, defined as

Umr()? — [Yme()]*. (39)

The first quantities characterizes the energy dynamics of the
system and its ergodicity properties, while the others analyze
the mean-field parameter. As discussed in the previous section,
also in this case the local Hilbert space is infinite dimensional
[see Eq. (35)] and a truncation is therefore necessary. The
truncation dimension M varies according to the parameters
K and € and to the length of the simulation; it is chosen such
that higher momentum states are not involved in the evolution.
The evolution operator defined in Eq. (36) is factorized in two
parts: one is diagonal in the momentum basis and the other in
angle representation. We generate the time evolution over one
period by applying separately the kinetic and the kick part to the
wave function. We work in the former case in the momentum
basis and in the latter in the angle one.

omr(n) =

1. Kinetic energy E(n)

From the simulations we find that E(n) grows in time
according to a power law n*, with « depending on K and
€: This dependence is shown in Fig. 9 in which the exponent
« is plotted in the K —e plane.

We can distinguish two regions (see Fig. 9): the red, dark,
one in which E(n) grows subdiffusively and the yellow, light,
one in which diffusion is observed. Subdiffusion is an effect
purely due to the quantum nature of the system since the
classical counterpart always exhibits normal diffusion in all
the K —e plane (see Appendix A). The exponent « is almost
uniform in all the subdiffusive (red) region in the parameter
space with values between 0.6 and 0.7. The transition from
the subdiffusive behavior to the diffusive one is characterized
by a variation of the power-law exponent. Some energy time
traces corresponding to different values of K and € are shown
in Fig. 10. The subdiffusive regime starts at a time ¢ which
increases by lowering the values of K and e: During the
transient the energy first keeps constant and then it starts
growing until it reaches the n* regime.
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FIG. 9. The power-law exponent for E(n) growth is plotted
against the kick strength K and coupling amplitude €. The subdif-
fusive region (red, dark one) and the diffusive one (yellow, light one)
can be distinguished. The region in the left-bottom corner is not plotted
since a stable growth regime does not start within the simulation time
length. We put k& = 2.89 since this value was used in an experimental
realization of a kicked rotor with ultracold atoms [89].

For certain value of (K,€) (e.g., K =4 and e = —0.1) we
do not see the start of either diffusion or subdiffusion within
our simulation time (~10°): The trend appears, however, to
rule out localization but rather suggest that ¢ > 109.

2. Power spectrum P ()

In the study of P(w) we distinguish its behavior at low
and high frequencies: At low frequency we observe either a
power-law decay in w or a constant power spectrum depending
on whether (K ,€) are in the subdiffusive or diffusive region.

The low-frequencies behavior is shown in Fig. 11(a): We
plot P(w) for two cases, one corresponding to subdiffusion,
with a small value of €, and one to diffusion of momentum.
In the first case (continuous line), a power-law behavior is
observed, while in the second (dashed line) the power spectrum
is flat in w. The dependence of the power-law exponent of
P(w)on K and € is shown in Fig. 12, where we consider K =

@ K=6.00 £=052 —

K=10.00 €=7.90
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FIG. 10. Time evolution of E(n) is plotted together with the curve
n?/3 as a guide to the eye: The power-law growth of E(n) starts at
different times but is characterized by an exponent « with a value
in the interval [0.6, 0.7]. For K = 4.0 the energy starts growing at
t ~ 10°. Numerical parameters: k = 2.89.

4.0 [Fig. 12(a)] and K = 11.0 [Fig. 12(b)]. The dynamics is
described by the full green squares which represent the power-
law exponent of the kinetic energy growth. The exponent of
P(w) vanishes (empty blue squares) when the dynamics is
diffusive and it is negative when it is subdiffusive.

The high-frequency behavior of P(w) is characterized by a
series of peaks whose positions depend on K; by increasing €
they spread and become smoother until they disappear when
the system enters the diffusive region of the K —e plane. In
Fig. 11(b) this property is shown plotting the power spectrum
for increasing values of € at fixed K: We chose € < 1;itclearly
appears that the peaks coincide in the three cases.

(b) 5.010%
K=6.00 e=0.660 ——
K=6.00 €e=0450 - - - -
4.010* | K=6.00 €=0.310

3.010%

2.010* |

1.0104

0.50n
W

FIG. 11. (a) The low-frequencies behavior of P(w) is plotted for a case in which the dynamics is diffusive (dashed line) and another in
which it is subdiffusive manifests (continuous line). 7 = 65 536 is the length of the time interval which has been used to compute the Fourier
transform; it coincides with the number of frequencies which has been considered. (b) High-frequencies behavior of P(w) for a fixed value of
K and different values of e: The positions of the peaks almost coincide. The norm of the power spectrum has been normalized to unity in order
to enhance the visibility of the peaks within the same order of magnitude. In the simulations ¥ = 2.89.
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FIG. 12. The power-law exponents for E(n) and oyg(n) in the time domain and for P(w) and P,.(w) in the frequency domain are plotted.
(a) K = 4.0: The exponents relative to E(n) and oyr(n) [green square and orange triangles, respectively) are uniform in €; the power-law
exponents of the power spectra (red circles for P(w) and empty blue ones for P,.(w)] increase with €. (b) K = 11.0: The dynamics of the system
passes from subdiffusive to diffusive when € is increased. The exponents of the power laws of P(w) and P,.(w) vanish when the dynamics is

diffusive. In the simulations £k = 2.89.

3. Power spectrum P, (w)

Letus now discuss the power spectrum of the time correlator
P, (w; np) at different ng: If the process yrvp(n) is stationary,
then the time-correlator c(k;ng) and its power spectrum are
independent on n¢. The small frequency results for our case are
shown in Fig. 13(a), where we plot P,.(w;ng) corresponding
to no = 103 and ny = 10*: The two curves show a power-law
behavior at low w with the same exponent. The larger is ny,
however, the smaller the amplitude of P,.(w). It follows that
cmr(k; ng) scales to O as ng is increased: This result leads us to
conclude that ynr(n) is not a stationary signal.

As already mentioned, P,.(w;ng) decays like a power law
in the subdiffusive region of the K —e plane. This behavior
is smoothed by increasing € or K until it disappears when
diffusion starts: The exponent of the power law reduces and a
uniform region at low w appears. In the diffusive region of the
K —e plane P, (w) is flat.

In Fig. 13(b) we qualitatively show how P,.(w;ng) changes
as € is increased. We consider K = 3.0, for which the system
is always in the subdiffusive region (see Fig. 10), and K =
10.0, for which the system passes from subdiffusive to diffusive

(a) 103 ¢ —

no = 1000
no = 10000 - - - -

10 &
105 |

106 |

Pac(w)

107

108

10-9 -\ L L | L L M| L L M|
100/ T 10"/ T 10%0/ T

[V

as € is increased. In the first case P,.(w) exhibits a power-
law behavior at low frequencies for € = 2.0: This behavior is
smoothed out when € = 8.0. In the second case the power-law
behavior is much less evident when € = 1.0; it completely
disappears when e = 7.9 and the system is diffusive. In Fig. 12,
the power-law exponents relative to P,.(w) are plotted (red
circles): For K = 4.0, see Fig. 12(a), the exponent approaches
the value of —0.5 without vanishing. In Fig. 12(b) we set K =
11.0 and it vanishes for € > 4.0: Indeed, for higher values of
€ the system is diffusive.

At high frequencies P,.(w;ng) is characterized by some
peaks whose positions depend on K, similarly to what has
been found for P(w).

4. Variance of the mean-field parameter oy (1)

Let us now turn to oyp(n2), which is found to show a power-
law behavior, much clearer and robust than the one exhibited
by P.(w;ng) and P(w). In the subdiffusive region, oyg(n)
decreases as n=#, with B slightly varying between to 0.3 and
0.4 while in the diffusive one omp(n) ~ n~# with B ~ 0.5. In

(b)) T
101 b K=3.00 £=2.00 ——
ol K=3.00 £=8.00 - - - -
100 F K=10.00 €= 1.00
107 K=10.00 €=7.90 -~
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o
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FIG. 13. (a) Py (w;ny) is plotted for two values of ny: In the low-frequencies region the slope of the curves is the same while the initial
amplitude changes. This scaling is related to the power-law time dependence of oyr. Numerical parameters: K = 6.0 and € = 0.52. (b) A
power-law behavior can be observed in the curve corresponding to K = 3.00, € = 2.00 (first curve from above) and it flattens as K and € are
increased. The bottom line has been shifted down by an order of magnitude for a better visibility. In the simulations £ = 2.89.
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FIG. 14. Two cases of dynamics are considered, a diffusive one
with K = 30.0, € = 4.90 (blue, dark, line) and a subdiffusive one with
K = 6.0, ¢ =0.52 (orange, light, one). (a) The growth of the kinetic
energy is plotted for the two cases; the dotted lines stresses the relative
slopes. (b) The evolution of oy is plotted for the two cases so the
corresponding power-law behaviors are enhanced.

Fig. 14 oyp(n) is plotted in two particular cases, one in the
subdiffusive region and the other in the diffusive one.

In Fig. 12(a) we set K = 4.0: The system is always subd-
iffsive and the power-law exponent of oyp (orange triangles)
is constant as € is varied. In Fig. 12(b) we set K = 11.0: The
system passes from subdiffusive to diffusive for € = 4.0 as it
can be seen in Fig. 10. Accordingly, the exponent of oy tends
to —0.5; this transition is also enhanced by the exponent of the
time correlator (red circles) which vanishes at € = 4.0.

Of course, the behavior of oyg(n) clearly shows that
emrp(k = 0; ng) is not stationary. In order to better understand
how the features we are analyzing are relevant for the dynamics
of our system, we generate two artificial signals, ¢(n) and f(n),
with some of the spectral properties we have found in yp(n)
and study the dynamics of a system perturbed by them instead
of Ymr(n). The first signal ¢(n) has a power spectrum like the
one in Fig. 11 [power-law behavior in Fig. 11(a)] and random
phases assigned to the Fourier coefficients: The corresponding
evolution operator, according to the definition in Eq. (36),
contains the kicking modulation K'(n) = K[1 — e¢(n)]. The
dynamics of this system is found to be subdiffusive up to a finite
time, after which E(n) grows linearly in time, analogously to
what was found in the classical system in Ref. [138]: This
means that the features of P(w) are not a sufficient ingredient
to reproduce the power-law growth of E(n). On the other side,
if we take K”(n) = K[1 — €f(n)], where f(n) is a stationary
white noise process, the power law is uniform in ® and the
energy grows linearly in time. Therefore, while some features
of the dynamics obtained can be associated to the properties
of the time series the robust subdiffusion observed cannot be
reproduced by a simple Gaussian process.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have studied the ergodicity and energy
absorption of a quantum chain of coupled kicked rotors. We
have found a mapping of the N-body kicked rotor to a N-

dimensional Anderson model in momentum space. This map-
ping has given us the possibility to make predictions on the en-
ergy dynamics of the kicked rotors: When N > 2 there is a dy-
namical localization-delocalization transition which we have
numerically observed in the energy dynamics and in the local-
ization properties of the Floquet states in the momentum basis.

Going to the thermodynamic limit N — oo we find that the
system is always dynamically delocalized. We have studied
delocalization in this limit both in the corresponding Anderson
model and directly in the coupled rotors model. In the first case,
we have shown that the delocalization threshold vanishes; in
the second we have used a mean-field approach and found
that the energy increases in a subdiffusive way in time. This
is a genuine quantum phenomenon, since in the corresponding
classical case the energy increases diffusively in time. This
subdiffusion occurs together with some peculiar power-law
behaviors of the mean-field order parameter, its Fourier trans-
form and its time correlator. The effective mean-field model
suggests a comparison with other related models where there
is a breaking of localization which can lead to subdiffusive
processes. Examples of that are kicked rotors with a nonlinear
Hamiltonian or a modulated kicking and disordered lattice
models with a nonlinearity in the Hamiltonian.

Our findings provide a clear example of many-body-driven
dynamics where quantum mechanics qualitatively changes
the regularity and ergodicity properties of the system with
important consequences on energy absorption. This can be an
important issue in the design and performances of quantum
computers, as it has already emerged from studies about
quantum simulation of a single KR [139]. One perspective of
future work is the application of our mapping on an Anderson
model to other periodically driven models. A more ambitious
one is the research of a driven system which can be mapped
on a many-body localized lattice model in momentum space.

From the experimental point of view, the long-time coherent
dynamics of Hamiltonians similar to ours can be realized in
the framework of ultracold atoms in optical lattices [33,34,57]
and superconducting quantum circuits [32]. Although a pulsed
field can be realized in single-particle models [55], pulsed
interactions are not easy to engineer. Nevertheless, in the single
rotor case the localization physics does not change when a
sinusoidal driving is applied [140] and we expect the same
result in the many coupled rotor case. Driven short-range inter-
actions can be engineered by means of Feschbach resonances
in the ultracold atoms framework, and through SQUIDS in a
time-dependent magnetic field in the case of superconducting
circuits. Concerning driven long-range interactions, in princi-
ple they could be engineered using superconducting circuits of
appropriate topology.
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APPENDIX A: CLASSICAL INTERACTING MODEL

In this Appendix we discuss the behavior of the classical
counterparts of the models defined in Eq. (2). We indicate the
angle and momentum variables relative to the i rotor at time n
as {6, pl'}.

A useful frame for understanding the dynamics of our
models is provided by the seminal work of Nehkhoroshev (see
Ref. [28]) and other works (see Refs. [134,138]) about the
classical dynamics of our system. For reader’s convenience
we review some known results and apply them to our models.

The kicked rotor model Hamiltonian can be written as

H = Hy@@,p)+ K H;(8,p;t), (A1)

where Hj is an integrable Hamiltonian and H; breaks the
integrability of the system with a strength given by K. It is
relevant that both Hy and H; are periodic in 0. For a system
with two degrees of freedom, like the single rotor, we have seen
in Sec. Il that for K < K, there are regions in the phase space
in which the trajectories keep being closed (this result is in
agreement with the KAM theory, as discussed in Sec. II). The
phase space is therefore divided in several regions by these
trajectories and the dynamics of the system is not ergodic.
The system exhibits, as already discussed, classical dynamical
localization.

Nekhoroshev’s theorem deals with the dynamics of a system
with an Hamiltonian like the one defined in Eq. (A1) but with
more than two degrees of freedom. It states that, given an initial
condition for the momentum variables { p?}]gig ~, one finds
[134]

IIp" — p°|| < K“ (A2)

for n<n*. We have n*~1/K exp{l/K?}, B~
1/(polynomial function of N), and « > 0. This is the same
mechanism which allows the orbits of planets to remain stable
in very long times: This should emphasize that if K < 1 the
time during which the condition in Eq. (A2) is satisfied can
be very long. After this time the trajectories of the system
become unstable: Their localization in the phase space is
broken and the dynamics becomes ergodic [141].

For time-independent Hamiltonians this means that the
trajectories span the whole energy shell: Averages can be
computed using the microcanonical ensemble.

For a time-dependent Hamiltonian, the energy is not con-
served and thus the trajectories will spread in all the phase
space. This means that the system heats without a bound and
thermalizes at T = oo: This is indeed the case of our system,
in which the kick breaks the integrability of the Hamiltonian.

Now we numerically check this delocalization process for
the two cases we are studying, the long-range and the short-
range interacting ones. Since we are interested in the dynamics
at long times we choose amplitudes of the kick [namely the
parameters K and € in Hamiltonian of Eq. (1)] for which the
time n* is negligible.

We focus on the classical dynamics of Eq. (1) in the case
of infinite-range interactions. It is possible to integrate exactly
the Hamilton equations for each rotor over a period and obtain

a map for the stroboscopic evolution of the system: Restricting
to discrete times ¢, = n we have

Pt =pl+ K[Sinein - (NG— By 2 sin (07 - 97)}’
J#i
(A3)

9,'”+1 — 9111 +P?+I- (A4)

We consider many realizations of the dynamics of the system
sampling different initial conditions; they are chosen giving a
uniformly random angle to each rotor and setting p? =0Vi =
1...N. We focus on the time evolution of the kinetic energy
per rotor averaged over the ensemble of the initial conditions

N

1
Em) =353 (7). (A5)

i=1

This quantity is proportional to the variance of the momenta
distribution in time and then gives information on the spreading
in time of this distribution.

In the numerical simulations that follow we set N = 100:
This number of rotors is sufficient to avoid boundary effects
and simulate the N — oo limit. In the ergodic regime the time
and space correlations between the angles of the rotors rapidly
decay to zero (as it always occurs in chaos [2,31]): This implies
in particular that

1
(cos (6 —67) cos (67" = 071)) = 58um(Biv80j + 8i 8 ),
(A6)

where the average is taken over the ensemble of the initial
conditions. Now we consider the following expression for the
momentum at time n

n—1
€
"=K sinf — sin (67 —0Y) |. (A7
pl Z 1 (N _ 1) Z ( 1 ,]) ( )
=0 J#i
By squaring it and using Eq. (A6) we obtain the following
coefficient describing the linear increase of the kinetic energy
for the long-range interacting model:

D —1K2<1+ € ) (A8)
T4 N-1)
Note that for N >> 1 the diffusion coefficient coincides with
the single-rotor one for K > K. In Fig. 15 this property is
clearly shown: E(n), computed at fixed K = 5.0 but different
values of € =0,0.5,1.0, always shows the same behavior,
growing linearly in time with the same angular coefficient.

A remarkable difference emerges for K < K,: In this case
the single rotor manifests dynamical localization, while the
presence of an interaction induces a growth of the kinetic
energy which starts being only subdiffusive and becomes diffu-
sive after a transient (see Ref. [138] for the same phenomenon
in a different model). This behavior is perfectly consistent with
the Nekhoroshev theorem [134] and we show it in Fig. 16 by
plotting the evolution of E(n) for different values of K.

The classical behavior of the short-ranged model is very
similar. With analogous calculations we find that the diffusion
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FIG. 15. The time evolution of E(n) is plotted together with the
curve n as a guide to the eye to show the diffusive growth of the kinetic
energy of the system. The diffusion coefficient is Dgjoes ~ K2/4 =
6.25: This is the expected value for the single kicked rotor and it
is the same for all the values of €, since the curves are superposed.
Nrotors = 100 in the simulations.

coefficient for the kinetic energy, in absence of correlations
and with N — o0, is

Dy = l1<2<1 + i) (A9)
Y4 2 )

With small N (like the cases N = 2,3 we consider in the text
for the quantum model) finite size effects [134] reduce the
diffusion coefficient as it is shown in Fig. 17. Moreover, some
corrections due to correlations modify the diffusion coefficient,
as seen in Ref. [77] for two rotors; they disappear for Ke = 2.

To conclude, we have shown that a classical interacting
rotors model exhibits an ergodic behavior and, at long times,
a linear growth of the kinetic energy: This characteristic is

10° ¢
104 |
103 |

102 |

E(n)

10" |

100 |, /o

10! . PN B PR B PN B PN B -
100 10° 102 10° 104 108
n

FIG. 16. The time evolution of E(n) is plotted; the two regimes,
the subdiffusive and diffusive one, are clearly distinguishable in the
log-log scale. Nyyors = 100 in the simulations.
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FIG. 17. In this figure the time evolution of E(n) is plotted with
K = 0.5 and € = —2.0. As the number of rotors is increased the
diffusion coefficient grows approaching the asymptotic value (N =
100 rotors). Nevertheless, the exact value of the diffusion coefficient
in Eq. (A9) is reached for K 2 2.

manifested for all the values of K and €, independently from
the number of rotors.

APPENDIX B: EXACTNESS OF THE MEAN-FIELD
APPROXIMATION FOR N — oo

In this Appendix we demonstrate that (5,8,) — 0 in the
limit N — oo if we start from a separable state at time n = 0.
We first observe that (6,6;) = c(r,s;n), where

c(r,s;n) = (cos b, (n) cos By(n)) — (cos b, (n)){(cos b;(n)).

(BI)

is the time-dependent, spatial connected correlator between
different rotors. Therefore, the relation (3,8,) — 0 for N —
oo means that the system does not develop spatial correlation
during the evolution in the thermodynamic limit.

We set k = 1; for simplicity, we define « = €K /(N — 1)
and then we set K = 0: Without losing generality we are
considering only the interacting part in the kick.

The scheme of the demonstration is the following: We
expand the term (cos 0,(n) cos b5(n)) keeping the ones which
are O(1/N). Some of the resulting terms are canceled out by
(cos é,(n)) (cos és (n)): We show that only a finite number of
terms O(1/N) remains; therefore, they vanish in the thermo-
dynamic limit.

Once we have demonstrated the absence of spatial corre-
lations, we define the operator A N=1/(N-1D), s S,SX: It
is the sum of fluctuation terms which appears in Eq. (34). By
applying the central limit theorem we show that it increases in a
nonextensive way. Therefore, it brings negligible contributions
to the Hamiltonian in the thermodynamic limit.

As a first step we introduce some notation useful for the
demonstration: We write the one-period propagator as U =
K T, with K containing the kick part of the propagator and
T the kinetic one. We define K, = '@ 25 50=0) and T, =

52 n oA N
¢'7 . We have [T,,T;] = [K,,K;] =0Vr,s; also

Cia(@).0,.py) = H[eFecosb—00 oFiT) (B
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These commutators are bounded operators, since they come
from unitary operators. Moreover, one can easily deduce that
1C1.2(6, .05, p)I| ~ 1/(N — 1) from a first-order expansion
of eTi®cos®=%) In the next subsection we go through the
expansion of the term (cos 0, (n)cos 0, (n)).

1. Expansion of (cos b, (n) cos és (n))

Given the initial factorized state |W,) the expectation value
of the product at time n = 2 is given by

(Wol[(UTY cos B, UI(UY* cos b, U] Wy). (B3)

The choice of n = 2 is motivated by the fact that at this time
correlations start to develop. We focus on the content of the

J

N-2

N=2
(K] ’fzi/] = C (v .0, Pn) H e cosOn=tu) 4 Z (1_[ e_mCos(e"’_e“)>cl(é1v,én,ﬁ1v)
n=1

v=1

Also, for each term in the sum labeled by n we have

v=I1 v=1

v=1

left squared brackets. First, we write U and U' by using the
definition given above. Then we simplify all the terms which
freely commute and what remains is the following:

TTRI T cosf, T, K, T. (B4)

The kinetic operator 71 on the right automatically simplifies
with the relative term 7" in the right squared brackets so we
neglect it. Also, we define |¥y) = T |W,) so we can restrict our
study to the term K ,T YA",Jr cos é, f", I%,. To expand this term we
need to invert the operators K : YA}T and Tr K »» respectively, so
we need to compute the two commutators [I% ,T , ﬁ] and [f} K R
For the first commutator we have (we consider r = N for
simplicity but the generalization is straightforward):

N-2 o
l_[ e—i(x cos(By—0,) . (BS)

pn=n+1

n n—1
(1—[ eiacos(gN0”))C1(9AN,én»ﬁN) — (1_[ el COS(ON9v)>(cl(é\N’é\n’ﬁN)eiaCOS(QN07,) + El(éN»én»ﬁN) = ...

= Ci(Oy b, ﬁN)<]_[e‘i“°°S(éN‘él')> + Y | @Oy 0o p) [T e | + 01/N?),

v=I1

where

v=1 w#v

(B6)

£12(0,.0. py) = E[eT*E—0 ¢, . (B7)

Note that & , is an operator whose normis O(1/N?). The O(1/N?)terms in the last equation come from higher-order commutators
and we henceforth neglect them. Therefore, Eq. (BS) can be rewritten as follows:

N—1 n
Ry T~ [a(éN,én,ﬁN) + Zsl(émév,ﬁm} K. (B8)
n=1 v=1
An analogous result can be obtained for the commutator [TN K Nl
N—-1 n
[Tv. Ry~ Ry Y |:Cz(9N,9n,ﬁN) + Z&(emev,ﬁm}. (B9)
n=l1 v=1

The important point of Eqs. (B8) and (B9) is that the commutators can be written as the sum of N — 1 terms of order 1/(N)
and (N — 1)?/2 terms of order O(1/N?), up to higher-order terms.

Now we can factorize the term K j YA}T cosf, T, K, by using Egs. (B8) and (B9):

A A

I%f Tf COSér T, K,

r

= [+ 0@ 0,50+ Y ©@.00.5) | K] [cosd, | R | T+ GO0+ Y £00.0,.5))

n#r n#r ,v=1

m#r n#r ,v=1

= TrT Cos é\r 7Awr"i_ ch(érsénsﬁr) Cos ér+ COSé\r ZCZ(érsémvﬁr)+ Z él(érsémﬁr)COSé\r + COSé\r Z §2(érvévvﬁr)~

n#r m#r

n#r ,v=1 n#r ,v=1

(B10)
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Analogously, the right squared brackets term in Eq. (B3) returns:

A A A

K j f”j cos b, T,
n#s

+ Z %_l(émévvﬁs)COSés'i_COSé\s Z s2(é59év’ﬁs)-

n#s ,v=1

Now we multiply the results in Eqs. (B10) and (B11) keeping
explicit only first-order terms and take the expectation values.
At the zeroth order we have

(Bo|TT cos b, T,T cosb, T,|¥y), (B12)
which represents the evolution without kick and can be fac-

torized. At the first order we have two sums which provide,
respectively,

Y, = (\TJO|7A;T cosé, f‘,

X Z[Cl (és vénaﬁs) COos és + cos ésCZ(és ’énvﬁs)”qu)
n#s
(B13)

and an analogous term X; is defined. In an analogous way the
sums of the second-order terms IT; , containing &, , must be
considered.

2. O(1/N) terms in c¢(r,s; n)

We henceforth explain how the extensive sums %, ; and IT
reduce to a nonextensive amount of contributions in c¢(r,s; n).
We explain the mechanism for %, ; but it equally apply for
the I 1,2

We indeed focus on ¢(r,s; n) and check which terms does not
cancel out when we take the difference (cos §,(n) cos 0,(n)) —
(cos B,(n))(cos B;(n)). Almost all the terms in 3, s can be
factorized and therefore cancel out with equal contributions
coming from the product (cos é,(n)) (cos és (n)): The only
exceptions are two terms withn = r in X, and two withn = s
in X;. Indeed, we obtain four differences which do not cancel,

K, = ’fj COSés f} + ch(ésvén»ﬁs)cos és + cos és ZCZ(é51éM’ﬁS)

ms#s

(B11)
n#s ,v=1

(

and one of those is
(‘IJO | ]A;T COs é\r fr Cl(és vér , Ds) cOs é\s | qu)
— ([T} cos b, T, o) (Po|C1(B;.6,. ps) cos B Wy).
(B14)

The three others terms have the same structure.

Therefore, c(r,s;n = 2) does not vanish because of a finite
number of O(1/N) corrections (now we neglect the O(1/N?)
terms coming from & »): We have found the first contributions
in Egs. (B10) and (B11). Also, we have found the contributions
O(1/N) coming from %, and X;. At a time n > 2 the number
of these contributions linearly increases, although it is always
finite. Since, anyway, the limit N — oo is taken before the
evolution starts, the correlations are always going to zero like
1/N: The final result we obtain is that (8 5, 5) —> (8,) (6 ) in the
thermodynamic limit.

3. Central limit theorem and conclusion

According to the previous result, we concentrate on the
operator Ay defined above. Since (6,0,;) = (d,)(dy) its expec-
tation value over the state |¢(n)) is

(@) Ax]gp(n))

(cos ;) — cos@ - x)]. (BI15
(N_4)§:u X)((cos8;) — )I.  (B15)
Each of the two sums represents the fluctuations of a set
of independent, random variables: We can apply the central
limit theorem and state that 1/(N — 1), 2;({cos ;) — x) ~
1/+/N. It follows that (¢p(n)| Ay |¢(n)) ~ +/N: Since the fluc-
tuation term in the Hamiltonian grows less than extensively it
can be neglected in the thermodynamic limit. We conclude that
the mean-field approach is therefore exact.
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