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We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the
spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures
and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the
existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical
fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic
region, the order parameter distribution gets narrower around the most probable value of the order parameter
as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value
everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time
for convergence (to a low-energy level of the model, within a small error range) becomes system size independent
for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size
dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent
of the ergodic region is also addressed.
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I. INTRODUCTION

A considerable number of investigations have studied the
nonergodic behavior [1] of the spin glass phase of the clas-
sical Sherrington-Kirkpatrick (SK) spin-glass model [2]. The
phenomenon of replica symmetry breaking, induced by noner-
godicity, occurs due to the appearance of macroscopically high
free-energy barriers separating the local minima. This highly
rugged nature of the free-energy landscape in the spin glass
phase causes the system to get trapped in any one (locally)
self-similar region in the configuration space. Consequently
one gets a broad order parameter distribution (or the replica
symmetry breaking) in the spin glass phase as suggested by
Parisi [3]. In this case, along with the peak at any nonzero value
of the order parameter, its distribution also contains a long
tail extending to the zero value of the order parameter in the
thermodynamic limit. This localization due to nonergodicity
has been determined to be responsible for the NP hardness of
equivalent optimization problems (see, e.g., [4]).

The situation seems to be quite different when the SK spin
glass is placed under a transverse field. Due to the presence
of quantum fluctuations, the system is able to tunnel through
the tall (but narrow) free-energy barriers [5–10], inducing
ergodicity (or an absence of replica symmetry breaking).
Consequently one would expect a narrowly peaked order
parameter distribution in the quantum SK spin glass model
in the thermodynamic limit [5]. This ergodicity has been
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identified to be responsible (see, e.g., [6] and [7]) for the
success of quantum annealing.

We have studied the nature of the order parameter distribu-
tion of transverse-field SK spin glass at finite temperature using
Monte Carlo simulation of the effective Suzuki-Trotter Hamil-
tonian and using the exact diagonalization technique at zero
temperature. In this numerical study we tried to identify the
possible ergodic spin glass phase (due to quantum tunneling)
of the system. We find a low-temperature region in the quantum
SK system, where the tails of the order parameter distribution
vanish in the thermodynamic limit, suggesting the convergence
of the order parameter distribution to be a peaked one around
the most probable value. Although the system sizes we studied
are not very large, we believe our study clearly indicates the
existence of a low-temperature ergodic region in the spin glass
phase of this quantum SK model. On the other hand, in the
other (high-temperature) part of the spin glass phase, the order
parameter distribution appears to remain the Parisi type [11],
which indicates a lack of ergodicity in this part of the spin
glass phase. We have already identified [12] the quantum-
fluctuation-dominated part of the spin glass phase boundary of
this model, crossing over at finite temperature to the classical-
fluctuation-dominated part (see also [13]). Here we find that
the line separating the ergodic and the nonergodic regions pass
through the zero-temperature–zero-transverse-field point and
the above-mentioned quantum-classical crossover point on the
phase boundary.

We also study the variation of the average annealing time
in the finite-temperature Suzuki-Trotter Hamiltonian dynam-
ics for the model in both the ergodic and the nonergodic
regions. For annealing down to a fixed low-temperature and
low-transverse-field point through the (quantum-fluctuation-
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dominated) ergodic region, we find the average annealing
time to be independent of the system size. On the other
hand, the average annealing time is observed to grow strongly
with the system size, when similar annealing is performed
through the (classical-fluctuation-dominated) nonergodic re-
gion.

II. MODEL

The Hamiltonian of the quantum SK spin glass model with
N Ising spins is given by (see, e.g., [7])

H = H0 + HI ; H0 = −
∑

i<j

Jij σ
z
i σ z

j ; HI = −�

N∑

i=1

σx
i .

(1)

Here σ z
i and σx

i are the z and x components of Pauli spin
matrices, respectively, and � denotes the transverse field.
The Hamiltonian in Eq. (1) becomes the classical SK spin
glass Hamiltonian (H0) for zero value of the transverse field.
The spin-spin couplings (Jij ) follow a Gaussian distribution,

ρ(Jij ) = ( N
2πJ 2 )

1
2 exp (

−NJ 2
ij

2J
), where the mean and standard

deviation of the distribution are 0 and J/
√

N , respectively
(see, e.g., [7]). In this work we take J = 1. To perform Monte
Carlo simulation at a finite temperature we map Hamiltonian
(1) into an effective classical Hamiltonian Heff by using the
Suzuki-Trotter formalism (see, e.g., [14]),

Heff = −
M∑

m=1

N∑

i<j

Jij

M
σm

i σm
j

−
N∑

i=1

M∑

m=1

1

2β
log coth

β�

M
σm

i σm+1
i , (2)

where σm
i (=±1) represents the ith (classical) Ising spin in the

mth replica. We have an additional dimension [in Eq. (2)],
namely, the Trotter dimension. Here M denotes the total
number of Trotter slices and β is the inverse of the temperature
T . M → ∞ as T → 0.

III. MONTE CARLO RESULTS

For the finite-temperature study, we perform a Monte Carlo
simulation on Heff to obtain the order parameter distribution in
the spin glass phase of our model. To obtain this distribution
function we first allow the system to equilibrate with t0 Monte
Carlo steps and the thermal averaging is done over the next t1
time steps. In one Monte Carlo step we update all the spins
of the system once. After the equilibration at each Monte
Carlo step t we calculate the replica overlap qαβ (t), which
is defined as qαβ (t) = 1

NM

∑N
i=1

∑M
m=1(σm

i (t))α(σm
i (t))β . Here

(σm
i )α and (σm

i )β denote the spins of two replicas (in the mth
Trotter slice) having identical sets of Jij ’s. The order parameter
distribution P (q) can be obtained as

P (q) = 1

t1

t0+t1∑

t=t0

δ(q − qαβ (t)),

where the overbar denotes the configuration average over
several sets of Jij ’s. The order parameter q is defined as

q = 1
MN

∑M
m=1

∑N
i=1 〈σm

i 〉2, where 〈. . . 〉 denotes the thermal
average for a given configuration of disorder. From numerical
data we compute the distribution function P (q) for a given
set of T and � by considering both area normalization and
peak normalization (where the peaks of the distributions are
normalized).

In our simulation we work with the system sizes N = 60,
120, 180, and 240, and the number of Trotter slices is M = 15.
We have found that the equilibrium time of the system is
not identical throughout the entire region of the �-T plane.
The equilibrium time of the system (for 60 � N � 240) is
typically � 106 within the region T < 0.25 and � < 0.40,
whereas it becomes � 105 for the rest of the spin-glass-phase
region. We take t1 = 1.5 × 105 for Monte Carlo averaging
and the configuration average is made over 1000 samples
(configurations). Because of its symmetry we have determined
the distribution of |q| instead of q. We observe that the value
of P (|q|) for q = 0 has a clear system-size dependence. We
extrapolate the values of P (0) with 1/N to get the value of
P (0) for infinite system size. We also calculate the width W

at half-maximum of the distribution function. The width W is
defined as W = |q2 − q1|, where the value of P (|q|) becomes
half of its maximum value at q = q1, q2. Again, we extrapolate
the values of W with 1/N . We observe two distinct behaviors
of such extrapolated values of both P (0) and W in the spin glass
phase. In the low-temperature (and high-transverse-field) case,
we note that the values of P (0) and W both go to 0 in the large-
system-size limit [see Fig. 1(a)]. This observation indicates that
P (|q|) approaches Gaussian form in the thermodynamic limit,
suggesting ergodic behavior of the system. In contrast, for the
other case (high-temperature case) we find that P (0) has a
finite value even in the thermodynamic limit [see Fig. 1(b)].
There seems to be no possibility of P (|q|)’s approaching
a Gaussian form of distribution for the infinite-system-size
limit. This indicates that the system remains nonergodic in
this region of the spin glass phase. To identify the ergodic and
nonergodic regions in the spin glass phase more accurately, we
also study the behavior of the peak-normalized order parameter
distribution. From this study, again, we find that under a low
temperature and high transverse field the values of P (0) and W

(extrapolated with 1/N ) become 0 in the thermodynamic limit
[see Figs. 2(a) and 2(b)]. Again, from the peak-normalized
order parameter distribution we find that for a high temperature
and low transverse field the extrapolated values of the tail and
width of distribution remain nonzero in the infinite-system-size
limit [see Figs. 3(a) and 3(b)].

IV. ZERO-TEMPERATURE DIAGONALIZATION RESULTS

For the zero-temperature study with our model, we have
investigated the distribution of the spin glass order parameter
using an exact diagonalization technique. The diagonalization
of the quantum spin glass has been performed using the
Lanczos algorithm [15] to obtain its ground state. In this
case we have considered system sizes (N ) up to 20. The
Hamiltonian in Eq. (1) can be written in spin basis states,
which are indeed the eigenstates of the Hamiltonian H0. After
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FIG. 1. Monte Carlo results for the plots of the area-normalized order parameter distribution P (|q|) for given sets of transverse field � and
temperature T values: (a) for T = 0.20 and � = 1.00; (b) for T = 0.40 and � = 0.80. Insets: Extrapolations of P (0) with 1/N . In the first case
the extrapolated values of P (0) and W tend to 0 in the large-system-size limit, whereas in the other case the values of such quantities remain
finite even in the thermodynamic limit.

performing diagonalization, the nth eigenstate of the Hamil-
tonian in Eq. (1) is determined to be |ψn〉 = ∑2N−1

α=0 an
α|ϕα〉,

where an
α = 〈ϕα|ψn〉 and |ϕα〉 denote the eigenstates of the

Hamiltonian H0. As a consequence of our interest in zero-
temperature analysis, we focus here mainly on the ground-state
(|ψ0〉) averaging of different quantities of interest. One can
define the order parameter for this zero-temperature system
as Q = (1/N )

∑
i 〈ψ0|σ z

i |ψ0〉2 = (1/N)
∑

i Qi (note that Q

here for T = 0 differs from the q defined earlier for T �= 0,
using the replica average) [12]. Here, also, the overbar indicates
configuration averaging. Qi denotes the site-dependent local
order parameter value. The distribution of the local order
parameter is then represented by

P (|Q|) = 1

N

N∑

i=1

δ(|Q| − Qi). (3)

Similarly to the case of finite temperature, we here also have
investigated the behavior of P (|Q|) in the spin glass phase at
different values of �. The variation of P (|Q|) as a function
of |Q| at � = 0.3 is shown in Fig. 4 for four system sizes.
It may be noted that in this case also we have plotted the
distribution curves for different system sizes normalized to
their maximum values as well as to the areas under the curves.

In both the plots in Fig. 4, we observe that P (|Q|) shows a peak
at a finite value of |Q| along with nonzero weight at Q = 0.
However, the value of P (0) decreases with an increase in the
system size [although one can still detect an upward rise of
P (|Q|) for lower values of |Q|]. To get the behavior of P (|Q|)
in the thermodynamic limit, we have computed the value of
P (|Q|) for an infinite-size system for each |Q| by plotting
P (|Q|) as a function of 1/N . The extrapolation of P (|Q|)
for an infinite-size system is shown in both insets in Fig. 4,
for Q = 0.0 and 0.1. In addition, we have also calculated the
width (W ) at half-maximum, W = |Q2 − Q1|, where at Q2

and Q1 the value of P (|Q|) is half its maximum value. We plot
W as a function of 1/N to get its extrapolated value for an
infinite-size system (see Fig. 4). Finally, we have also plotted
P (|Q|) as a function of |Q| with the extrapolated value of
P (|Q|) for infinite system size (see Fig. 4). One can observe
that the P (|Q|) curve for an infinite system becomes narrower
compared to the cases of finite system size. On the other hand,
due to the limitation of the maximum system size we could
consider in our numerics, we are here not able to get a P (|Q|)
curve for very large system sizes showing results consistent
with those derived from the delta function form. The effect of
the limitation of the system size is also present in the plot of W

with 1/N since the extrapolated W does not acquire a strictly
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FIG. 2. Monte Carlo results for plots of the peak-normalized order parameter distribution P (|q|) for given sets of transverse field � and
temperature T values: (a) for T = 0.15 and � = 1.00; (b) for T = 0.20 and � = 1.00. Insets: Extrapolations of P (0) with 1/N . In both cases
the extrapolated value of P (0) tends to 0 in the large-system-size limit.
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FIG. 3. Monte Carlo results for plots of the peak-normalized order parameter distribution P (|q|) for given sets of transverse field � and
temperature T values: (a) for T = 0.30 and � = 0.80; (b) for T = 0.40 and � = 0.80. Insets: Extrapolations of P (0) with 1/N . In these cases
extrapolated values of P (0) for the large-system-size limit remain finite.

zero value here. However, we infer from our extrapolated
numerical analysis (from the results for small system sizes) that
eventually the P (|Q|) curve would become a delta function at
finite values of |Q| in the thermodynamic limit. This suggests
that the system becomes ergodic in the spin glass phase at zero
temperature with a definite spin glass order parameter value.

V. ANNEALING THROUGH ERGODIC AND
NONERGODIC REGIONS

Our observations described in the earlier sections indi-
cate clearly the existence of both ergodic (low-temperature
and high-transverse-field) regions and nonergodic (high-
temperature and low-transverse-field) regions, separated by a
line originating from T = 0, � = 0 and the passing through
the quantum-classical crossover point obtained earlier [12,13]
on the phase boundary of the model. In order to check the
dynamical features of these two regions, we have studied the
annealing behavior of the system, again using the Suzuki-
Trotter effective Hamiltonian with time (t)-dependent T and
�: T (t) = T0(1 − t

τ
) and �(t) = �0(1 − t

τ
). Here T0 and �0

correspond to points in the para phase such that they are
practically equidistant from the phase boundary line in dif-
ferent parts of the phase diagram. We look for the variation

of the annealing time τ to reach a very low free energy
(corresponding to very small values of T � 10−3 � � to avoid
singularities in the effective interaction Heff and dynamics;
putting these values of T and � into the last (t = τ ) step of
the annealing schedule), starting from the para phase (high T

and � values). We study annealing of the system when the
annealing path (schedule) passes either through the ergodic or
through the nonergodic region [see Fig. 5(a)]. We find that the
annealing time τ remains fairly constant for any annealing path
(schedule) passing entirely through the ergodic SG(E) region
and becomes strongly system size (N ) dependent as the path
passes through the nonergodic region [see Fig. 5(b)]. It may
be mentioned that, deep inside the classical region of the spin
glass phase (for S � 1; see Fig. 5), the annealing time becomes
strongly configuration dependent and hence the N dependence
of the average value of τ becomes somewhat irregular.

VI. DISCUSSION AND SUMMARY

We have studied the order parameter distribution in the spin
glass phase of the quantum SK model, both at finite temperature
[using Monte Carlo simulation of the effective Hamiltonian,
(2)] and at zero temperature (using exact diagonalization). For
Monte Carlo simulation we have taken system sizes N = 60,
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FIG. 4. Exact diagonalization results (at zero temperature) for the variation of P (|Q|) as a function of |Q| for quantum SK spin glass for
four system sizes N at T = 0 and � = 0.3. (a) The area under the P (|Q|) curves for each N is normalized to 1; (b) the peaks of all P (|Q|)
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FIG. 5. (a) Schematic of the quantum SK model (cf. [12]).
Here SG and PM denote the spin glass and paramagnetic phases,
respectively. Our numerical simulations indicate that the spin glass
phase is further divided into two regions: the ergodic SG(E) region
and the nonergodic SG(NE) region. The filled red circle on the SG-PM
phase boundary line indicates the quantum-classical crossover point
in the critical behavior of the model [12,13]. We anneal by tuning both
T and � following different linear paths passing through both SG(E)
and SG(NE) regions (e.g., as indicated by the two diagonal straight
lines). (b) Variation of annealing time τ with S, the length of the arc
along the phase boundary starting from the pure quantum critical point
(T = 0, � � 1.6), up to the crossing point of the annealing line on
the phase boundary. One does not get any system-size dependence of
τ up to S � 0.55 (corresponding to T � 0.46, � � 1.35; indicated in
both panels by vertical arrows). As the annealing line passes through
the SG(NE) region (beyond the quantum-classical crossover point),
τ is seen to acquire a strong system-size dependence.

120, 180, and 240 along with Trotter size M = 15 (Figs. 2
and 3). It may be mentioned that we checked that the Monte
Carlo results remain practically unchanged if for such system
sizes we vary the number of Trotter slices M with the system
size N , keeping the value of the scaled variable M/Nz/d

constant, where z denotes the dynamical exponent and d is
the effective dimension of the system (see [12] for details).
For zero-temperature analysis we considered the system sizes
N = 10, 12, 16, and 20 (Fig. 4). In the ergodic region SG(E)
[see Fig. 5(a)], the (extrapolated) order parameter distribution
is found to converge to a Gaussian form around the most
probable value with increasing system size [see Figs. 2(a)
and 2(b) for T �= 0]. Although at T = 0 the system sizes we
considered are very small, it can be anticipated that we will get a
single and narrow peak in the order parameter distribution (see
Fig. 4) around the most probable value for thermodynamically
large systems, indicating the ergodicity of the spin glass phase
at zero temperature. On the other hand, in the nonergodic region
SG(NE) [see Fig. 5(a)], we get a Parisi-type order parameter

distribution where the long tail extends up to zero value of
the order parameter [see Figs. 3(a) and 3(b)]. This (nonzero)
weight of the distribution near the origin remains nonvanishing
with increasing system size N . This behavior of the order
parameter distribution indicates the absence of ergodicity in
the system in the SG(NE) region.

These results indicate the different regions of the spin glass
phase of the quantum SK model as shown in Fig. 5(a). It
may be noted that the line separating the low-temperature
(quantum-fluctuation-driven) ergodic region of the quantum
spin glass phase from the high-temperature nonergodic region
passes through the quantum-classical crossover point on the
spin glass phase boundary obtained earlier [12,13]. Apart from
this low-temperature part of the spin glass phase the entire para
phase of course remains ergodic.

In order to test the role of this quantum-fluctuation-induced
ergodicity in the spin glass phase here, we have also studied
the variation of the annealing time τ in finite-temperature
Suzuki-Trotter Hamiltonian dynamics for T (t) = T0(1 − t

τ
)

and �(t) = �0(1 − t
τ

) to reach a desired low value of the free
energy (corresponding to very low, but finite, values of T and
�, to avoid singularities in the effective interaction flipping
dynamics). Here T0 and �0 values of course correspond to the
para phase. For such annealing through the ergodic region we
have found τ to be fairly independent of the system size N .
However, it clearly starts growing with N as one enters the
nonergodic region [see Fig. 5(b)].

We believe the numerical results reported here for the
quantum SK model establish the nature of the earlier con-
jectured [5] ergodicity in the model and its role in quantum
annealing [6,7,16] of the SK model. It is also possible that
the crossover region shrinks as N → ∞. Indeed there are
several publications [17–19] which contradict our conjecture
and suggest these results to be due to finite-size effects in
the numerical simulations (of course, the paper by Read
et al. suggests ergodicity or absence of replica symmetry
breaking as T → 0). The same criticisms are also applied
in [19] to the experimental and numerical observations [13]
for “scrambling” or ergodicity in this system at low enough
temperatures. Even if these effects are due to a finite system
size and the ergodic region becomes narrower with increasing
system size, it is important to study such “finite-size-scaling”-
like behavior of the annealing dynamics, so that one can
perhaps extrapolate properly the finite-size annealing results
as the system size approaches the macroscopic limit. Such an
extrapolation scheme, if formulated properly, will be extremely
useful for quantum annealing machines (like the D-wave [20])
already developed and for developing the quantum machine
learning algorithms [21].
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