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Topological constraints on a dynamical system often manifest themselves as breaking of the Hamiltonian struc-
ture; well-known examples are nonholonomic constraints on Lagrangian mechanics. The statistical mechanics
under such topological constraints is the subject of this study. Conventional arguments based on phase spaces,
Jacobi identity, invariant measure, or the H theorem are no longer applicable since all these notions stem from
the symplectic geometry underlying canonical Hamiltonian systems. Remembering that Hamiltonian systems are
endowed with field tensors (canonical 2-forms) that have zero helicity, our mission is to extend the scope toward
the class of systems governed by finite-helicity field tensors. Here, we introduce a class of field tensors that are
characterized by Beltrami vectors. We prove an H theorem for this Beltrami class. The most general class of
energy-conserving systems are non-Beltrami, for which we identify the “field charge” that prevents the entropy
to maximize, resulting in creation of heterogeneous distributions. The essence of the theory can be delineated by
classifying three-dimensional dynamics. We then generalize to arbitrary (finite) dimensions.
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I. INTRODUCTION

While Fick’s law is amenable to the intuition telling that
diffusion will gradually remove gradients in distributions,
we do find many counterexamples where diffusion generates
or sustains gradients (so-called “up-hill” or “inward” diffu-
sion). Indeed, the theoretical guarantee for the minimization
of gradients (or maximization of entropy) is rather limited;
conventional arguments start from the identification of a phase
space and an invariant measure (Liouville’s theorem), by which
one may construct an H theorem to give presumption of
the ergodic hypothesis. Usually, these deductions rely on the
Hamiltonian structure of underlying microscopic dynamics.
Given a general (non-Hamiltonian) system, therefore, one
should once abandon the hypothesis of maximum entropy, and
study different conditions by which diffusion may diminish or
generate gradients.

In this work, we propose a paradigm of dynamics by which
the regime of the maximum-entropy law is extended beyond
Hamiltonian systems; this regime is identified by the “Beltrami
condition” that demands vanishing of what we will call “field
charge.” We will show that the field charge is the root cause of
inhomogeneity that can persist against diffusion.

Before nailing down the target of analysis, we make a
short review of the theories of up-hill diffusion. There are
two different causes of such phenomena: one is the energy
and the other is the geometry of space. If the energy of
a system includes some term that works to attract parti-
cles, the “Boltzmann distribution” explains the heterogeneity
in the thermal equilibrium. Gravitational systems are such
examples. Chemical potentials also play a similar role in
grand-canonical ensembles. However, our interest is in the
second kind of systems where the energy is just simple (for
example, a convex function) but the space is “distorted” by
a set of geometrical constraints representing dynamical states
that are not accessible. The set of possible states is then a

subset, whose geometry is, in general, extremely complicated.
These “topological constraints” limit the effective space of
dynamics, resulting in heterogeneous distributions in the a
priori space. For Hamiltonian systems, the Casimir invariants
(which originate from the center of the Poisson algebra)
foliate the phase space (such Hamiltonian systems are said
noncanonical) [1–3]. The Boltzmann distribution on a Casimir
leaf may be viewed as a grand-canonical distribution with a
chemical potential multiplying on the Casimir invariant, i.e.,
a Casimir invariant may be regarded as an action variable
[4,5]. In the self-organization of a magnetospheric plasma, the
magnetic moment of charged particles plays the role of the
Casimir invariant [6]. As far as the system is Hamiltonian,
the effective phase space is a (locally) symplectic leaf, so
that the standard methods of statistical mechanics are readily
applicable. We can formulate a Fokker-Planck equation to
simulate the diffusion in magnetospheric systems [7–9]. The
key reserved for Hamiltonian systems is the “integrability” of
the topological constraints, which, however, is no longer valid
for non-Hamiltonian systems. This is the regime of our interest.

Here, we assume the constancy of energy in the autonomous
limit, i.e., motion occurs in the direction perpendicular to the
gradient of the energy. The statistical dynamics is driven by a
white noise in the energy. When the topological constraints are
nonintegrable (in the sense of Frobenius’ theorem [10–12]),
there is no way to construct symplectic leaves on which
we can define a canonical phase space. Mathematically, the
nonintegrability is equivalent to the failure of the Jacobi
identity [13–15], with critical consequences for the dynamics
[16]. Nonintegrable constraints occur, for example, in non-
holonomic mechanical systems [17,18], such as the rolling of
a disk without slipping on a horizontal surface. In addition
to nonholonomic mechanics [18,19] and molecular dynamics
[20–23], it will be shown that other systems, such as the
E × B drift equation of plasma dynamics [24,25] and the
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Landau-Lifshitz equation [26,27] for the magnetization of a
ferromagnetic material, fall in this category.

The essence of the theory can be delineated by three-
dimensional mechanics (the one-dimensional and two-
dimensional cases are trivial since in the former the only
variable is the constant energy while in the latter the Jacobi
identity is always satisfied and dynamics is Hamiltonian). The
velocity v of motion can be written as

v = w × ∇H, (1)

where H is the energy, and w is a fixed vector such that the
velocity is perpendicular to ∇H . The operation of w× can be
represented by an antisymmetric operatorJ that we call a field
tensor. For (1) to be Hamiltonian, w must be “helicity free”
(w · ∇ × w = 0) and, then, w is integrable; we may locally
write w = λ∇C with some λ and C, and C = const gives the
Casimir leaves. The three-dimensional Lie-Poisson algebras
are classified by the Bianchi classification; for the complete list
of symplectic leaves, see [28]. However, the target of our study
are systems where w has finite helicity. We define the “Beltrami
class” by those w such that ∇ × w = γw with γ �= 0. In
Secs. III and IX we will prove an H theorem for the Beltrami
class. We will also show that the “field charge” that is measured
by ∇ · [w × (∇ × w)] (hence, the Beltrami class is charge free)
causes heterogeneity. Notice that the mechanism of creation of
heterogeneity is totally different from the aforementioned ones
operated by some attracting potential energy, or the foliation of
the phase space. In Sec. IV we will give numerical demonstra-
tion of the effect of the field charge. We will then generalize
the theory to arbitrary (>2) dimensions in Secs. V–IX.

II. CONSERVATIVE DYNAMICS IN THREE DIMENSIONS

The simpler and instructive three-dimensional (3D) case is
first discussed. In its general form, the equation of motion of
a 3D conservative system is given by (1). Here, v = ẋ is the
velocity in the Cartesian coordinate system x = (x,y,z) of R3,
the vector field w = w(x) (assumed smooth and nonvanishing)
serves as antisymmetric operator (to be defined later), and the
real valued smooth function H represents the Hamiltonian
function. Evidently, Ḣ = 0. However, system (1) is not, in
general, Hamiltonian. As already mentioned, the condition
is given by the Jacobi identity, which demands that w has
vanishing helicity density:

h = w · (∇ × w) = 0. (2)

The validity of (2), which determines whether w qualifies as
a Poisson operator, is related to the existence of additional
integral invariants and to the availability of an invariant mea-
sure. Indeed, the following conditions are locally equivalent:
for some open set U ⊂ R3,

1. w · (∇ × w) = 0 in U, (3a)

2. ∃ λ,C : U → R : w = λ∇C in U, (3b)

3. ∃ g �= 0,g : U → R : ∇ · (gv) = 0 ∀ H in U. (3c)

(1 ⇒ 2) is the Frobenius integrability condition for the vector
field w (see [10–12]). Then, locally we can find two functions

λ and C such that w = λ∇C. (2 ⇒ 1) is trivial since w ·
(∇ × w) = −(λ∇C · ∇λ × ∇C) = 0. (2 ⇒ 3) can be verified
by observing that

∇ · (gv) = 0 ∀ H ⇐⇒ ∇H · ∇ × (gw) = 0 ∀ H. (4)

The implication follows by setting g = λ−1. (3 ⇒ 2) If there
is an invariant measure g for any H , then ∇ × (gw) = 0.
Therefore, w = g−1∇C on U .

The function C, called a Casimir invariant, is a constant of
motion for any choice of H and poses an integrable topological
constraint on the dynamics. If w cannot be expressed in terms
of a Casimir invariant, the dynamics is still constrained by
the condition w · v = 0, which then represents a nonintegrable
topological constraint.

To introduce a classification of conservative dynamics
beyond Hamiltonian systems, we define the field force

b = w × (∇ × w), (5)

and the field charge

B = 4∇ · b = 4∇ · [w × (∇ × w)]. (6)

This naming was chosen by analogy with electromagnetism:
when w is the antisymmetric operator associated to the E × B
drift motion [24] of a charged particle in a magnetic field
B of constant strength, the vector b is the magnetic force
B × (∇ × B). In fact, the drifting velocity is given byv = E ×
B/B2, with E = −∇φ the electric field and φ the electrostatic
potential. Hence, the antisymmetric operator is w = B/B2,
the Hamiltonian H = φ, and the Jacobi identity holds when
B · ∇ × B = 0. To understand the geometrical meaning of b,
the following vector identity b = w × (∇ × w) = ∇w2/2 −
(w · ∇)w is useful. Using this formula for ŵ = w/w, we have
b̂ = −(ŵ · ∇)ŵ = −k̂, where k̂ is the curvature vector. There-
fore, b is related to the curvature of w. Furthermore, observe
that the curl of a vector field w admits the decomposition

∇ × w = b × w + hw

w2
. (7)

Three-dimensional conservative systems are then classified
according to Fig. 1. In the next section, the statistical relevance
of this classification will be made clear.

FIG. 1. Classification of 3D conservative dynamics. The right col-
umn shows the equilibrium distribution functionf eq of an ensemble of
particles obeying (1) when ∇H is a white noise process (see Sec. III).
The square brackets in the last column indicate that the dependence
of f eq on w and B is not necessarily a functional one.
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III. DIFFUSION IN THREE DIMENSIONS

To examine the properties of diffusion, consider the purely
stochastic equation of motion with ∇H = �:

v = w × �, (8)

where � = (�x,�y,�z) is three-dimensional white noise. If this
were a conventional diffusion process, one would expect the
density distribution f of an ensemble of particles obeying (8)
to become progressively flat. This is not necessarily the case.
To see this, consider the Fokker-Planck equation (to be derived
later) associated with the stochastic differential equation (8):

∂f

∂t
= 1

2
∇ · [w × (∇ × f w)] = 1

2

(
�⊥f + ∇f · b + 1

4
fB

)
.

(9)

Here, we introduced the normal Laplacian �⊥f = ∇ ·
[w × (∇f × w)]. The word normal refers to the fact that its
value only depends on the component of ∇f perpendicular
to w, ∇⊥f = w × (∇f × w)/w2. In the following, we shall
always assume f to be a classical solution to the diffusion
equation that admits all necessary derivatives.

The stationary form of Eq. (9) is a nonelliptic partial
differential equation (PDE) (see [29–31] for the definition of
ellipticity). Hence, the existence of a unique solution is not
trivial. As it will be shown in the following, the nature of
the stationary solution changes depending on the geometric
properties of w.

For f to become flat, the diffusion process (8) must
maximize Shannon’s information entropy:

S = −
∫

�

f log f dV. (10)

Here, � ⊂ R3 is a smoothly bounded domain occupied by the
statistical ensemble, anddV = dx dy dz is the volume element
in R3. However, for a given w, S is not necessarily maximized.
When h = 0 the system is Hamiltonian and from (3) it follows
that the invariant measure isλ−1dV (λ �= 0 sincew �= 0). Then,
as one may expect, the appropriate entropy is

	λ = −
∫

�

f log (f λ) dV, (11)

which is equivalent to S only if λ = const. In fact, using (9)
and assuming the boundary condition w × (∇ × f w) · n = 0
on ∂�, with n the unit outward normal to ∂�, it follows that

d	λ

dt
= 1

2

∫
�

f λ|λ∇C × ∇ log (f λ)|2 λ−1dV � 0. (12)

Assuming that f > 0 in � and observing that d	λ/dt must
vanish in the limit t → ∞, one sees that

f eq = lim
t→∞ f = A

λ
exp {−γF(C)} in �, (13)

where F(C) is an arbitrary function of the Casimir invariant
C determined by the initial conditions, A > 0 and γ > 0 real
constants.

It is a pivotal point of this study the proof that the maxi-
mization of S for h �= 0 depends on the behavior of the field
charge B. Indeed, the following result holds:

Theorem III.1 Let w be a smooth vector field on a smoothly
bounded domain � ⊂ R3 with boundary ∂�. Consider Eq. (9)
for f > 0 in � with boundary conditions b · n = 0 and w ×
(∇f × w) · n = 0 on ∂�. Assume B = 0 and h �= 0 in �.
Then,

lim
t→∞ ∇f = 0 in �. (14)

Proof. Using Eq. (9) and the boundary conditions, the rate
of change in the entropy (10) reads as

dS

dt
= 1

2

∫
�

f

[
−B

4
+ |w × ∇ log f |2

]
dV. (15)

Since by hypothesisB = 0, we must have limt→∞ w × ∇f =
0 in �. Furthermore, h �= 0 implies that w is not integrable, i.e.,
there is no Casimir invariant C such that w = λ∇C for some
function λ. Hence, if we could satisfy ∇f = αw in � for some
function α �= 0, this would contradict the nonintegrability of
w. Therefore, ∇f = 0 in � when t → ∞. �

The boundary conditions used to derive Eqs. (12) and (15)
ensure the thermodynamical closure of the system by avoiding
loss of probability through the boundaries and will be discussed
in more detail later. It is also worth noticing that, if B �= 0,
f = const is not a stationary solution of (9), as one can verify
by substitution. Indeed, one obtains the condition B = 0. An
operator w satisfying such property will be called a Beltrami
operator. This name refers to the Beltrami condition b = w ×
(∇ × w) = 0, which describes vectors aligned with their own
vorticity, resulting in B = 0.

The determination of the stationary solution to (9) in the
remaining case where h �= 0 and B is allowed to take nonzero
values in � requires the machinery of functional analysis and
will not be discussed here as this mathematical issue goes
beyond the scope of this paper. However, the special case
in which the field force b̂ = ŵ × (∇ × ŵ) of the normalized
vector ŵ = w/w can be expressed by means of a scalar
potential as b̂ = ∇ζ can be solved explicitly and provides a
concrete example of how self-organization in non-Hamiltonian
system is intrinsically different from the foliation by Casimir
invariants obtained in (13). To see this, consider the entropy

	ζ = −
∫

�

f [log(f w) + ζ ] dV, (16)

and assume the boundary condition w × (∇ × f w) · n = 0 on
∂�. Then, the rate of change in 	ζ takes the form

d	ζ

dt
= 1

2

∫
�

f |w × ∇[ζ + log(f w)]|2 dV � 0. (17)

Since by hypothesis h �= 0, it follows that

f eq = lim
t→∞ f = A

w
e−ζ in �. (18)

Here, A > 0 is a real constant. Notice how f eq is determined
by the field charge B̂ = �ζ and the strength w = |w|.

IV. NUMERICAL SIMULATION

It is now useful to make qualitative considerations on how
the orbit of a conservative particle obeying (1) is modified
by the introduction of random noise. First, consider the Euler
rotation equation for a rigid body. In this case w = x, with
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FIG. 2. (a) Numerical integration of the Euler rotation equation.
The orbit is the intersection of the surfaces C and H0. (b) Numerical
integration of (19). If the Hamiltonian is perturbed ∇H = ∇H0 + �,
the particle explores the surface C.

x the angular momentum, and the Hamiltonian is H0 =
(x2I−1

x + y2I−1
y + z2I−1

z )/2 with Ix , Iy , and Iz the momenta
of inertia. w is a Poisson operator because the Jacobi identity is
satisfied: x · ∇ × x = 0. As a consequence, the total angular
momentum C = x2/2 is a Casimir invariant. The unperturbed
orbit of the rigid body, given by the intersection of the
integral surfaces H0 and C, is given in Fig. 2(a). Now, we
perturb the Hamiltonian H0 so that the force acting on the
particle becomes ∇H = ∇H0 + �. The resulting stochastic
differential equation is

v = x × (∇H0 + �). (19)

Clearly, the energy H0 is not anymore a constant of motion.
However, the Casimir invariant C is unaffected by the perturba-
tions. The result is a random process on the level set C = const
[see Fig. 2(b)].

Next, consider the antisymmetric operator w =
(cos z − sin y, − sin z, cos y) with the same Hamiltonian
H0. One can check that w · ∇ × w = w2 so that no Casimir
invariant exists. The unperturbed orbit is shown in Fig. 3(a).
This time the trajectory is spiraling above the energy surface
H0. The absence of an invariant measure is also manifest.
Again, perturb the Hamiltonian as ∇H = ∇H0 + �. The

FIG. 3. Numerical integration of (1) for w = (cos z − sin y,

− sin z, cos y). (a) The orbit explores the energy surface H0 and falls
toward a sink. (b) If the Hamiltonian is perturbed ∇H = ∇H0 + �,
there are no integral surfaces.

FIG. 4. Calculated equilibrium probability distribution f in the
(x,y) plane at z = 0 with constant Poisson operator w = ∂z.

resulting orbit is shown in Fig. 3(b). Notice that no integral
surface exists anymore.

In the following part of this section, the analytical solution to
the Fokker-Planck equation (9) is compared with the numerical
integration of the stochastic equation (8) for different choices
of w. In each simulation, an ensemble of 8 × 106 particles is
considered. The trajectory of each particle is tracked for the
same period of time. Except when differently specified, the
computational domain � is a cube in (x,y,z) space with sides
of size 6 and centered at x = 0. The boundary conditions are
periodic (except when differently specified) with the period
given by the sides of the cube. The initial condition is a flat
(or Gaussian when so specified) probability distribution. All
quantities are given in arbitrary units.

a. Uniform operator. The simplest possible situation is given
by a uniform operator. We choose w = ∂z, with ∂z the unit
vector along the z axis. The helicity density h = w · ∇ × w

identically vanishes because ∇ × w = 0. Therefore, such w

is a Poisson operator. The resulting dynamics v = ∂z × � can
be thought as the E × B motion of a charged particle in a
constant magnetic field B = w−1 = 1 (remember that in the
case of E × B drift w = B/B2). It is also clear that the volume
element dx dy dz is an invariant measure for any choice of the
Hamiltonian function, and that B = 0. The analytical form of
the equilibrium probability distribution is then determined by
observing that λ = 1 and C = z. Therefore, in light of (13),

f eq = lim
t→∞ f = A exp {−γF(z)} in �. (20)

Furthermore, since the initial distribution is flat, the diffusion
process v = ∂z × �, which is constrained in the (x,y) plane,
cannot generate any inhomogeneity in the ∂z direction. Hence,
f must remain constant throughout the simulation. The result
of the simulation is shown in Fig. 4.

b. Poisson operator on an invariant measure. Next, we
consider the following Poisson operator:

w = ∇C = ∇(z − cos x − cos y). (21)

The Jacobi identity h = 0 is identically satisfied because
∇ × w = ∇ × ∇C = 0, also implying that w is a Beltrami
operator since B = 0. If we interpret the resulting dynam-
ics as the motion of a charged particle in the magnetic
field B = w/w2 (given the generality of w, we do not
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FIG. 5. (a) Magnetic field strength (22) in the (x,y) plane. (b)
Calculated equilibrium probability distribution f in the (x,y) plane
at z = 0 with Poisson operator (21).

require ∇ · B = 0 in these examples), the magnetic field
strength is

B = (1 + sin x2 + sin y2)−1/2. (22)

See Fig. 5(a) for the plot of B. This time the Casimir invariant
whose gradient spans the kernel of w is the function C =
z − cos x − cos y. Using (3), we also know that dx dy dz

is an invariant measure for any choice of the Hamiltonian
function. In light of (13), we expect the equilibrium probability
distribution to be

f eq = lim
t→∞ f = A exp{−γF(C)} in �. (23)

Let f0 = f (t = 0) be the (constant) value of the
probability distribution at t = 0 and � = [−�x/2,�x/2] ×
[−�y/2,�y/2] × [−�z/2,�z/2] the computational
domain. Since the diffusion process cannot redistribute
particles among different levels sets of C, the number
of particles dN on each level set must be preserved,
implying dN(t = 0) = f0dC

∫
dx ∧ dy = f0�x �y dC =

dN(t → ∞) = f eqdC
∫

dx ∧ dy = f eq�x �y dC. But,
then f eq = f0 = const. Therefore, the distribution f must
remain constant throughout the simulation. Figure 5(b) shows
the results of the numerical simulation. In particular, notice
that the distribution remains flat regardless of the fact that the
random process is spatially inhomogeneous.

c. Poisson operator in arbitrary coordinates. Consider now
the Poisson operator

w = λ∇C = (
√

1 + cos x2)∇(z − cos x − cos y). (24)

Here, λ = √
1 + cos x2 �= 0 and C = z − cos x − cos y. The

Jacobi identity is easily verified, h = λ∇C · ∇ × λ∇C = 0,
and C is a Casimir invariant. The corresponding magnetic field
strength

B = [(1 + cos2 x)(1 + sin2 x + sin2 y)]−1/2 (25)

is shown in Fig. 6(a). According to (3), this time the invariant
measure is given by the volume element λ−1dx dy dz. In light
of (13), we expect the solution to converge to a profile of
the type f ∝ λ−1. Figure 6(b) shows a density plot of λ−1.
Figure 6(c) shows the result of the numerical simulation.

d. Beltrami operator. Next, consider the operator

w = (cos z + sin z)∂x + (cos z − sin z)∂y. (26)

One can verify that h = w2 = 2 �= 0. Therefore, w is not a
Poisson operator. Furthermore, the field force is b = w × w =

FIG. 6. (a) Magnetic field strength (25) in the (x,y) plane. (b)
Spatial profile of λ−1 in the (x,y) plane. (c) Calculated equilibrium
probability distribution f in the (x,y) plane at z = 0 with Poisson
operator (24). The scale at the right of (b) and (c) refers to plot (c).

0. This means that w is a Beltrami operator. The corresponding
magnetic field strength is constant: B = w−1 = 1/

√
2. By

Theorem III.1, ∇f = 0 in � when t → ∞. This is confirmed
by the simulation, Fig. 7.

e. Antisymmetric operator with b̂ = ∇ζ . Consider the op-
erator:

w = −y∂x + x∂y + r∂z. (27)

Here, r =
√

x2 + y2. The helicity density is h = r and the
field charge is B = 6, implying that w is neither Poisson nor
Beltrami. The magnetic field strength is B = w−1 = 1/

√
2r .

The normalized vector is ŵ = r−1w/
√

2, while the field
force of ŵ reads as b̂ = ŵ × (∇ × ŵ) = ∇(log r)/2. Hence,
Eq. (18) applies with 2ζ = log r , leading to

f eq = lim
t→∞ f = A√

2
r−3/2 in �. (28)

Figure 8 shows the result of the corresponding numerical
simulation. In this case, no boundary conditions are assumed
(the trajectories are followed as far as they go). The initial con-
dition is the flat distribution of Fig. 3. Notice how the density
distribution progressively approaches the profile of (28).

f. Antisymmetric operator. Consider the operator

w = ∂x + (sin x + cos y)∂y + (cos x)∂z. (29)

The helicity density is h = 1 + sin x cos y � 0, meaning that
the Jacobi identity is violated almost everywhere. Furthermore,
the field charge is given by B = −4 sin x cos y, which is finite

FIG. 7. Calculated equilibrium probability distribution f in the
(x,y) plane at z = 0 with Beltrami operator (26).
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FIG. 8. Calculated equilibrium probability distribution f in the
(x,y) plane with antisymmetric operator (27). Each plot number i

corresponds to the instant t = i�t , where �t is a fixed time interval.

except in a set of measure zero. Therefore, this operator is
neither a Poisson operator nor a Beltrami operator in the
chosen coordinate system. The corresponding magnetic field
strength is

B = w−1 = [1 + (sin x + cos y)2 + cos2 x]−1/2. (30)

A density plot of B is given in Fig. 9(a). The result of the
corresponding numerical simulation is given in Fig. 9(b).
Notice that there is a similarity between the profile of magnetic
field strength B = w−1 and that of the equilibrium probability
distribution f . This is in agreement with the behavior f eq ∝
Be−ζ obtained in Eq. (18) for the special case b̂ = ∇ζ .

g. Antisymmetric operator with unit norm. In the previous
paragraph, we analyzed an antisymmetric operator and ob-
served that the profile of the probability distribution resembled
that of the magnetic field strength B = w−1. To understand
the role of the field charge in determining the probability
distribution, we consider the antisymmetric operator

ŵ = 1√
1 + cos2 x

(cos y, cos x, sin y). (31)

Observe that B = ŵ−1 = 1 (and thus B = ŵ). One can check
that the Jacobi identity is not satisfied and thus ŵ is not a
Poisson operator. The field charge B̂ of the operator ŵ does

FIG. 9. (a) Magnetic field strength (30) in the (x,y) plane. (b)
Calculated equilibrium probability distribution f in the (x,y) plane
at z = 0 with antisymmetric operator (29).

FIG. 10. (a) Plot of B̂ for ŵ given by Eq. (31). (b) Calculated
equilibrium probability distribution f in the (x,y) plane at z = 0 with
antisymmetric operator (31).

not vanish (the lengthy expression of B̂ is omitted). Therefore,
ŵ is not a Beltrami operator in the chosen coordinate system.

The density profile obtained from the numerical simulation
is shown in Fig. 10(b). Regardless of the fact that B = ŵ−1 =
1, a heterogeneous structure is self-organized. The determinant
of this structure is the nonvanishing field charge B̂. In fact,
there is a strong similarity between the profile of the probability
distribution and that of B̂ [compare Fig. 10(b) with Fig. 10(a)].

h. Landau-Lifshitz equation. The last case we consider is
the Landau-Lifshitz equation describing the time evolution
of the magnetization x in a ferromagnet [specifically, we
study Eq. (35) of [26]]. Without entering into details, the
Hamiltonian of the system, physically corresponding to the
total magnetization, is given by H0 = x2/2. Therefore, in
this simulation the perturbed Hamiltonian H is such that
∇H = ∇H0 + �. The relevant operator is

w = γH − σ

x2
H × x. (32)

Here, γ is a physical constant, σ the so called damping
parameter, and H the effective magnetic field. The effective
magnetic field H is chosen to be H = (c,0,z), where c

represents a constant external magnetic field. Then, Eq. (32)
can be rewritten as

w =
(

γ c + σ
zy

x2

)
∂x + σ

z(c − x)

x2
∂y +

(
γ z − σ

cy

x2

)
∂z.

(33)

One can verify that this operator violates the Jacobi identity
and that the field charge does not vanish. Therefore, w is
not a Poisson operator, nor a Beltrami operator. In Fig. 11
the results of the numerical simulation are shown. This time,

FIG. 11. Time evolution of the probability distribution f in the
(x,z) plane at y = 0. Each plot number i corresponds to the instant
t = i�t , where �t is a fixed time interval.
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the initial condition is a Maxwell-Boltzmann distribution
centered at x = (0,0,z0). Furthermore, the trajectory of each
magnetization is followed as far as it goes, i.e., no boundary
conditions are used. Notice how the probability distribution
becomes strongly anisotropic, with preferential alignment of
the magnetization along the z axis (representing the direction
of easiest magnetization of the ferromagnetic crystal).

V. CONSERVATIVE DYNAMICS AND
TOPOLOGICAL CONSTRAINTS

The remaining part of this paper is devoted to the general-
ization of the theory to n dimensions. The key idea is that, by
invoking change of coordinates, the classification of w in terms
of h and B developed in Sec. II can be generalized to include
operators that satisfy the criterion B = 0 in different reference
frames. We will see that in this way the Poisson operator of
Hamiltonian systems defines a subclass of Beltrami operators.
This requires a coordinate free formulation. For this reason,
the formalism of differential geometry will be used.

In this section we review the concepts of antisymmetric
operators, Poisson operators, and topological constraints, and
introduce the mathematical notation used in the rest of the
paper.

Let M be a smooth manifold of dimension n. An anti-
symmetric operator is a bivector field J ∈ ∧2

TM, where∧2
TM represents the set of antisymmetric matrices defined

on the tangent space TM to M. Let (x1, . . . ,xn) be a coor-
dinate system on M. Consider the tangent basis (∂1, . . . ,∂n).
We have (∧ is the wedge product)

J =
∑
i<j

J ij ∂i ∧ ∂j = 1

2
J ij ∂i ∧ ∂j , J ij = −J ji . (34)

Here and throughout this study we shall assume J ij ∈
C∞(M), except when differently specified. The matrix J ij

is antisymmetric and defines an antisymmetric bilinear inner
product on pairs of functions f,g ∈ C∞(M) called antisym-
metric bracket:

{f,g} = J (df,dg) = −J (dg,df ) = J ij figj . (35)

In this notation, lower indices applied to a function indicate
derivation, i.e., fi = ∂f/∂xi .

An antisymmetric operator J ∈ ∧2
TM and a Hamilto-

nian function H ∈ C∞(M) define a conservative vector field
X ∈ TM as

X = J (dH ) = J ijHj∂i . (36)

For the 3D case, one can verify that by setting

J = J zy∂z ∧ ∂y + J xz∂x ∧ ∂z + J yx∂y ∧ ∂x

= wx∂z ∧ ∂y + wy∂x ∧ ∂z + wz∂y ∧ ∂x, (37)

we have in a unique manner X = J (dH ) = w × ∇H . Thanks
to antisymmetry, a conservative vector fieldX always preserves
the Hamiltonian H along the flow.

The antisymmetric bracket defined by J is called a Poisson
bracket if it satisfies the Jacobi identity

h = J im ∂J jk

∂xm
+ J jm ∂J ki

∂xm
+ J km ∂J ij

∂xm
= 0, (38)

∀ i,j,k = 1, . . . ,n. In this case, J is called a Poisson operator
and the associated vector field X a noncanonical Hamiltonian
vector field.

If J is invertible (and therefore n = 2m, m ∈ N) with
inverse ω ∈ ∧2

T ∗M, the Jacobi identity is equivalent to
demanding that dω = 0 (remember that a dual definition of
Hamiltonian system can be given in terms of the symplectic 2-
form ω as iXω = −dH , with dω = 0). Canonical Hamiltonian
systems correspond to a special class of Poisson operators
called symplectic operators (or simplectic matrices):

Jc =
m∑

i=1

∂m+i ∧ ∂i . (39)

The vector field X = Jc(dH ) is then called a canonical Hamil-
tonian vector field. In light of Darboux’s theorem [32,33], given
a constant rank Poisson operator J of dimension n = 2m + r

(2m is the rank), one can always find a local coordinate change
by which J is expressed in the form (39).

In general, an antisymmetric operator J needs not to be
invertible, i.e., its rank can be smaller than its dimension,
rank(J ) � dim(J ). When this happens, J has a nontrivial
kernel, ker(J ) = {θ ∈ T ∗M : J (θ ) = 0}. Clearly, we must
have dim(J ) = rank(J ) + dim(ker(J )). Notice that any 1-
form θ ∈ ker(J ) is orthogonal to the conservative vector field
X = J (dH ) for any choice of H :

θ (X) = iXθ = θiJ ijHj = 0 ∀ H. (40)

This condition represents a geometrical constraint that is
independent of the properties of matter (which are encoded
in H ), i.e., it defines a topological constraint. A collection
of r constraints on a 2m + r dimensional manifold M2m+r

defines a 2n dimensional distribution �2m = {X ∈ TM2m+r :
θi(X) = 0 ∀ i = 1, . . . ,r}. As a consequence of Darboux’s
theorem, the distribution �2m associated to a Poisson operator
J of dimension 2m + r , with dim(ker(J )) = r , is always
integrable in the sense of Frobenius’ theorem [10–12], i.e.,
there exists r scalar functions Ci called Casimir invariants
such that J (dCi) = 0 and therefore �2m = {X ∈ TM2m+r :
dCi(X) = 0 ∀ i = 1, . . . ,r}. The word “invariant” refers to
the fact that the Ci’s are constants of motion that do not depend
on the specific choice of H .

VI. GEOMETRICAL CLASSIFICATION OF
ANTISYMMETRIC OPERATORS

The objective of this section is to produce a geometrical
classification of antisymmetric operators that is relevant from
the standpoint of statistical mechanics. For this purpose, we
need a representation of antisymmetric operators in terms of
differential forms.

LetJ ∈ ∧2
TM be an antisymmetric operator. Let voln =

gdx1 ∧ · · · ∧ dxn be a volume element on M, with g �= 0 and
g ∈ C∞(M). The covorticity n − 2 form with respect to voln
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is defined as

J n−2 = iJ voln

=
∑
i<j

(−1)i+j−1gJ ij
(
i∂i∧∂j

dxi ∧ dxj
) ∧ dxn−2

ij

= 2
∑
i<j

(−1)i+j−1gJ ij dxn−2
ij . (41)

In this notation, dxn−2
ij = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧

dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn. Next, it is useful to define the
cocurrent n − 1 form of J with respect to the volume form
voln on M as

On−1 = dJ n−2. (42)

In the same way the closeness of the 2-form ω defines
Hamiltonian mechanics, the closeness of the n − 2 form J n−2

is a powerful condition. Indeed, we can show the following:
The conservative vector field X = J (dH ) admits an invari-

ant measure voln for any choice of the Hamiltonian H if and
only if On−1 = 0 on the volume form voln:

LXvoln = 0 ∀ H ⇐⇒ On−1 = 0 on voln. (43)

To see this, note that from (42) we have

On−1 = 2(−1)j
∂(gJ ij )

∂xi
dxn−1

j . (44)

On the other hand,

LXvoln = ∂(gJ ij )

∂xi
Hjdx1 ∧ · · · ∧ dxn. (45)

Hence, (45) vanishes for any H if and only if On−1 = 0.

A. Measure preserving operator

Equation (43) introduces a notion of invariant measure that
does not depend on the specific choice of the Hamiltonian
H , but only on the geometrical properties of the operator
J . To know whether a certain operator J admits this kind
of Hamiltonian-independent invariant measure, it is therefore
sufficient to determine whether a metric g can be found such
that On−1 = 0.

It is now natural to define the measure preserving operator:
an antisymmetric operator J ∈ ∧2

TM will be called mea-
sure preserving if there exists a volume form voln on M such
that On−1 = 0. Evidently, an antisymmetric operator can be
measure preserving without satisfying the Jacobi identity (38),
i.e., without being a Poisson operator. Furthermore, notice that
a constant rank Poisson operator is measure preserving. The
proof of this statement, which is omitted, can be obtained by
applying Darboux’s theorem.

In the next part of this study it will be shown that on the
invariant measure defined by a measure preserving operator
the standard results of statistical mechanics can be recovered.
Because of the special properties of the measure preserving
operator, it is useful to determine whether a general antisym-
metric operator can be transformed to a measure preserving
form. On this regard, the following extension method applies:

LetJ ∈ ∧2
TM be an antisymmetric operator on a smooth

manifold M of dimension n. Let xn+1 be a new variable with

domain D ⊂ R. Then, the n + 1 dimensional antisymmetric
operator on

∧2
T (M × D),

J = J + xn+1 ∂J ij

∂xi
∂j ∧ ∂n+1, (46)

is measure preserving.
To prove the statement, it is sufficient to show that on the

volume form voln+1 = dx1 ∧ · · · ∧ dxn ∧ dxn+1, the cocur-
rent On = dJn−1 vanishes. Recalling the condition given by
Eq. (44), it follows that

n+1∑
i=1

∂Jij

∂xi
= ∂Jn+1,j

∂xn+1
+

n∑
i=1

∂Jij

∂xi

= xn+1
n∑

i,k=1

∂2J ki

∂xi∂xk
= 0, (47)

as desired. Observe that the extended system Xn+1 = J(dH )
preserves the form of the original equations of motion Xn =
J (dH ) for the original n variables because the Hamiltonian
H does not depend on the new variable xn+1, i.e., Hn+1 = 0.

Finally, if the operator J is invertible with inverse ω, the
measure preserving condition ∂i(gJ ij ) = 0 can be cast in a
metric independent fashion. First, multiply by ωkj :

ωkj ∂(gJ ij )

∂xi
= g

[
ωkj ∂J ij

∂xi
− ∂ log g

∂xk

]
= 0. (48)

Define the 1-form A = ωkj ∂J ij

∂xi dxk . Then, Eq. (48) reads as
A = d log g. If � is an open ball of Rn or a star-shaped open
set about 0, Poincaré’s lemma applies, and Eq. (48) can be
satisfied by demanding that dA = 0 or explicitly(

∂ωkj

∂xm
− ∂ωmj

∂xk

)
∂J ij

∂xi
+ ωkj ∂2J ij

∂xi∂xm
− ωmj ∂2J ij

∂xi∂xk
= 0.

(49)

Therefore, by checking the identity (49) on the domain �

above, it is possible to establish whether there exists a coordi-
nate system where an invertible operator is measure preserving.

B. Beltrami operator

The remaining task is the generalization of the concept of
field charge to arbitrary dimensions n. By consistency with
Eq. (6), the field charge of a general antisymmetric operator
J must be a 0-form. Furthermore, since B is the divergence
of the vector b, the generalization of b must be an n − 1 form.
Hence, it is natural to define the field force n − 1 form of J as

bn−1 = J n−2 ∧ ∗dJ n−2

= 4
∑
i<j

(−1)i+j+k−1gJ ij ∂(gJ lk)

∂xl
dxn−2

ij ∧ ∗dxn−1
k .

(50)

Then, the field charge of J will be

B = ∗dbn−1. (51)

In Rn, this gives B = 4∂i(J ij ∂l(J lj )). One can check that
these definitions correctly reproduce those of the case n = 3
of R3.
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FIG. 12. (a) The hierarchical structure of antisymmetric opera-
tors. Each box is named by the corresponding operator. (b) The hier-
archical structure of antisymmetric operators for n = 3. Notice that
measure preserving operators do not appear because they degenerate
to Poisson operators when n = 3. Specifically, the measure preserving
condition ∇ × (gw) = 0 reduces to the integrability condition for w

[see (3)]. Similarly, the symplectic operator does not appear because
canonical pairs cannot be defined in odd dimensions.

Now, we can introduce the notion of Beltrami operator:
let J be an antisymmetric operator. If a volume form voln =
gdx1 ∧ · · · ∧ dxn can be found such that the field charge is
zero, i.e., B = ∗dbn−1 = 0, J is called a Beltrami operator
on voln. If the field force n − 1 form is zero, i.e., bn−1 = 0, J
is called a strong Beltrami operator on voln.

Suppose that J is a measure preserving operator with
invariant measure voln. Evidently, such J is a strong Beltrami
operator on the invariant measure, i.e., bn−1 = 0 on voln. This
is because a measure preserving operator satisfies dJ n−2 =
0 on the metric of the invariant measure [recall Eq. (43)].
Therefore, the corresponding field force n − 1 form bn−1 =
J n−2 ∧ ∗dJ n−2 identically vanishes.

Figure 12(a) summarizes the geometrical categorization
of antisymmetric operators developed in the present section.
Figure 12(b) shows a similar summary for the special and
instructive case n = 3.

VII. FOKKER-PLANCK EQUATION

Consider now an ensemble of particles with an antisym-
metric operator J ∈ ∧2

TM and a Hamiltonian function
H0 ∈ C∞(M). In order to construct the evolution equation
for the corresponding probability distribution f , we must first
obtain the stochastic differential equations governing particle
dynamics. The motion of a single particle is described by the
differential equation

X0 = J (dH0). (52)

First, assume that all the particles in the ensemble are not
interacting, each of them obeying Eq. (52). Then, if we switch
on some interaction, the energy H0 will change according
to H = H0(x) + HI (x,t) where H is the new Hamiltonian
function accounting for the interaction energy HI (x,t). We
take HI , and thus H , to be C∞(M × R�0). The interaction is
therefore represented by the vector field XI with components
Xi

I = J ijHIi . To complete the description of particle dynam-
ics, we further assume that all perturbations caused by HI are

counterbalanced by a friction force:

Xi
F = −γ ijH0j = − 1

2βJ ikJ jkH0j = 1
2βJ ikXk

0 . (53)

Here, γ ij = 1
2βJ ikJ jk is the friction coefficient with β ∈ R

a spatial constant. Since the gradient of the Hamiltonian
physically represents force, Eq. (53) leads to a total force
−H0i − HIi − 1

2βXi
0 where the friction term is proportional

to the velocity as in the usual definition.
In summary, the equation of motion governing the dynamics

of a particle in the ensemble is

X = X0 + XI + XF

= [(
J ij − 1

2βJ ikJ jk
)
H0j + J ij�j

]
∂i. (54)

In the last passage, we made the substitutionJ ijHIj = J ij�j .
Here, we assumed that the j th component of the gradient of
HI is represented by Gaussian white noise �j , i.e., HIj = �j .
We will justify this assumption later.

In the following, we will need a slightly more general form
of Eq. (54). Indeed, in Eq. (54) white noise is applied in the
same coordinate system x = (x1, . . . ,xn) used to describe the
dynamics. However, we want to be able to perturb the en-
semble in a different coordinate system, say y = (y1, . . . ,yn).
Restricting to the cases in which the map T : x → y is a
diffeomorphism, we introduce the tensor Rm

j = ∂ym/∂xj and
generalize Eq. (54):

X = [(
J ij − 1

2βJ irRk
rJ jsRk

s

)
H0j + J ijRr

j�r

]
∂i . (55)

Here, the friction coefficient is γ ij = 1
2βJ irRk

rJ jsRk
s and we

used the formula HIj = Rr
j�r . Now, white noise is applied in

the new coordinates y since ∂HI/∂y
r = �r .

Observe that Eq. (55) is now a stochastic differential
equation. Therefore, by application of the standard procedure
(see, for example, [7,34,35]), we can derive the corresponding
Fokker-Planck equation for the probability distribution f on
the volume element voln = dx1 ∧ · · · ∧ dxn. We have

∂f

∂t
= ∂

∂xi

[
−

(
J ij − 1

2
βJ irRk

rJ jsRk
s

)
H0j f

+ 1

2

∂

∂xj

(
J irRk

rJ jsRk
s f

) − α
∂J irRk

r

∂xj
J jsRk

s f

]
.

(56)

Finally, we must assign a specific value to the parameter α ∈
[0,1] (which defines the stochastic integral [7,34,35]) for the
stochastic differential equation (55) and for the Fokker-Planck
equation (56) to make mathematically sense. Assuming that
the white noise � appearing in the equations is the limiting
representation of a continuous perturbation, we take the value
α = 1

2 (corresponding to the Stratonovich definition of the
stochastic integral). When α = 1

2 , Eq. (56) reduces to

∂f

∂t
= ∂

∂xi

[
−

(
J ij − 1

2
βJ irRk

rJ jsRk
s

)
H0j f

+ 1

2
J irRk

r

∂

∂xj

(
J jsRk

s f
)]

. (57)

Observe that the matrix Rk
r can be interpreted as the square

root of a generalized diffusion parameter.
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VIII. H THEOREM FOR MEASURE
PRESERVING OPERATORS

The derived Fokker-Planck equation (56) shows that the
behavior of the probability distribution f depends on three
factors: the energy H representing the properties of matter, the
metric of space characterized by the operator J , and the type
of perturbations described by the tensor Rk

r and the parameter
α (notice that physically Rk

r accounts for the spatial properties
and α for the type of time evolution of the perturbations). In
this section, we examine the form of f eq = limt→∞ f . It is
convenient to define the concept of Fokker-Planck velocity Z.
Since the probability f voln enclosed in each volume element
must be preserved along the trajectories, if Z ∈ TM is the
dynamical flow generating the evolution of such probability,
we must have the following conservation law:

(∂t + LZ)f voln =
[
∂f

∂t
+ ∂

∂xi
(f Zi)

]
voln = 0. (58)

Comparing this equation with the Fokker-Planck equation (56),
wee see that

Zi =
(
J ij − 1

2
βJ irRk

rJ jsRk
s

)
H0j

− 1

2f

∂

∂xj

(
J irRk

rJ jsRk
s f

) + α
∂J irRk

r

∂xj
J jsRk

s .

(59)

The quantity Z is called the Fokker-Planck velocity of the
system.

We anticipated that, in the absence of canonical phase space,
the form of f eq departs from the standard Maxwell-Boltzmann
distribution and takes a form depending on the operator J . On
this regard, the following convergence theorem for measure
preserving operators holds.

Assume the following conditions:
(i) J ∈ ∧2

TM is a measure preserving operator of C2

class.
(ii) x = (x1, . . . ,xn) is a coordinate system onM endowed

with the invariant measure, i.e., ∂iJ ij = 0 ∀ j = 1, . . . ,n.
(iii) Let Wi , i = 1, . . . ,n, be n Wiener processes, with

dWi = �idt and α = 1
2 (Stratonovich stochastic integral).

(iv) Define R
j

k = ∂ky
j , j,k = 1, . . . ,n, where y =

(y1, . . . ,yn) is a coordinate system such that the map
T : x → y is a diffeomorphism.

(v) Let the equations of motion be

Xi = (J ij − γ ij )H0j + J ikR
j

k �j , (60)

where the function H (x,t) = H0(x) + yi�i(t) is the Hamilto-
nian of the system, H0 ∈ C2(M), and γ ij = 1

2βJ irRk
rJ jsRk

s

is the friction coefficient with β ∈ R a spatial constant.
(vi) The corresponding transport equation for the proba-

bility distribution f > 0 on a smoothly bounded domain � ⊂
M with volume element voln = dx1 ∧ · · · ∧ dxn is given by
Eq. (57). Suppose that on the boundary ∂� the conditions
Z · N = 0 and X0 · N = 0 hold, with Z the Fokker-Planck
velocity such that ∂tf = −∂i(f Zi), X0 = J ijH0j ∂i , and N

the outward normal to ∂�.

Then, the solution to (57) is such that

lim
t→∞J (d log f + βdH0) = 0 in �, (61)

for any choice of the coordinates yj , j = 1, . . . ,n.
Let us prove this statement. Recalling the expression of

the Fokker-Planck velocity Z [Eq. (59)] and setting α = 1
2 we

obtain

Zi = (J ij − γ ij )H0j − 1

2
J irRk

rJ jsRk
s

∂ log f

∂xj
. (62)

In going from (59) to this expression, we used the fact that J
is measure preserving (∂iJ ij = 0, j = 1, . . . ,n) and that the
matrix Rk

sj = ∂2yk/∂xs∂xj is symmetric so that J sjRk
sj = 0,

k = 1, . . . ,n. Consider now the following entropy functional:

S = −
∫

�

f log f voln. (63)

The rate of change of S is

dS

dt
= −

∫
�

∂f

∂t
(1 + log f ) voln

=
∫

�

f
∂Zi

∂xi
voln +

∫
∂�

f log f ZiNi dSn−1

= −
∫

�

fiZ
i voln. (64)

Here, we used the fact that ZiNi vanish on the boundary ∂�. In
this notation N = Ni∂i is the outward normal to the bounding
surface ∂� with surface element dSn−1. Substituting (62) in
(64) we get

dS

dt
= 1

2

∫
�

fiJ irRk
rJ jsRk

s

(
∂ log f

∂xj
+ βH0j

)
voln. (65)

Here, we used the fact that J is measure preserving and thus
the term involving fiJ ijH0j = ∂

∂xi (f Xi
0) can be written as a

vanishing surface integral. Consider now conservation of total
energy E = ∫

�
f H0 voln:

dE

dt
=

∫
�

fJ ijH0jH0i voln

− 1

2

∫
�

fJ irRk
rJ jsRk

s

(
∂ log f

∂xj
+ βH0j

)
H0i voln

= 0. (66)

Again, we used the fact that surface integrals vanish and the
antisymmetry of J . This implies∫

�

J irRk
rJ jsRk

s fjH0i voln = −β

∫
�

f
(
J irRk

r H0i

)2
voln.

(67)

Observe that (67) defines the spatial constant β at each time
t . Substituting this result in (65) and after some manipulations
we obtain

dS

dt
= 1

2

∫
�

f

[
J irRk

r

(
∂ log f

∂xi
+ βH0i

)]2

voln. (68)

In the limit of thermodynamic equilibrium, we must have
limt→∞ dS/dt = 0. Thus, for all nonzero f one arrives at
the result (61). Notice that the matrix Rk

r could be removed
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because the transformation T : x → y is a diffeomorphism
and is therefore invertible.

Let us make some considerations on the meaning and the
physical implications of this result. The reason why Eq. (61)
holds is that J is measure preserving and f is the probability
distribution on the invariant measure. Only in such coordinate
system Shannon’s entropy (63) has proper physical meaning,
i.e., the entropy production represented by Eq. (68) has a
definite sign and therefore an extremum principle (maximum
entropy) applies. If g is the Jacobian of the coordinate change
sending the invariant measure voln to a different reference
system volnc = g−1voln, the probability distribution in the
new frame is u = fg. Here, the letter c stands for Cartesian
since usually one is interested in the probability distribution
observed in the Cartesian coordinate system of the laboratory
frame. Define Shannon’s entropy for the new distribution
u as Sc = − ∫

�
u log u volc. Then, the thermodynamically

consistent entropy 	 and the information measure Sc are
related as

	 = Sc + 〈log g〉, (69)

where the angle brackets stand for ensemble average.
It is useful to add some considerations on the boundary

conditions Z · N = 0 and X0 · N = 0 on ∂�. Physically, they
express the fact that probability does not escape from the
domain �, and therefore the system can be considered as
thermodynamically closed. The condition X0 · N = 0 can be
thought as a definition of the boundary itself, and can be
satisfied, for example, by taking an Hamiltonian H0 that is
constant on the boundary H0i = 0 on ∂�. The condition
Z · N = 0 is rather a boundary condition for f . If H0i = 0
on ∂�, one can use the Neumann boundary condition df = 0
on ∂�.

If the matrix J is invertible, Eq. (61) becomes

f eq = lim
t→∞ f = A exp {−βH0} in �, (70)

where A ∈ R>0 is a normalization constant. Thereby, we can
rephrase the result (61) in the following way: if the metric of
space if current free, i.e., On−1 = 0, and space is completely
accessible, i.e., ker(J ) = 0, the standard result of statistical
mechanics apply on the invariant measure. The effect of a
nontrivial kernel ker(J ) �= 0 can be understood with the next
corollary of theorem (61).

Assume the hypothesis used to derive (61). In addition,
assume that J has constant rank 2m = n − r and that it is
a Poisson operator. Then, for every point x ∈ � there exists a
neighborhood U ⊂ � of x such that

f eq = lim
t→∞ f = A exp {−βH0 − γF(C)} in U, (71)

where γ ∈ R is a constant andF(C) an arbitrary function of the
r Casimir invariants C = (C1, . . . ,Cr ) whose gradients span
the kernel of J , i.e., J (dCi) = 0.

This result is a consequence of Darboux’s theorem, accord-
ing to which ∀ x ∈ � there exists a neighborhood U ⊂ � of x
where we can find coordinates (u1, . . . ,u2m,C1, . . . ,Cr ) such
that the Ci are Casimir invariants. Thus, the local solution to
Eq. (61) is of the form (71).

In the case of a noncanonical Hamiltonian system, we see
that statistical equilibrium, which is achieved on the invariant

measure assigned by Liouville’s theorem, is determined by
the energy H0 and the Casimir invariants Ci . In this way, the
functions Ci impart a nontrivial structure to the probability
distribution f . This type of self-organization is caused by the
existence of inaccessible regions in the phase space, which are
mathematically represented by the fact that motion is restricted
on the level sets of the Casimir invariants.

The last remark concerns the white noise assumption. This
assumption must be justified on a case by case basis by showing
that the perturbations affecting a certain ensemble statistically
behave as Gaussian white noise in some appropriate coordinate
system y (in the sense that the gradient ∂HI/∂y

r of the
interaction Hamiltonian HI with respect to the coordinates y
can be considered as Gaussian white noise). In practice, using
the invariant measure provided by the measure preserving op-
erator, one invokes the ergodic hypothesis by which ensemble
and time averages can be interchanged. Then, fluctuations with
vanishing ensemble averages can be conveniently represented
as white noise processes of zero time average. Finally, notice
that Eq. (61) does not depend on the specific coordinates y.
This means that, regardless of the coordinate frame where a
system is perturbed, statistical equilibrium is achieved on the
invariant measure determined by J .

IX. DIFFUSION WITH BELTRAMI OPERATORS

We now move to operators that are not endowed with an
invariant measure. Specifically, we generalize Eq. (15) to nD.
In this case we are interested in pure diffusion, i.e., H0 = 0.
Then, from Eq. (55), the relevant equation of motion reads as

X = (
J ijRr

j�r

)
∂i . (72)

To further simplify the problem, set Rr
j = δr

j . Recalling the
transport equation (56) and putting α = 1

2 , we arrive at the
corresponding diffusion equation

∂f

∂t
= 1

2

∂

∂xi

[
J ik ∂(J jkf )

∂xj

]
= 1

2

(
�⊥f + bifi + 1

4
fB

)
.

(73)

Here, �⊥f = ∂i(J ikJ jkfj ) is the n-dimensional normal
Laplacian and bi = J ik ∂J jk

∂xj . We have the following:

Assume that J ∈ ∧2
TM is a Beltrami operator (B = 0)

on voln = dx1 ∧ · · · ∧ dxn. Consider the diffusion equation
(73) for the probability distribution f > 0 on a smoothly
bounded domain � ⊂ M. Assume the boundary conditions
Z · N = 0 and b · N = 0 on ∂�, where Z is the Fokker-Planck
velocity such that ∂tf = −∂i(f Zi), b = J ikJ jk

j ∂i , and N the
outward normal to ∂�. Then,

lim
t→∞J (d log f ) = 0 in �. (74)

The proof can be given as follows. Consider the entropy
functional

S = −
∫

�

f log f voln. (75)
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Following the same calculation of Eq. (64), the rate of change
in S is

dS

dt
= 1

2

∫
�

[
−f

4
B + f |J (d log f )|2

]
voln

= 1

2

∫
�

f |J (d log f )|2 voln. (76)

Here, we used the boundary conditions to eliminate surface
integrals and the vanishing of B. Then, since by hypothesis
f > 0, one arrives at (74).

As for theorem (61), the physical meaning of the require-
ments Z · N = 0 and b · N = 0 on ∂� is that probability does
not escape from the boundaries. If the diffusion equation is
written in terms of the Cartesian coordinate system of Rn, the
vector b corresponds to the field force n − 1 form (50) and,
in R3, one obtains b = w × (∇ × w). b acts as an effective
drift. Indeed, from Eq. (73), one sees that the Fokker-Plack
velocity Z can be decomposed as 2Zi = f −1J ik ∂(J jkf )

∂xj =
bi + J ikJ jk ∂ log f

∂xj . Thus, b · N = 0 on ∂� means that the
boundary must be chosen so that the drift b does not transport
any probability out of the domain �. The second condition
Z · N = 0 can be intended as a boundary condition for the
probability distribution f . A possible way to satisfy these
conditions is, for example, to assume that J is a strong
Beltrami operator in a Cartesian coordinate system so that
b = 0, and set ∇f = 0 on ∂�.

Equation (74) says that the flat distribution f = const can
be obtained even if no invariant measure exists. In other words,
the Beltrami operator is the largest class of antisymmetric
operators such that the diffusion equation (73) admits the
solution f = const. As already noted in Sec. III, this fact can
be verified by substituting the solution f = const in Eq. (73).
One obtains the condition B = 0. Beyond diffusion driven
by Beltrami operators, the nonvanishing of B obstructs, in
general, the determination of a suitable metric g where an H

theorem can be obtained. A possible way out is the extension
method of Eq. (46), which enables the handling of a general
antisymmetric operator by extending it to a measure preserving
form. However, there are cases that can be solved explicitly
even for B �= 0, as shown at the end of Sec. III.

X. CONCLUSION

In this study we have investigated the properties of diffusion
in systems that lack canonical phase space. Such defect is
caused by topological constraints that break the Hamiltonian
structure of the dynamics and is mathematically represented by
the violation of the Jacobi identity. Under these circumstances,
the usual arguments of statistical mechanics relying on the in-
variant measure provided by Liouville’s theorem do not apply,
and diffusion causes, in general, the creation of heterogeneous
distributions.

The characterization of diffusion processes in non-
Hamiltonian systems requires deeper understanding of the
notion of homogenization or equilibration. The primitive idea
of homogeneity is the constancy of some density distribution.
However, remembering the fact that any density is not a scalar
function, but is dependent on the metric of the space, we have

FIG. 13. Relation between operator properties and self-
organizing behavior. When available, the relevant H function
is shown. The red and blue lines indicate the set in of geometric
sources of heterogeneity. In a canonical system (symplectic operator)
the only source of heterogeneity is energy. In noncanonical systems
(Poisson operators), heterogeneity can arise by Casimir invariants.
For Poisson operators, H is determined by the Jacobian gc sending
dV to phase space variables as dV = gcd p dq. Measure preserving
operators are not endowed with phase space and H is built on
the invariant measure dVIM = g−1

IMdV . Beltrami operators do not
possess an invariant measure and H is given on the coordinates
dVB = g−1

B dV where the field charge B vanishes. Antisymmetric
operators exhibit a new kind of self-organization caused by the
nonvanishing of B. When b̂ = ∇ζ , gζ = weζ . Notice that foliation
may arise also in non-Hamiltonian systems if the kernel of the
antisymmetric operator admits an integrable part.

to enquire about the “proper space” where the appropriate
density is defined. Indeed, the recent works on the theory
of foliated phase spaces [4,5] elucidated that some structures
are the reflections of heterogeneous metric of effective phase
spaces. In this work, the standard notion of “flatness” is thus
generalized by allowing change of coordinates that restore the
entropy law by providing a suitable H function.

As a result, it is found that Beltrami operators are the limit
beyond which such relativization of the notion of homogeneity
is no longer applicable: the impossibility of annihilating the
field charge, possibly by some coordinate change, implies that
there is no reference frame where the application of a white
noise process flattens the corresponding distribution function.
The diagram shown in Fig. 13 summarizes the relationship
between the geometry of antisymmetric operators and the H

theorem as elucidated in this study.
At the opposite pole of homogeneity, the notion of hetero-

geneity also acquires a new meaning. While in Hamiltonian
systems the sources of heterogeneity are either the special form
of the energy or the foliation of the phase space dictated by
Casimir invariants [4], we have shown that in non-Hamiltonian
systems the determinant is the field charge, which measures
the degree at which an antisymmetric operator (field tensor)
departs from a Beltrami field. We proved an H theorem
for systems characterized by a vanishing field charge, and
demonstrated the role of a finite field charge in generating
heterogeneous structures.
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In the generalization of the theory to arbitrary dimensions,
we developed a geometrical classification of antisymmetric
operators. Each of the operators (measure preserving and
Beltrami) introduced in this study exhibits peculiar dynamical
and statistical properties. We found that all antisymmetric
operators can be extended to a measure preserving form,
and that the standard results of statistical mechanics can be
generalized to the class of measure preserving operators. This
latter fact is remarkable because such operators do not possess
a Hamiltonian structure.

Finally, the normal Laplacian is a novel object of mathe-
matical interest: this operator shows a clear interplay between
integrability in the context of differential geometry and the
study of nonelliptic PDEs.

ACKNOWLEDGMENT

The work of N.S. was supported by JSPS KAKENHI
Grant No. 16J01486, and that of Z.Y. was supported by JSPS
KAKENHI Grant No. 17H01177.

[1] P. J. Morrison, in Mathematical Methods in Hydrodynamics and
Integrability in Dynamical Systems, edited by M. Tabor and Y.
Treve, AIP Conference Proceedings No. 88 (AIP, New York,
1982), pp. 13–46.

[2] R. Littlejohn, in Mathematical Methods in Hydrodynamics and
Integrability in Dynamical Systems, edited by M. Tabor and Y.
Treve, AIP Conference Proceedings No. 88 (AIP, New York,
1982), pp. 47–66.

[3] P. J. Morrison, Rev. Mod. Phys. 70, 467 (1998).
[4] Z. Yoshida and S. M. Mahajan, Prog. Theor. Exp. Phys. 2014,

073J01 (2014).
[5] Z. Yoshida, Adv. Phys. X 1, 2 (2016).
[6] Z. Yoshida, H. Saitoh, J. Morikawa, Y. Yano, S. Watanabe, and

Y. Ogawa, Phys. Rev. Lett. 104, 235004 (2010).
[7] N. Sato and Z. Yoshida, J. Phys. A: Math. Theor. 48, 205501

(2015).
[8] N. Sato, Z. Yoshida, and Y. Kawazura, Plasma Fus. Res. 11,

2401009 (2016).
[9] N. Sato and Z. Yoshida, Phys. Rev. E 93, 062140 (2016).

[10] T. Frankel, The Geometry of Physics, An Introduction,
3rd ed. (Cambridge University Press, Cambridge, 2012),
pp. 165–178.

[11] I. Agricola and T. Friedrich, in Global Analysis, Differential
Forms in Analysis, Geometry and Physics (American Mathe-
matical Society, Providence, 2002), pp. 111–120.

[12] S. Kobayashi and K. Nomizu, Foundations of Differential
Geomtry (Wiley, New York, 1969), pp. 321–324.

[13] A. M. Bloch, J. E. Marsden, and D. V. Zenkov, Not. AMS 52,
320 (2005).

[14] A. J. Van Der Shaft and B. M. Maschke, Rep. Math. Phys. 34,
225 (1994).

[15] L. Bates and J. Sniatycki, Rep. Math. Phys. 32, 99 (1993).
[16] C. E. Caligan and C. Chandre, Chaos 26, 053101 (2016).
[17] A. M. Bloch, Nonholonomic Mechanics and Control, 2nd ed.

(Springer, New York, 2015), pp. 11–15.
[18] M. de León, RACSAM 106, 191 (2012).
[19] S. A. Chaplygin, Regul. Chaot. Dyn. 13, 369 (2008).
[20] A. Sergi and M. Ferrario, Phys. Rev. E 64, 056125 (2001).
[21] A. Sergi, Phys. Rev. E 67, 021101 (2003).
[22] M. E. Tuckerman et al., J. Chem. Phys. 115, 1678 (2001).
[23] G. S. Erza, J. Math. Chem. 35, 1 (2004).
[24] J. R. Cary and A. J. Brizard, Rev. Mod. Phys. 81, 693 (2009).
[25] R. G. Littlejohn, Phys. Fluids 24, 1730 (1981).
[26] L. D. Landau and E. M. Lifshitz, Ukr. J. Phys. 53, 14 (2008).
[27] T. L. Gilbert, IEEE Trans. Magnetics 40, 3443 (2004).
[28] Z. Yoshida, T. Tokieda, and P. J. Morrison, Phys. Lett. A 381,

2772 (2017).
[29] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential

Equations of Second Order (Springer, Berlin, 2001), p. 31.
[30] L. C. Evans, Partial Differential Equations, 2nd ed. (American

Mathematical Society, Providence, 2010), p. 314.
[31] H. Brezis, Functional Analysis, Sobolev Spaces and Partial

Differential Equations (Springer, New York, 2011), p. 294.
[32] M. de León, Methods of Differential Geometry in Analytical

Mechanics (Elsevier, New York, 1989), pp. 250–253.
[33] V. I. Arnold, Mathematical Methods of Classical Mechanics,

2nd ed. (Springer, New York, 1989), pp. 230–232.
[34] C. W. Gardiner, Handbook of Stochastic Methods for Physics,

Chemistry and the Natural Sciences, 2nd ed. (Springer, Berlin,
1985).

[35] H. Risken, The Fokker-Planck Equation. Methods of Solution
and Applications, 2nd ed. (Springer, Berlin, 1989).

022145-13

https://doi.org/10.1103/RevModPhys.70.467
https://doi.org/10.1103/RevModPhys.70.467
https://doi.org/10.1103/RevModPhys.70.467
https://doi.org/10.1103/RevModPhys.70.467
https://doi.org/10.1093/ptep/ptu104
https://doi.org/10.1093/ptep/ptu104
https://doi.org/10.1093/ptep/ptu104
https://doi.org/10.1093/ptep/ptu104
https://doi.org/10.1080/23746149.2015.1127773
https://doi.org/10.1080/23746149.2015.1127773
https://doi.org/10.1080/23746149.2015.1127773
https://doi.org/10.1080/23746149.2015.1127773
https://doi.org/10.1103/PhysRevLett.104.235004
https://doi.org/10.1103/PhysRevLett.104.235004
https://doi.org/10.1103/PhysRevLett.104.235004
https://doi.org/10.1103/PhysRevLett.104.235004
https://doi.org/10.1088/1751-8113/48/20/205501
https://doi.org/10.1088/1751-8113/48/20/205501
https://doi.org/10.1088/1751-8113/48/20/205501
https://doi.org/10.1088/1751-8113/48/20/205501
https://doi.org/10.1585/pfr.11.2401009
https://doi.org/10.1585/pfr.11.2401009
https://doi.org/10.1585/pfr.11.2401009
https://doi.org/10.1585/pfr.11.2401009
https://doi.org/10.1103/PhysRevE.93.062140
https://doi.org/10.1103/PhysRevE.93.062140
https://doi.org/10.1103/PhysRevE.93.062140
https://doi.org/10.1103/PhysRevE.93.062140
http://www.math.lsa.umich.edu/~abloch/fea-bloch.pdf
https://doi.org/10.1016/0034-4877(94)90038-8
https://doi.org/10.1016/0034-4877(94)90038-8
https://doi.org/10.1016/0034-4877(94)90038-8
https://doi.org/10.1016/0034-4877(94)90038-8
https://doi.org/10.1016/0034-4877(93)90073-N
https://doi.org/10.1016/0034-4877(93)90073-N
https://doi.org/10.1016/0034-4877(93)90073-N
https://doi.org/10.1016/0034-4877(93)90073-N
https://doi.org/10.1063/1.4948411
https://doi.org/10.1063/1.4948411
https://doi.org/10.1063/1.4948411
https://doi.org/10.1063/1.4948411
https://doi.org/10.1007/s13398-011-0046-2
https://doi.org/10.1007/s13398-011-0046-2
https://doi.org/10.1007/s13398-011-0046-2
https://doi.org/10.1007/s13398-011-0046-2
https://doi.org/10.1134/S1560354708040102
https://doi.org/10.1134/S1560354708040102
https://doi.org/10.1134/S1560354708040102
https://doi.org/10.1134/S1560354708040102
https://doi.org/10.1103/PhysRevE.64.056125
https://doi.org/10.1103/PhysRevE.64.056125
https://doi.org/10.1103/PhysRevE.64.056125
https://doi.org/10.1103/PhysRevE.64.056125
https://doi.org/10.1103/PhysRevE.67.021101
https://doi.org/10.1103/PhysRevE.67.021101
https://doi.org/10.1103/PhysRevE.67.021101
https://doi.org/10.1103/PhysRevE.67.021101
https://doi.org/10.1063/1.1378321
https://doi.org/10.1063/1.1378321
https://doi.org/10.1063/1.1378321
https://doi.org/10.1063/1.1378321
https://doi.org/10.1023/B:JOMC.0000007809.83562.52
https://doi.org/10.1023/B:JOMC.0000007809.83562.52
https://doi.org/10.1023/B:JOMC.0000007809.83562.52
https://doi.org/10.1023/B:JOMC.0000007809.83562.52
https://doi.org/10.1103/RevModPhys.81.693
https://doi.org/10.1103/RevModPhys.81.693
https://doi.org/10.1103/RevModPhys.81.693
https://doi.org/10.1103/RevModPhys.81.693
https://doi.org/10.1063/1.863594
https://doi.org/10.1063/1.863594
https://doi.org/10.1063/1.863594
https://doi.org/10.1063/1.863594
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1016/j.physleta.2017.06.039
https://doi.org/10.1016/j.physleta.2017.06.039
https://doi.org/10.1016/j.physleta.2017.06.039
https://doi.org/10.1016/j.physleta.2017.06.039



