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Two-dimensional Ising model on random lattices with constant coordination number
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We study the two-dimensional Ising model on networks with quenched topological (connectivity) disorder. In
particular, we construct random lattices of constant coordination number and perform large-scale Monte Carlo
simulations in order to obtain critical exponents using finite-size scaling relations. We find disorder-dependent
effective critical exponents, similar to diluted models, showing thus no clear universal behavior. Considering
the very recent results for the two-dimensional Ising model on proximity graphs and the coordination number
correlation analysis suggested by Barghathi and Vojta [Phys. Rev. Lett. 113, 120602 (2014)], our results indicate
that the planarity and connectedness of the lattice play an important role on deciding whether the phase transition
is stable against quenched topological disorder.
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I. INTRODUCTION

Magnetic phase transitions have attracted considerable
attention over the past decades in both theory [1–3] and exper-
iment [4–6]. For real materials, nonmagnetic impurities and
structural defects can be important and are modeled through
lattice irregularities. In discrete settings, the location of the
critical point is nonuniversal and depends on the coordination
number q. For example, Tc ≈ 2.269 for the two-dimensional
(2D) Ising model [7] with nearest-neighbor interactions on
a square lattice (q = 4), Tc ≈ 3.641 for a triangular lattice
(q = 6) and Tc ≈ 1.519 for the honeycomb lattice (q = 3);
see, e.g., Ref. [8]. However, if we consider a random lattice, the
coordination number usually varies from site to site. Prominent
examples are site- and bond-diluted regular lattices [9], as
well as triangulations of Poissonian point clouds (e.g., of
the Voronoi-Delaunay kind [10,11]). In the case of random
dilution, disorder is generic in the sense that it is introduced
in a completely uncorrelated manner, since sites or bonds
are independently removed according to a given probability.
Triangulations and other tilings, as well as general proximity
graphs [12], in contrast, are subject to geometrical constraints,
and fall under the term topological disorder [13].

All those types of random structures show fluctuations
in their local degree or coordination number.1 This, in turn,
leads to a different individual transition temperature for each
correlation volume ξd , i.e., a distribution of Ti centered on the
average critical temperature, Tc, instead of one sharp transition
point. The width �Ti of the resulting distribution is known to
be the crucial quantity that determines whether the transition
is stable against disorder [14]. More specifically, �Ti , which
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1In this article we occasionally use network terminology. In partic-

ular, coordination number and vertex degree are used synonymously.
The same holds for lattice, network, and graph, and for link, bond,
and connection.

measures the fluctuation in the local distance from criticality
is compared to |T − Tc|, where T denotes the simulation (or
experimental) temperature. If �Ti < |T − Tc| is fulfilled as
T → Tc, the transition is stable. This well-known result can
be expressed as a simple inequality, dν > 2, known as the
Harris criterion [14,15]. Here ν is the critical exponent of the
correlation length ξ and d denotes the dimension of the system.

It has been shown in Ref. [16] that second-order phase tran-
sitions on random Voronoi-Delaunay lattices are characterized
by a modified Harris criterion, which is explained in terms
of strong spatial anticorrelations in coordination numbers.
Interestingly, we observe that removing some of the bonds
of a Voronoi-Delaunay lattice, as prescribed for obtaining
the Gabriel graph [17], eliminates the anticorrelations. This
seems rather puzzling, given the fact that Schawe et al. very
recently found strong evidence that the 2D Ising universality
is preserved for those lattices [18], providing an indication that
universal properties are not solely dictated by anticorrelations
in coordination numbers.

We propose a random lattice construction with fixed local
coordination number in order to suppress fluctuations in the
local transition temperature. We call the model Constant
Coordination (CC). The remaining fluctuations of Ti among
the independent disorder realizations, which are revealed in
our Monte Carlo simulations, can therefore only originate
from the implicit connectivity disorder, as there are no degree
fluctuations by construction. In order to clarify the question
whether this kind of topological disorder renders the 2D Ising
transition unstable, we perform large-scale Monte Carlo simu-
lations, calculate the critical exponents of several observables,
and compare them to their corresponding universal values.

The structure of the paper is the following. A short review of
various network topologies and a presentation of the geometric
aspects and algorithmic details of the CC random lattice is
given in Sec. II. In Sec. III we summarize the Monte Carlo
methods employed for the 2D Ising model, including the
calculation of observables and details of how the quenched
averages are performed. The results of our simulations are
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presented in Sec. IV, followed by a discussion in the context of
other types of quenched disorder, namely, Voronoi-Delaunay
triangulations and diluted lattices, in Sec. V. Finally, Sec. VI
summarizes our findings.

II. LATTICE MODELS

The behavior of the Ising model is determined both by its
Hamiltonian (see Sec. III) and by the network topology, or
lattice structure, which describes how the sites are linked to
each other. The number of nearest neighbors of a given site,
which is the number of sites it is directly connected to, is the
coordination number or degree q of the site. We denote by N

the number of lattice sites and by L = N1/d its linear size, a
quantity appropriate to state results for an arbitrary dimension
d. In this work we consider only lattices on a torus, i.e., in
d = 2 dimensions with periodic boundary conditions.

A. Coordination number fluctuations

It is shown by Barghathi and Vojta in Ref. [16] that
coordination number fluctuations in random lattices play a
crucial role in determining the effect of disorder on phase
transitions. In their work, the scaling of disorder fluctuations
with increasing length scale is used to determine whether the
considered type of disorder is capable of altering the critical
exponents at the transition. Specifically, a 2D random lattice
of size N = L2 is partitioned into Nb blocks of size L2

b, where
the average coordination number within each block μ is given
by

Qμ = 1

Nμ

Nμ∑
i=1

qi. (1)

Here Nμ denotes the number of lattice sites contained in block
μ and qi is the coordination number of the site i. The standard
deviation ofQμ, which is used to quantify coordination number
fluctuations, reads

σQ(Lb) =

√√√√√ 1

(L/Lb)2 − 1

(L/Lb)2∑
μ=1

(Qμ − q̄)2, (2)

where q̄ denotes the asymptotic average coordination number
of the lattice and we use that Nb = L2/L2

b. These disorder
fluctuations can then be investigated on different length scales
by evaluating Eq. (2) for different Lb. Figure 1 shows σQ(Lb)
for various lattice models, which are described in the following
sections.

In order to measure anticorrelation effects quantitatively,
we calculated the connected two-point correlation function of
the coordination number [16]

C(r) = 1

N

∑
i,j

(qi − q̄)(qj − q̄)δ(r − rij ). (3)

Here rij denotes the distance vector from site i to j . Obviously,
C(r) is identically zero for constant coordination lattices (see
Sec. II D). Therefore, we also introduce the connected two-
point correlation function of the second-layer coordination
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FIG. 1. Coordination number fluctuations on different length
scales for several lattices. The curves are obtained using Eq. (2) and
found to decay as σQ ∼ L

−3/2
b for the Voronoi-Delaunay triangulation

(VD) and as σQ ∼ L−1
b for the others. Measured decay exponent

values: Gabriel Graph (GG): 0.999(1), Relative Neighborhood Graph
(RNG): 1.001(2), Site-Diluted regular square lattice (SD): 1.001(3),
VD: 1.501(2), Random Geometric Graph (RGG): 1.004(6), and sym-
metrized q-Nearest-Neighbor graph (qNNsym) with q � 6: 1.001(2).

number, defined by

C2nd(r) = 1

N

∑
i,j

(
q2nd

i − q̄2nd
)(

q2nd
j − q̄2nd

)
δ(r − rij ), (4)

where q2nd
i denotes the number of next-nearest neighbors, i.e.,

the number of sites that can be reached from point i by exactly
two links and at the same time are not part of the nearest
neighbors. This quantity should capture similar geometrical
information as its first-layer equivalent, C(r).

B. Voronoi-Delaunay construction

The Delaunay triangulation for a set of points is a triangu-
lation in which the circumcircle of every triangle is empty, i.e.,
contains no point of the set. Such triangulations contain as a
subgraph the (first) nearest-neighbor graph (see Sec. II C) and
guarantee that the distance along the edges between any two
points is not larger than about 2.42 times their metric distance
[19]. Regarding edges as neighboring relations, we refer to
the Delaunay triangulation spanning a given set of points as
the Voronoi-Delaunay (VD) lattice of this set. An example of
such a lattice for a Poissonian sampling is shown in Fig. 3. For
computing VD triangulations, we employ the CGAL library
[20].

The Ising model has been thoroughly studied on 2D and
three-dimensional (3D) VD lattices (see Refs. [10,11,21–23])
and found to belong to the same universality class as the
pure model, for both constant as well as distance-dependent
couplings. Whereas the 2D Ising model represents a marginal
case of the Harris criterion (dν = 2), the unchanged uni-
versality in three dimensions was surprising, since the cri-
terion is violated. This particular result partially motivated
the study of coordination number fluctuations in Ref. [16].
There, using geometric arguments, it was reasoned that the
total coordination number in VD lattices with periodic bound-
ary conditions is constant in each instance. This constraint
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generates anticorrelations in the local coordination number,2

and it is shown that connectivity disorder in VD lattices decays
as fast as σQ ∼ L

−3/2
b . In contrast to that, in systems with

uncorrelated disorder, such as randomly site- or bond-diluted
models, σQ ∼ L−1

b holds, as can be seen from Fig. 1.

C. Proximity graphs

Graphs whose sites lie on a metric space and are connected
whenever they are, according to a given criterion, sufficiently
close together, are called proximity graphs [12]. Different
proximity criteria correspond to different graph constructions.
One such construction is the VD graph, presented in Sec. II B.
Other proximity graphs we consider are the Random Geometric
Graph (RGG) [24], the Gabriel Graph (GG) [17], and the
Relative Neighborhood Graph (RNG) [25]. These lattices
are described below and can be efficiently calculated for a
Euclidean metric [26].

In an RGG, any two points whose distance falls below a
certain threshold are linked. In two dimensions, these graphs
can be defined using the auxiliary variable

Rq̄ =
√

q̄

πL2
, (5)

which denotes the interaction radius of a random geometric
graph with q̄ neighbors on average. For a comprehensive
review see Ref. [27]. In these lattices, correlations arise from
the fact that a high-degree node must be surrounded by many
points close to each other, which typically implies rather high
coordination numbers in its immediate surrounding as well.
In other words, dense clusters are more likely than in generic
random networks. This property can be observed very clearly
in the example of an RGG lattice shown in Fig. 3.

In a GG, also displayed in Fig. 3, two points i and j are
connected whenever d(i,j )2 � d(i,k)2 + d(k,j )2 for any other
point k of the graph, where d(i,j ) is the distance between i

and j . This condition translates into requiring that the smallest
circle defined by i and j contains no other points. The RNG
is similarly defined by the more restrictive condition d(i,j ) �
max[d(i,k),d(k,j )] and also shown in Fig. 3.

For these three proximity graphs, we repeat the blocking
analysis from Ref. [16], using Eqs. (1) and (2). Fitting the
fluctuations to σQ ∼ L−a

b in Fig. 1, we find decay exponents
consistent with a = 1, which correspond to that of conven-
tional, uncorrelated disorder. This is somewhat unexpected,
especially in light of the very recent results from Ref. [18],
which provided unambiguous evidence that the 2D Ising model
on the RNG and GG falls into the universality class of the
regular model. For that reason, we also repeat the calculation of
the coordination number correlation function from Ref. [16],
in order to shed light on the role of anticorrelations in the
coordination number. The results are shown in Fig. 2, compared
to VD and random geometric graphs. Interestingly, the curve
for the GG remains positive, i.e., it displays no anticorrelation
at all and is thus consistent with the slow disorder decay
observed above. It is remarkable that the pruning of bonds

2For example, a highly connected node will typically be surrounded
by less connected nodes.
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FIG. 2. Coordination number correlation functions. (a) First-
layer, according to Eq. (3), for the VD triangulation, Gabriel Graph,
Relative Neighborhood Graph, Random Geometric Graph, and sym-
metrized q-Nearest-Neighbor graph with q�6. For the RGG the
radius was chosen such that the average coordination number is q̄ = 6
and C(r) is rescaled by a factor of 0.1. (b) Second-layer coordination
number correlation function (4) for VD and the constant coordination
models (CC4, CC6, and CC10). We show a magnification in the inset.

of a VD lattice in order to obtain the GG causes such a
significant change with respect to the coordination number
correlations. Equally surprising is the circumstance that the
removal of further bonds from the GG, leading to the RNG,
results in negative correlations for short ranges. That means
that highly connected sites tend to be linked to less connected
sites, and vice versa. The RGG curve reflects the high clustering
mentioned above, falling linearly up to the interaction radius,
Rq̄ , where it displays a pronounced drop before approaching
zero for distances around r = 2Rq̄ . This is consistent with the
fact that, for two sites with nonoverlapping interaction regions,
the coordination numbers are effectively uncorrelated.

D. Constant coordination lattice

In this work, our aim is to obtain a random lattice for
which the local coordination number is constant for all points
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by construction. Since the local coordination number does
not fluctuate, σQ, of course, vanishes on any length scale.
Furthermore, the constraint of a constant total coordination
number is also trivially fulfilled.

When imposing the constraint mentioned above, the per-
haps most obvious lattice construction one can think of would
be a q-Nearest-Neighbor lattice, where every site is linked to
the q spatially closest sites. This construction is very simple
(e.g., compared to VD), since no geometrical information other
than the point distances is required and is straightforward in any
dimension. However, this lattice is in general a directed graph,
since neighborhood is not necessarily reciprocal. Therefore, in
the resulting lattice, only qout, the out-degree of every site, is
constant, i.e., exactly q bonds emanate from each site. Since
not all links are bidirectional, though, qin �= const.

In the past, it has been pointed out by several authors that
equilibrium systems on directed graphs can be regarded as
pathological in the sense that the detailed balance condition is
violated [28]. This leads to the fact that, e.g., on a directed,
scale-free Barabási-Albert graph, no spontaneous magnetiza-
tion can be found and different update algorithms give different
results [29]. On directed small-world networks, the S = 1, 3/2
and 2 Ising model, as well as the Blume-Capel model, show
a phase transition which changes from second to first order if
a specific critical rewiring probability is exceeded [30–32]. In
the second-order regime, the aforementioned results indicate
a different universality class compared to the corresponding
models on a regular lattice. For a recent review article, see
Ref. [33]. Although those results have been calculated using
traditional equilibrium Monte Carlo simulations, it was first
pointed out in Ref. [34] that those directed systems can be
seen as being in a nonequilibrium stationary state rather than in
conventional equilibrium. Therefore, even a proper definition
of the energy of the system becomes problematic [28].

In order to avoid the massive complications accompanied
with directedness, there are two common ways to symmetrize
q-Nearest-Neighbor constructions. One can either delete any
directed links, such that only the bidirected ones are left, or also
add the reverse links to the nodes connected by directed ones.
Obviously, lattice sites can be left with more than q neighbors
after the latter symmetrization procedure and can have fewer
than q neighbors after the former procedure. Additionally, it
can easily be checked that either symmetrization does not lead
to a constant global coordination number Qtot, which means
that Qtot is (slightly) different for each lattice realization.
Furthermore, the blocking analysis for those two possibilities
clearly shows a decay consistent with conventional, uncorre-
lated disorder, i.e., σQ ∼ L−1

b , as expected. We also display the
correlation function for the symmetrized q-Nearest-Neighbors
lattice in Fig. 2.

We want to construct an undirected lattice model where
every site has exactly q neighbors. Naively linking every point
to some other randomly chosen points that still have fewer
than q neighbors would lead to mean-field behavior, similar
to small-world networks [35] and Erdős-Rényi graphs [36],
since the mean path length is then of the same order as the
system size and therefore information propagates effectively
instantaneously through the lattice. We therefore place as a
particular demand on our model that the interactions are short-
ranged in the sense that the bond lengths � � L. The resulting

construction, which we refer to as Constant Coordination (CC)
lattice, works as follows.

Procedure: We start with the fully random graph mentioned
above, where one point at a time is linked to q other points,
randomly chosen from those with fewer than q neighbors.
Afterwards, the sites are dynamically rewired by a simulated
annealing algorithm [37], respecting the constraint of fixed q.
More specifically, the algorithm chooses two links, ij and kl,
at random and checks whether a rewiring of the connections
to il and jk would lead to a decrease of the sum of the bond
lengths:

d(i,l) + d(j,k) < d(i,j ) + d(k,l). (6)

If this inequality is obeyed, the change is accepted and the
algorithm moves on by considering the next pair of links. If,
instead, the new configuration would lead to an increase of
the combined link lengths, the rewiring is accepted only with
probability exp(−�H/T ), where

�H ≡ d(i,j ) + d(k,l) − [d(i,l) + d(j,k)] (7)

defines the cost function. The nonzero simulated annealing
temperature T has the effect of noise on the convergence to a
state of low cost function. The value of T is logarithmically
decreased during the simulation, such that in the beginning,
“bad” rewiring updates are accepted with moderate probability,
whereas in the final stages, this probability almost vanishes.
More details of our algorithm can be found in Appendix A.
Samples of the lattice are shown in Fig. 3.

As the degree fluctuations are trivially equal to zero,
Fig. 2(b) shows also the second-layer degree fluctuations
according to Eq. (4) for the particular CC models we consider
and compares them to those of the VD triangulation. As
can be seen, VD exhibits pronounced anticorrelations in the
second-layer coordination number as well. The curve for
CC10 is qualitatively similar, but shows significantly stronger
oscillations. Comparing CC10 with CC6 and CC4, it can be
noticed that the relative strength of anticorrelations decreases
as q is decreased. For q = 4 the first minimum is hardly visible
and positive values dominate (see inset of the figure).

It is also worth considering samplings other than the simple
Poissonian, such as the Hard Core Point Process (HCPP),
where the random points are placed respecting a minimum
distance Rr from each other [38]. We briefly address this model
in Appendix B. A sample of the CC neighbor construction on
this hard core point process can be seen in Fig. 3.

E. Link lengths

One of the key ingredients to establish a well-defined
magnetic phase transition that does not behave in a mean-
field fashion is the locality of interactions, usually realized
by establishing nearest- or next-nearest-neighbor couplings
on the lattice. In other words, the characteristic interaction
range � should be small compared to the system dimensions,
� � L. As soon as one allows for sufficiently many long-
range “shortcuts,” as those found, for instance, on small-world
lattices [35], the behavior of the system is governed by its
mean-field fixed point.

For this reason, as detailed in Sec. II D, the CC lattice is
specifically designed to be sufficiently local. This property

022144-4



TWO-DIMENSIONAL ISING MODEL ON RANDOM … PHYSICAL REVIEW E 97, 022144 (2018)

Constant Coordination 4 Constant Coordination 6 Constant Coordination 10

Site-Diluted Square Lattice CC6 on HCPP

Voronoi-Delaunay Gabriel Graph Relative Neighborhood Graph

Random Geometric Graph Symmetrized qNN

FIG. 3. Samples of the considered lattice constructions. Note that all lattices with exception of those in the second line are constructed from
the same set of points. For the RGG, the radius is set according to Eq. (5) such that q̄ = 6. The dilution probability for the diluted lattice is
20%. For the symmetrized q-Nearest-Neighbor lattice, q � 6 holds, as all links have been made bidirectional.

can be quantitatively characterized by means of the link lengths
statistics. Figure 4 shows the normalized link length histogram
for the CC lattice with q = 6 on a Poisson point process,
as well as on the hard core point process, compared to the

distribution for a VD triangulation (q̄ = 6). For every model,
Fig. 4 contains three separate curves (of the same color) which
correspond to lattices with L = 32, 64, and 128. The respective
curves collapse when rescaled by Rq̄=6, defined in Eq. (5),
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FIG. 4. Normalized bond lengths histogram, rescaled in units of
Rq̄=6 for the VD triangulation and the CC6 lattices on Poissonian and
Poissonian disk-sampled (see Appendix B) point distributions. Each
color shows collapsing curves for L = 32, 64, and 128. The mean
values of the histograms are 0.819 (VD), 0.767 (CC6), and 0.834
(CC6-HCPP).

showing that our algorithm provides the correct scaling for
finite systems of different linear dimensions L. Moreover,
Fig. 4 indicates that the CC lattices are even more local than
the VD triangulation.

We want to emphasize that the link distance histogram
is a sufficient condition to prove locality for our lattice
construction, even though it is not a necessary one. If we, for
instance, move lattice points to new randomly chosen locations
while keeping all bond connections unchanged, we end up
with a completely different link length profile with distances
of all length scales. However, the topology of the lattice would
not be different than before, as it is solely encoded in the
neighbor relations. In this context, the typical shortest path
length L̄ on the graph can be used as a proper quantity to
check locality. For regular lattices as well as triangulations on
random point clouds, this distance scales as L̄ ∼ N1/d where
N is the number of nodes and d denotes the dimension of the
system. Since for our lattices the geometric bond distances
are explicitly minimized during the dynamical algorithm, they
display the same scaling. Small-world networks, in contrast,
show a mean-field type transition [35] and are known to scale
as L̄ ∼ log N [39]. Some scale-free networks, on which the
temperature of the ferromagnetic to paramagnetic crossover
was found to shift with system size and to ultimately diverge
for N → ∞ [40], even scale as L̄ ∼ log log N [41].

III. PHYSICAL MODEL AND METHODS

We focus on the 2D, ferromagnetic Ising model, described
by the Hamiltonian

H = −J
∑
〈i,j〉

sisj , (8)

where J > 0 quantifies the coupling between nearest neigh-
bors 〈i,j 〉 and the spin variables assume values si = ±1. On
a spatially disordered lattice, a natural option is to consider a
distance-dependent coupling constant J (r). However, we want
to focus exclusively on connectivity disorder and therefore set
J = 1 throughout this work, in order to avoid any possible

effects of random couplings. Besides, in VD lattices, it is
known that distance-dependent coupling constants do not
affect the universal properties of the phase transition [21].

In order to study the Ising model in the vicinity of the critical
point, we employ importance-sampling Monte Carlo methods,
using single-cluster, as well as local-update algorithms. In
particular, we use the algorithm proposed by Wolff [42], which
significantly reduces the critical slowing down near the critical
point and is straightforwardly applicable to disordered lattices.

Keeping track of the full time series of measurements
of magnetization and energy during the simulations enables
us to calculate all observables of interest by means of
single-histogram reweighting techniques [43,44]. This way,
the observables can be obtained as continuous functions of
temperature β, allowing the extremal points used in the finite-
size scaling analysis to be determined with high precision.
By estimating the valid reweighting range, as proposed in
Ref. [45], we make sure that no systematic errors are introduced
in our analysis.

In the investigation of disordered systems, it is necessary to
average physical observables over many different, independent
disorder realizations, also called replicas, of the system. The
so-called quenched averages over Nr replicas are performed at
the level of (extensive) observables, rather than at the level of
the partition function [4]. Denoting quenched averages as

[O]avg ≡ 1

Nr

Nr∑
i=1

Oi (9)

and thermal averages as 〈...〉, we use the following definitions
of magnetization, energy, susceptibility and specific heat:

m = [〈|m|〉]avg, (10a)

e = [〈e〉]avg, (10b)

χ = Nβ[〈m2〉 − 〈|m|〉2]avg, (10c)

C = Nβ2[〈e2〉 − 〈e〉2]avg, (10d)

as well as the following derivatives:

d[〈m〉]avg

dβ
= [〈|m|e〉 − 〈|m|〉〈e〉]avg, (11a)

d ln[〈|m|〉]avg

dβ
=

[ 〈|m|e〉
〈|m|〉 − 〈e〉

]
avg

, (11b)

d ln[〈m2〉]avg

dβ
=

[ 〈m2e〉
〈m2〉 − 〈e〉

]
avg

, (11c)

1

N

d[U2]avg

dβ
=

[
(1 − U2)

(
〈e〉 − 2

〈|m|e〉
〈|m|〉 + 〈m2e〉

〈m2〉
)]

avg

,

(11d)

1

N

d[U4]avg

dβ
=

[
(1 − U4)

(
〈e〉 − 2

〈m2e〉
〈m2〉 + 〈m4e〉

〈m4〉
)]

avg

,

(11e)

which all exhibit singularities close to the phase transition
in the thermodynamic limit. In Eqs. (11d) and (11e), U2 and
U4 denote the second- and fourth-order magnetic cumulants,
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given by

U2(β) =
[

1 − 〈m2〉
3〈|m|〉2

]
avg

, (12)

U4(β) =
[

1 − 〈m4〉
3〈m2〉2

]
avg

. (13)

Note that the intersection point of the fourth-order magnetic
cumulant U4(β) for two different lattice sizes yields an estimate
for the critical temperature βc.

In a finite system of linear size L, it is well known that, near
the critical point, the above quantities scale as

[〈m〉]avg = L−β/νfm(x)(1 + · · · ), (14a)

χ = Lγ/νfχ (x)(1 + · · · ), (14b)

C = C0 + Lα/νfC(x)(1 + · · · ), (14c)

d[〈m〉]avg

dβ
= L(1−β)/νfm′(x)(1 + · · · ), (14d)

d ln[〈|m|〉]avg

dβ
= L1/νfm,1(x)(1 + · · · ), (14e)

d ln[〈m2〉]avg

dβ
= L1/νfm,2(x)(1 + · · · ), (14f)

d[U2]avg

dβ
= L1/νfU2 (x)(1 + · · · ), (14g)

d[U4]avg

dβ
= L1/νfU4 (x)(1 + · · · ), (14h)

where α, β, γ , and ν are critical exponents, C0 is the regular
part of the specific heat that does not diverge at the critical
point, and the functions f are universal scaling functions with
the argument x given by

x = (β − βc)L1/ν . (15)

These equations describe the finite-size scaling behavior of
the considered observables to first order. Corrections of higher
order to the scaling equations are expected to become irrelevant
for large system sizes L.

The time series of measurements is resampled into blocks
according to the jackknife method [46]. This procedure is
known to decrease the bias of the estimator of the average,O(B).
Furthermore, for regular lattices, where no replica average is
necessary, the error is estimated via

σO = NB − 1

NB

NB∑
i=1

(
O(B)

i − O(B)
)
, (16)

where NB denotes the number of blocks, O(B)
i indicates the

average of an observable O in block i, and O(B) denotes the
average of the NB individual block averages. Depending on
the number of measurements performed in a simulation, the
number of bins should be chosen such that the bin size is large
compared to the integrated autocorrelation time, and small
compared to the length of the entire sample. In our simulations
we use between 100 and 1000 bins.

For the disordered models, however, another average (over
replicas) is necessary, as pointed out above. We therefore do

not use the jackknife errors of the single curves, but instead
calculate the uncertainty of the replica average via a standard
error

σ 2
replica = 1

Nr (Nr − 1)

Nr∑
i=1

(〈O〉i − [〈O〉]avg)2, (17)

where Nr denotes the number of replicas. This ensures that
both the thermal fluctuations, as well as those among different
disorder realizations are properly taken into account [22]. Note
that if we do not discard the individual errors but instead
combine them to form a weighted average with associated
uncertainty, the fluctuations arising from the different disorder
realizations are not correctly accounted for. The individual
curves are not estimators of the replica-averaged observables,
but instead only of their replica-specific observables. This
means that even if we would perform n → ∞ measurements
for one specific disorder realization, the resulting estimates
would not converge to the actual values of the replica-averaged
curves.

IV. RESULTS

In the following, we present the results of our numerical
simulations, which were performed in the department’s cluster,
taking about 30 000 CPU-days in total.

A. Regular square lattice

As a walk-through of our analysis and validation of our
code, we simulate the 2D Ising model [Eq. (8)] on a regular
square lattice with L = 16 to 256. In total, we perform
7.5 × 107 single cluster updates for each system size: the first
2.5 × 107 cluster updates are reserved to ensure proper equili-
bration of the system; after that, magnetization and energy are
evaluated every 25th cluster update, yielding 2 × 106 almost
uncorrelated measurements. Between each measurement, we
also perform a full Metropolis sweep [47] in order to make sure
that the short-wavelength modes are properly thermalized. In
principle, these sweeps are not necessary when using a cluster
algorithm on a regular lattice, but for some random lattices, the
intermediate Metropolis updates significantly decrease corre-
lations between consecutive configurations. Strongly diluted
systems, for example, necessarily require Metropolis sweeps,
since cluster updates rarely visit small, isolated components
of the lattice. As simulation temperatures, we choose the
approximate maxima of the susceptibility curves. Reweighting
the data returns seven curves (10c)–(11e) for each system size
L; we then determine their maxima, thereby obtaining seven
sequences of pseudocritical temperatures and corresponding
function values. Since the system is regular, replica averaging
is not necessary here.

The scaling relations (14) generically include multiplicative
correction factors of the form (1 + b · L−ω + · · · ), with a
correction-to-scaling exponent ω, some nonuniversal constant
b, and possibly further terms of higher order (see, e.g., Ref. [48]
for a detailed discussion). Taking into account these corrections
would, however, require nonlinear fitting methods with at least
four parameters, which tend to be numerically unstable. In
order to avoid nonlinear fits while still keeping track of possible
systematic corrections, we adopt the following procedure:
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FIG. 5. Residuals of four out of 28 fits for the exponent ν for
the Ising model on a regular square lattice, shifted vertically for
convenience. The vertical dotted line separates the region that is
excluded in the fits. The curves, listed from top to bottom, are guides
to the eye.

(1) Determine a suitable minimum lattice size, Lmin, by
discarding an increasing number of the smallest lattices and
refitting, up to the point where the values of the exponents
and also the goodness-of-fit parameter Q [49] cease to show a
systematic trend.

(2) Check the corresponding residual plot and, if necessary,
increase Lmin in order to eliminate any systematic trend still
present in the remaining data points.

In order to determine the correlation length exponent ν, we
use the last four scaling relations of (14), each of which is fitted
to the seven pseudocritical sequences (10c)–(11e), yielding
a total of 28 fits. The relations could be fitted only at their
own pseudocritical temperatures with good results; however,
performing the full number of fits allows for the determination
of ν to the greatest possible precision. This is advantageous
since this exponent is required for the determination of the
infinite-volume critical temperature, as well as for the other
exponents obtained from γ /ν, (1 − β)/ν, and β/ν. Neverthe-
less, we emphasize that taking the full 28 fits into account

brings about only a modest increase in precision, given that all
fits are trivially correlated, since they stem from the same set
of simulations. For the regular lattice, discarding the smallest
lattice size simulated, L = 16, we find 23 acceptable fits with
goodness-of-fit values Q � 0.2. The residual plots for four of
the curves are shown in Fig. 5. In order to obtain a final value for
ν, we calculate the error-weighted average over all acceptable
fits. Concerning the uncertainty, we quote the smallest error
of the single fits included in the average, thus being quite
conservative, as suggested in Ref. [22]. The result is

ν = 1.0000 ± 0.0006 (Lmin = 32), (18)

which perfectly coincides with the analytically known value
of ν =1.

Making use of the relation

βmaxi
= βc + aiL

−1/ν, (19)

in combination with the pseudotransition points, the critical
temperature βc can be determined via infinite-volume extrap-
olation, where we fixed ν to its exactly known value. After
averaging the individual βc, we arrive at

βc = 0.440688 ± 0.000015 (Lmin = 32), (20)

where the reported uncertainty is the standard error of the
average. This value is quite close to the exact critical tem-
perature of βc ≈ 0.4406868. The smallest lattice (L = 16) is
again discarded in all fits.

The exponent γ /ν is obtained from relation (14b). Here we
exclude all lattice sizes L � 64, since residual plots indicate
(slight) systematic deviations up to that value. The weighted
average of the three resulting fits with acceptable quality (Q �
0.3) yields

γ /ν = 1.7516 ± 0.0008 (Lmin = 80) (21)

as the final result, which is compatible with the exact value of
7/4. The residuals of all seven fits are shown in Fig. 6(a).

The combinations (1 − β)/ν and β/ν are determined from
fits to the relations (14d) and (14a), respectively. For the former
exponent, we find three fits with Q � 0.2, similar as for γ /ν,
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FIG. 6. Residuals for the fits of the exponents (a) γ /ν and (b) β/ν for the regular lattice. The single lines in each panel correspond to
observables (10c) to (11e) from top to bottom and are shifted vertically for convenience. The vertical dotted line separates the region which is
excluded from the fitting procedure, and the curves are guides to the eye.
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TABLE I. The seven single fits for β/ν for the regular lattice using
L = 48 to 256 (eight data points) as well as the average, obtained from
the five values with Q � 0.01. The corresponding residuals are shown
in Fig. 6(b).

β/ν Goodness-of-fit Q At max. of

0.1298 ± 0.0014 0.976 χ

0.1201 ± 0.0014 0.000 C

0.1201 ± 0.0013 0.986 dm/dβ

0.1269 ± 0.0017 0.051 d ln m/dβ

0.1266 ± 0.0020 0.012 d ln m2/dβ

0.1290 ± 0.0015 0.071 dU2/dβ

0.1343 ± 0.0021 0.000 dU4/dβ

0.1261 ± 0.0013 avg. Q � 0.01

but the residual plots show no need to discard further data
points. Our final value is thus given by the average

(1 − β)/ν = 0.8747 ± 0.0010 (Lmin = 64), (22)

also compatible with the exact value of 7/8. However, for
β/ν, our data do not return a single acceptable fit, even when
discarding half of the data points. A thorough analysis of the
fit residuals shows no systematic corrections for L > 32, but
reveals that the poor quality of the fits arises from the small
uncertainties assigned to the values of 〈m〉. Indeed, the relative
uncertainties are about half an order of magnitude smaller
compared to, e.g., the last five observables of (14). If we
increase the uncertainties of the data points by an ad hoc factor
f = 5, then five out of seven fits turn out to be acceptable, with
Q � 0.01, producing the reasonable final average of

β/ν = 0.1261 ± 0.0013 (Lmin = 48). (23)

The full list of fits can be seen in Table I and the correspond-
ing residual plot in Fig. 6(b). By calculating β/ν estimates for
multiplication factors f = 2 to 8, we observe that the number
of good fits increases with f , but the average β/ν fluctuates
only in the last digit, consistently maintaining compatibility
with the exact result 1/8.

We note that, regarding the fits for the three ratios γ /ν,
(1 − β)/ν, and β/ν, those fits that depend on the function
values at the pseudocritical points of either C, d ln〈m2〉/dβ,
or dU4/dβ always present the lowest fit quality (i.e., large
reduced χ2). This is due to the fact that those three quantities
have their maxima at a larger distance from the simulation tem-
perature, compared to the remaining observables. Therefore,
in order to obtain a larger number of acceptable fits and more
accurate estimates for the critical exponents, multi-histogram
reweighting methods [43] would be necessary. However, in the
case of random lattices, the fluctuations among replicas already
prevent estimates from reaching a precision comparable to
that of regular lattices, rendering more accurate reweighting
methods unnecessary.

B. Voronoi-Delaunay triangulation

As outlined in Sec. II B, a prominent example of a random
lattice is given by the Voronoi-Delaunay triangulation of a
Poissonian point cloud. Due to the spatial randomness, stronger

corrections to scaling, compared to the regular case, can
be expected. As a consequence, it is necessary to simulate
the model on large lattices. For L = 16 to 320, we perform
quenched replica averages (see Sec. III) over Nr = 1000
independent realizations of the VD construction. For the largest
lattice considered, L = 400, only Nr = 500 realizations are
simulated. Starting from a completely ordered configuration,
we perform 106 cluster updates to equilibrate the system,
followed by 5 × 107 cluster updates, with measurements taken
every 25th cluster update. Physical observables are obtained
by reweighting for each simulated replica; this amounts to one
curve for each observable and each replica. After averaging
the curves of the observables of all replicas, extremal points
are determined using an iterative bisection method.

The statistical uncertainties of the replica-averaged observ-
ables are obtained from the standard error of the Nr different
observable curves used to calculate the average. As pointed
out in Sec. III, this error estimate contains both the uncertainty
corresponding to the thermal fluctuations in each replica, as
well as the fluctuations among different replicas, arising from
the different disorder realizations. We perform linear fits to
the scaling equations, as in the previous subsection, thereby
ignoring any corrections to scaling. For each observable listed
in Eqs. (14a)–(14h), we perform seven linear fits, each using
a different estimate of the pseudocritical temperature, as
obtained from extremal points of the observables.

Instead of adopting a fixed Lmax, as for the regular lattice,
we employ a local fitting procedure in order to obtain an
effective exponent. More specifically, we perform the fitting
over a window of five consecutive data points from the range
L ∈ {16,32, . . . ,320,400}, assigning weights that emphasize
the central data point (see Fig. 7). The local fitting is necessary
due to the rather strong systematic deviations from a pure
power law. The residuals of the fits for γ /ν, for instance, shown
in Fig. 8, clearly demonstrate that the data points systematically
deviate from the horizontal.

The effective exponents ν, γ /ν, (1 − β)/ν, and β/ν for
VD are shown in Fig. 10 and listed in Table IV, where we
display the averages of the single fits in each individual fitting
window. For the estimates of ν, we observe a very smooth
curve, decreasing continuously as the fitting window is moved
towards larger lattices. Therefore, we offer no final result for
the exponent ν. Regarding the estimates at hand, we expect the
effective exponent ν to tend to the exact value in the infinite-
volume limit. For γ /ν, the situation is very similar. As in the
case for ν, the individual estimates again exhibit a systematic
downwards trend and we expect the exact value to be reached in
the infinite-volume limit. For the critical exponent β, which can
be estimated from the scaling of [〈m〉]avg and d[〈m〉]avg/dβ, the
corresponding curves are also smooth and indicate a tendency
towards the expected values in both cases. In particular, for
β/ν the universal value of 0.125 is already reached within the
error bars for smaller values of L.

Critical temperature

Linear fits for the determination of the critical temperature
according to Eq. (19) reveal systematic deviations, even if
many of the small lattice sizes are discarded, qualitatively
similar to those observed for the exponents (compare Fig. 8).
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FIG. 7. Schematic representation of the local fitting procedure,
here for L = 96. Each circle symbolizes one lattice size L, whereas
the numbers inside the circle are the corresponding weights.

Therefore, we decided to take into account higher order
corrections in the finite-size scaling analysis in order to allow
for a more precise estimate of βc. Considering a first-order
correction term, Eq. (19) reads

βmaxi
= βc + aiL

−1/ν + biL
−ω−1/ν, (24)

where the correction-to-scaling exponent ω is expected to
assume the “trivial” integer value 1, or smaller fractional values
[48]. The leading correction term for the relatedφ4 model could
have an exponent as small as 1/4, but with amplitude too small
for its effect to be measurable in moderately sized lattices. For
the strongly site-diluted Ising model, which is perhaps more
directly comparable to the VD model, a value of ω = 0.63(20)
has been found [50]. When fitting Eq. (24) to our data, we can,
in light of the results of Table IV, set ν = 1, which reduces
the number of fitting parameters to four. As the effects we
are trying to detect are rather small, it is still challenging to
obtain stable fits. For this reason, we perform a series of fits
for different, fixed values of ω and hence obtain corresponding
βc estimates. We follow this procedure for the data for each of
the seven observables, and then calculate the average as well as
the standard deviation of βc for each ω. In Fig. 9 the estimate
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FIG. 8. Linear fit residuals for γ /ν for the VD lattice in the
range from Lmin = 160 to Lmax = 400. The single lines in each panel
correspond to observables (10c) to (11e) from top to bottom and are
shifted for convenience. The region of the dashed black lines show
the excluded region. The curves are guides to the eye. Only the green
curve (third from the top) shows no systematic deviation and yields
γ /ν = 1.7512(7), with a goodness-of-fit value Q = 0.90.
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FIG. 9. (a) Estimate of βc, and its error (shaded region) as
a function of fixed ω. (b) Corresponding reduced χ 2 values, as
described in the text. Employing different fitting algorithms generates
qualitatively similar results, which are also insensitive to the choice
of lattice size range.

of βc and its error (shaded region) is depicted together with the
average reduced χ2 as a function of fixed ω. It can be seen that
the best fits are obtained for ω � 1, coinciding with the most
precise estimates of βc as well. The best fit value is

βc = 0.262904(9), (25)

corresponding to Tc = 3.80368(13), at ω ≈ 0.84. To the best
of our knowledge, this is so far the most precise value available
for the critical coupling for the 2D Ising model on a VD lattice.

C. Constant coordination model

We study CC lattices for q = 4,6, and 10 (short: CC4,
CC6, CC10) on a Poissonian point process. For CC4, CC6,
and CC10, we use the same number of independent disorder
realizations, measurements, equilibration steps and cluster
updates as for the VD lattice. In this way, the results for the
different models are of comparable precision. The estimates
of the exponents are obtained following the same procedures
described in Sec. IV B. The results for the CC4, CC6, and CC10
models are presented in Fig. 10, where we also added the VD
exponents for comparison. A detailed list of the data points can
also be found in Table IV.

Recall that due to the nature of the CC construction
small isolated components may occur, in contrast to the VD
construction, where the lattice always consists of one single
component. In order to properly update those islands, we
employ an additional Metropolis step between measurements.
Furthermore, we report results only for lattices of size L = 16
to L = 320, as for larger lattice sizes the construction already
becomes as expensive as the actual Monte Carlo simulation.

Overall, in Fig. 10 we see similar tendencies as for the
VD lattices, however, with larger absolute deviations from the
universal Ising values. For the correlation length exponent ν,
all CC models seem to show a systematic trend. However,
the deviations become larger for smaller q. Compared to VD,
for q = 10 those deviations are roughly three times as large,
and for q = 6 already about one order of magnitude higher.
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FIG. 10. Comparison of critical exponent estimates for the CC lattices with q = 4, 6, 10 and VD lattices, as a function of L. Dashed lines
indicate the clean universal values of the 2D Ising universality class.

Considering also the fact that for q = 6 the error bars are only
about twice as large as for VD, the results indicate that any
possible convergence is significantly slower.

A remarkably different situation arises for the susceptibility
exponent γ /ν, where the effective exponents for all models
seem to collapse. However, whereas the CC10 shows a clear
trend of decreasing estimates, this behavior becomes less
distinct for q = 6, where the curves seem to saturate within
the considered range of L. Eventually, for q = 4, almost all
values are compatible with 7/4, which may, however, be a
consequence of the relatively large error bars.

As for ν, the exponent (1 − β)/ν is clearly different for
CC and VD graphs. For the VD construction, a trend consis-
tent with (1 − β)/ν = 0.875 is evident. In contrast, the CC
exponents are further away from the universal value and show
no clear trend, with a possible exception of CC4, where the
effective exponent appears to increase with L. Similar to ν, the
absolute deviations for CC6 are already almost one order of
magnitude larger than for VD. Finally, the exponent β/ν shows
a clear trend towards the universal value in the case of q = 4
and 6, with the last few data points being fully compatible with
1/8. For q = 10, however, all estimates match the universal
value, very similar to the VD model.

For completeness, we state the critical temperatures for the
constant coordination models which are roughly βc ≈ 0.549,
0.294, and 0.148 for CC4, CC6, and CC10, respectively. A
more precise determination of the model Tc, if necessary, could
be obtained using the methods described in Sec. IV B, but is
omitted, since these values depend on the fine-tuning of the
CC algorithm and are therefore nonuniversal.

We also consider the CC model on the hard core point
sampling (CC6-HCPP), where only 320 disorder realizations
have been used. We found that more ordered lattice results in
critical exponents closer to universal ones, as can be seen in
Appendix B.

V. DISCUSSION

In comparison with the VD triangulation, the CC model for
q = 6 has exponents ν and (1 − β)/ν that show deviations
from their respective universal values which are larger by
about one order of magnitude [e.g, ν = 1.0042(5) for VD
and ν = 1.0281(12) for CC6 at L = 192]. Furthermore, for all
CC models, the convergence of the effective exponents seems
weaker or even doubtful, with the possible exception of β/ν,
which has rather large relative errors.

In the following, we want to understand our findings using
a number of topological arguments. We start by referring
again to Ref. [16], where it was shown that for the VD
lattice, the constrained total coordination number imposes
strong anticorrelations in the local q fluctuations, which in
turn are responsible for the fast decay of disorder under
spatial renormalization-group-type blocking transformations
(compared to, e.g., diluted lattices) and are thus asymptotically
irrelevant. It was reasoned that this fast decay can be expressed
in terms of a modified Harris criterion (d + 1)ν > 2 that
explains the fact that, e.g., simulations of the contact process on
those lattices show the clean universal exponents [51], although
the classical Harris criterion dν > 2 is violated.
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TABLE II. Overview of the lattice models considered in this work. The disorder decay exponent a is defined by the relation σQ ∼ L−a
b ,

where σQ is defined according to Eq. (2). The values marked with † have been calculated in Sec. II (see Fig. 1); the symbol ‡ refers to Fig. 2
(upper panel). §: for the RGG and the symmetric qNN, no clear universal properties are expected; see text. ∗: negative correlations are present,
but positive correlations are dominant, especially on the typical scale of one bond length; see Fig. 2.

Disorder decay Coordination number Total coordination 2D Ising
Model exponent anticorrelation number constrained Planar Connected universality

VD 3/2 Yes
†

Yes Yes Yes Yes [16]

CC – No
†

Yes No No Questionable
GG 1† No‡ No Yes Yes Yes [18]
RNG 1† Yes‡ No Yes Yes Yes [18]

BD 1
†

No
†

Yes Yes No Strong/weak [16,52–67]

SD 1† Yes
†

No Yes No Strong/weak [52–67]

RGG 1† No
†

No No No Unclear§

qNNsym 1† No∗ No No No Unclear§

In this paper we construct a lattice which provides ran-
dom connectivity (and thus topological disorder)3 and, as
an obvious effect of the fixed local coordination number, no
fluctuations in the original lattice or on any blocking level.
Therefore, since the effective critical exponents clearly deviate
from the corresponding universal values, we are led to the
conclusion that the scaling of σQ under coarse graining should
not be the decisive property determining the nature of the phase
transition. This conclusion is supported by the very recent
results of Ref. [18], where it is shown that the universality of the
2D Ising model on GG and RNG is unchanged and therefore
belongs to the same class as the Ising model on a regular lattice.
In Sec. II we perform the blocking analysis using Eq. (2) for
these two types of proximity graphs and find that both of them
unambiguously show a decay of σ ∝ L−1

b . This means that
disorder in these graphs decreases as slow as for generically
disordered models. Hence, the results from Ref. [18] are not
covered by the modified Harris criterion.

We collect several types of disordered lattice models in
Table II, together with some relevant geometric properties
and statements concerning the universality of the 2D Ising
model on each lattice. From the overview given in this table,
we claim that the general statement of topological disorder
being less relevant than generic disorder, as stated in Ref. [16],
is perhaps too general. However, the particular instances of
lattices mentioned by the authors can indeed be expected to
preserve the universal features of a transition, since they are
all tilings. The key difference between tilings and lattices with
bonds that may cross each other (like our CC model or the
random geometric graph with fixed interaction radius) lies in
the fact that for tilings, it is always ensured that there exists
one single component containing all sites. We thus conclude
that very clear universal properties (e.g., no strong logarithmic
corrections) are obtained if the underlying lattice is both planar
and connected.4 Here, we remind that a graph is called planar
if it can be embedded in the plane such that there are no edge
crossings. Whether a specific graph is planar can be checked

3Keep in mind that random connectivity does not imply a random
coordination number at this point.

4Tilings are a special case of planar, connected graphs.

according to Kuratowski’s theorem [68]. Since RNG and GG
possess these properties, this would explain the positive results
from Ref. [18].

Comparing the GG with RGG (see Table II), it is clear that,
apart from the RGG being neither planar nor connected, they
show the same geometric characteristics. Following our line of
argumentation, the Ising model on the RGG lattice is expected
to have disorder dependent effective critical exponents, exactly
as for the CC model (see Sec. IV C). Some preliminary sim-
ulations with a finite interaction radius of Rq̄=6 [see Eq. (5)],
not presented here, indeed seem to confirm this expectation.
Similar results hold for the symmetrized q-Nearest-Neighbor
graph; see also Table II.

Moreover, a prominent and well-studied example of disor-
dered lattices that are planar but not connected are the site-
or bond-diluted regular lattices (see Fig. 3), also included
in Table II. They allow for isolated clusters and thus show
a percolation transition, resulting in a multicritical point in
the temperature and dilution-probability phase diagram. The
constant coordination model also allows for the occurrence of
isolated islands. By employing a cluster counting procedure,
we calculate the fraction 1 − pcon of all sites on the CC lattices
belonging to islands disconnected from the giant component.
For the CC4, we find 1 − pcon ∼ 10−3. As expected, this
number decreases strongly as q is increased. For q = 6 we find
1 − pcon ∼ 10−6 and for q = 10 no small island was detectable
in all of the Nr = 1000 realizations of constant coordination
lattices with L = 320, yielding 1 − pcon < 10−7 as an upper
bound.5 Considering, in contrast, smaller values of q, say
q = 2, the lattice would undergo a percolation transition, as
in this case the formation of, e.g., triangles (three sites, three
links) is very likely and a giant component may not form at all
in most realizations.

It should be emphasized that the effect of the isolated
islands on the measured observables might be negligible,
since, even for CC4 lattices, such sites amount to only to

5Note that, due to the constraint of fixed q, the smallest possible
isolated component needs to contain at least 11 sites. Thus, if we had
found one single of them in the 1000 realizations the fraction would
have been calculated by 11/(1000 × 3202) ≈ 10−7.

022144-12



TWO-DIMENSIONAL ISING MODEL ON RANDOM … PHYSICAL REVIEW E 97, 022144 (2018)

0.1% of the total lattice sites. Furthermore, we ensured that
isolated clusters are properly updated by local Metropolis
updates, as explained in Sec. IV A. By decreasing q below
the percolation threshold, though, any collective long-range
magnetic order must inevitably be destroyed since the system
is then decomposed into many disconnected finite clusters and
no collective long-range behavior can be maintained.

Reviewing the ample literature on the 2D site- or bond-
diluted Ising model, one indeed finds remarkable similarities
to our results for CC. First of all, many numerical simulations
seem to show exponents which are clearly nonuniversal and
vary dramatically with dilution strength. Already in the 1990s,
these numerical results, as well as field-theoretic calculations,
led to a controversy that still persists, regarding the univer-
sal character of those models. According to the so-called
strong universality hypothesis, disorder is marginally irrele-
vant, leading to clean exponents accompanied by logarithmic
scaling corrections and, particularly remarkable, a specific
heat diverging ultraslowly in form of a double logarithm
[52–56]. The weak universality scenario, in contrast, posits
leading critical exponents that vary continuously with the
strength of the dilution, but with some quotients of exponents,
such as γ /ν and β/ν, remaining unchanged [57–62]. For a
comprehensive historical review covering articles supporting
either of the two scenarios, we refer the reader to Ref. [63].
Currently, the strong universality scenario is favored, having
been strengthened by recent numerical studies [64–66], with
Zhu et al. effectively ruling out the weak scenario for their
large-scale, high-accuracy results [67].

Comparing our results with those from the aforementioned
studies of diluted models, we recognize a number of similar-
ities. In particular, the effective exponents ν and (1 − β)/ν
change continuously with the lattice parameter q, whereas
γ /ν varies only slightly among the models and β/ν is already
compatible with the universal value for all choices of q. Given
these similarities, the question arises whether topological
disorder in the CC model is also marginally irrelevant and log-
arithmic corrections arise (i.e., strong universality) or whether
one is facing continuously varying leading critical exponents
(as proposed by the weak universality hypothesis). As both
scenarios predict unchanged values for the ratios γ /ν and β/ν,
they both can not be used for a distinction. The specific heat,
in contrast, shows a different scaling behavior already in the
leading order. For the strong scenario, a double-logarithmic
scaling

C = a ln[b ln(cL)] (26)

can be expected [69–71], whereas weak universality would
predict a power-law scaling

C = C0 + aLα/ν (27)

with negative exponent. In order to investigate the origin of
the deviations from clean universality in our models, we fit
the finite-size data of the specific heat C to Eqs. (26) and
(27), summing up to seven fits each [corresponding to the
maxima of the observables (14)]. Remarkably, both scenarios
fit the data equally well. Even when including the smallest
lattice size, L = 16, we find reduced χ2 values between 0.5
and 3 for all seven fits for both fitting functions. However,
as the leading scaling behavior is only valid for large L,

TABLE III. Single fits for the specific heat finite-size data to
Eq. (27) for the CC6 lattice with L ranging from 32 to 320 (10 data
points).

α/ν C0 a Reduced χ 2 At max. of

−0.026 13.58 −13.21 0.11 χ

−0.040 9.78 −9.42 1.95 C

−0.052 8.00 −7.70 1.20 dm/dβ

−0.059 7.20 −7.14 0.07 d ln m/dβ

−0.066 6.61 −6.66 0.10 d ln m2/dβ

−0.043 9.06 −8.84 0.08 dU2/dβ

−0.050 8.07 −8.04 0.21 dU4/dβ

we discard the smallest lattice size which again significantly
increases the quality of most fits. Specifically, for the strong
scenario, Eq. (26), we then find five out of seven fits with
reduced χ2 in the range 0.1 to 0.2. Furthermore, if further
lattice points are discarded, all fits appear very stable. For
the power-law scenario, Eq. (27), after discarding L = 16,
we also find five out of seven fits with very good quality
(see Table III). Moreover, the fits are again numerically very
stable and their quality (in terms of χ2) as well as the the
fitted parameters α/ν,a, and C0 show no systematic trend if
further lattices are discarded. As can be seen in Table III, all
seven fits consistently yield a small negative exponent α/ν.
Performing a simple average with standard error, we obtain an
exponent ratio of α/ν = −0.048(12) for the CC6 model. Using
the hyperscaling relation 2 − α = dν, this yields a correlation
length exponent of ν = 1.025(6), which is, rather remarkably,
compatible with the effective exponent ν we obtain in Sec. IV C
for the largest lattices available [see also Fig. 10(a)]. In light
of these findings one may speculate about whether the 2D
Ising model on the CC lattice is situated in a weakly universal
scenario with q-dependent leading exponents. The exponents
ν and (1 − β)/ν in Fig. 10 would thus not tend towards
the respective clean universal value. However, it should be
emphasized again that also the logarithmic corrections fit the
data well. Therefore, we can not ultimately decide on either
scenario.

Interestingly, the Ising model is clearly consistent with the
universal critical exponents when placed on a CC lattice built
from a HCPP (cf. Appendix B), instead of a fully random
distribution. The moderate ordering, arising from the repulsive
character of the hard sphere model, has two major effects. First,
the probability that a small group of sites does not belong to the
giant component can be considered virtually zero. Second, due
to the more homogeneous distribution, the number of bonds
crossing each other is significantly reduced. Hence, the lattice
becomes increasingly more similar to a tiling as the degree of
repulsion is increased.

VI. CONCLUSION

We study the 2D Ising model under a particular type of
topological disorder, namely, a random lattice whose local
coordination number q is constant throughout the system.
This construction allows us to eliminate the influence of
coordination number fluctuations on the phase transition,
which in previous studies has been referred to as the relevant
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(a) (b)

FIG. 11. Lattice configurations (a) before and (b) after the sim-
ulated annealing process. The long bonds, highlighted in dark, have
been effectively rearranged.

quantity determining whether the universal properties are
preserved. By keeping q locally (and therefore also globally)
fixed, we are thus able to study disorder from a different
perspective. In particular, we propose a dynamical method to
construct constant coordination lattices, where pairs of bonds
are minimized with respect to their lengths until the desired
degree of locality is reached. Disorder is therefore solely
encoded in the neighbor relations among the points. On three
particular types of those lattices, we conducted large-scale
Monte Carlo simulations of the Ising model and determined
effective critical exponents with high accuracy using finite-size
scaling relations. The calculations are compared to simulations
of the Ising model on Voronoi-Delaunay lattices.

In summary, although the coordination number is fixed, we
observe rather large fluctuations in the individual transition
temperatures among the independent disorder realizations.
Furthermore, similarly to generically disordered lattices (e.g.,
diluted systems), some of the critical exponents seem to vary
with the disorder strength. Applying a logarithmic, as well as
a weakly universal scaling scenario to the specific heat, we
find that both scenarios fit the data well. Therefore, the exact
origin of the deviations remains undecided. This, in light of
other recent results, can be seen as a strong indication that
fluctuations in the coordination number do not exclusively
determine the stability of the phase transition against quenched
disorder.

Instead, we conjecture that the lattice topology needs to
be planar and connected in order to ensure clear universal
properties. One natural next step would be to study a lattice
which is connected, but not planar in order to figure out whether
planarity is really a necessary condition or whether connect-
edness is already sufficient. One such lattice would be a VD+

lattice: a Delaunay triangulation with additional local random
bonds. However, the 2D Ising model is a marginal case in terms
of the Harris criterion, which makes it challenging or even
impossible to discriminate between universal and nonuniversal
behavior (see corresponding Table II). For the diluted models,
this has led to an ongoing debate about whether the exponents
are truly universal or depend on the disorder strength. For this
reason, we address in an upcoming publication the 2D contact
process as one particular realization of the directed percolation
universality class. It is known that this nonequilibrium model
behaves dramatically different on diluted lattices, including
an exotic infinite-randomness critical point with activated
dynamical scaling as well as strong Griffith singularities (see,
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FIG. 12. Effective critical exponent estimates for the CC6-HCPP
model as a function of the center of the fitting window, L. Dashed
lines indicate the clean universal values of the 2D Ising universality
class.

e.g., Refs. [72,73]) compared to a clean critical behavior on the
VD triangulation [51]. The simulations of the contact process
on the lattices of Table II should therefore allow us to determine
the universality character of second-order phase transitions on
quenched topological disorder.
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TABLE IV. List of effective critical exponents for the following lattices: VD, CC4, CC6, CC10, and CC6 on HCPP. Nfits denotes the number
of fits with a goodness-of-fit parameter Q larger than the value indicated out of 4 × 7 = 28 fits for ν and 7 for all other exponents. L denotes
the center of the respective fitting window; see Fig. 7. The data are displayed in Figs. 10 and 12.

L Nfits ν Nfits γ /ν Nfits (1 − β)/ν Nfits β/ν

VD Q > 0.2 Q > 0.2 Q > 0.2 Q > 0.8

32 4 1.0139(28) 3 1.7620(23) 2 0.8670(28) 2 0.1191(28)
48 4 1.0125(2) 3 1.7612(16) 2 0.8681(20) 3 0.1212(22)
64 16 1.0107(9) 5 1.7638(12) 6 0.8706(6) 5 0.1215(21)
80 25 1.0082(5) 6 1.7606(7) 7 0.8707(4) 6 0.1240(17)
96 28 1.0063(5) 7 1.7583(6) 7 0.8714(4) 6 0.1243(17)
128 28 1.0051(4) 7 1.7570(6) 7 0.8719(4) 6 0.1247(17)
160 28 1.0045(5) 7 1.7556(6) 7 0.8722(4) 6 0.1249(17)
192 28 1.0042(5) 7 1.7543(5) 6 0.8721(4) 5 0.1245(17)
256 28 1.0038(5) 7 1.7538(6) 7 0.8726(5) 5 0.1242(18)
320 27 1.0036(6) 6 1.7536(7) 6 0.8730(7) 4 0.1241(23)

CC4 Q > 0.01 Q > 0.2 Q > 0.3 Q > 0.6

32 7 1.156(11) 7 1.779(5) 3 0.784(19) 7 0.101(5)
48 3 1.136(8) 7 1.775(4) 3 0.791(14) 7 0.102(5)
64 19 1.109(6) 7 1.764(7) 5 0.800(9) 7 0.103(7)
80 28 1.0939(32) 7 1.760(8) 7 0.810(5) 7 0.105(9)
96 28 1.0847(31) 7 1.758(8) 7 0.813(4) 7 0.107(9)
128 28 1.0815(31) 7 1.757(8) 7 0.813(4) 7 0.110(8)
160 28 1.0739(31) 7 1.757(8) 7 0.818(5) 7 0.112(9)
192 28 1.0648(30) 7 1.758(8) 7 0.824(4) 7 0.115(8)
256 28 1.0619(35) 7 1.758(10) 7 0.826(5) 7 0.116(10)

CC6 Q > 0.05 Q > 0.1 Q > 0.3 Q > 0.6

32 5 1.066(8) 4 1.765(6) 6 0.8417(13) 4 0.1156(29)
48 5 1.061(6) 4 1.763(5) 6 0.8425(13) 7 0.1156(28)
64 18 1.0470(23) 7 1.764(4) 6 0.8447(20) 7 0.119(4)
80 24 1.0399(16) 7 1.7615(33) 7 0.8492(19) 7 0.116(5)
96 28 1.0353(13) 7 1.7572(33) 7 0.8506(19) 7 0.1190(5)
128 28 1.0334(12) 7 1.7546(32) 7 0.8503(18) 7 0.120(5)
160 28 1.0307(12) 7 1.7536(33) 7 0.8512(19) 7 0.121(5)
192 28 1.0281(12) 6 1.7546(34) 6 0.8520(22) 6 0.122(6)
256 28 1.0268(14) 6 1.755(4) 6 0.8517(27) 6 0.123(7)

CC10 Q > 0.1 Q > 0.3 Q > 0.3 Q > 0.8

32 5 1.0219(18) 5 1.7630(7) 1 0.858(6) 1 0.1200(40)
48 6 1.0207(14) 5 1.7626(6) 3 0.857(4) 3 0.1211(30)
64 25 1.0180(6) 7 1.7616(11) 7 0.8621(9) 6 0.1243(36)
80 28 1.0168(5) 7 1.7598(12) 6 0.8643(17) 7 0.1254(25)
96 26 1.0143(6) 7 1.7588(12) 7 0.8651(6) 7 0.1247(27)
128 27 1.0129(6) 7 1.7576(12) 7 0.8658(6) 7 0.1245(27)
160 27 1.0115(6) 7 1.7563(11) 7 0.8662(6) 7 0.1251(27)
192 28 1.0102(6) 7 1.7554(11) 7 0.8666(7) 6 0.1251(27)
256 28 1.0099(7) 7 1.7550(13) 7 0.8668(8) 6 0.1251(33)

CC6-HCPP Q > 0.3 Q > 0.3 Q > 0.4 Q > 0.6

32 5 1.0076(7) 2 1.7519(23) 5 0.8731(4) 4 0.1236(14)
48 5 1.0068(7) 2 1.7515(22) 5 0.8733(4) 4 0.1240(13)
64 24 1.0060(5) 7 1.7598(8) 7 0.8739(5) 6 0.1254(19)
80 28 1.0056(7) 7 1.7565(9) 7 0.8738(6) 6 0.1248(25)
96 28 1.0054(7) 7 1.7548(8) 7 0.8734(6) 6 0.1240(24)
128 28 1.0048(7) 7 1.7541(8) 7 0.8736(6) 6 0.1235(24)
160 28 1.0042(8) 7 1.7535(8) 7 0.8739(7) 6 0.1236(26)
192 28 1.0030(8) 7 1.7523(8) 7 0.8735(7) 6 0.1253(26)
256 26 1.0025(9) 7 1.7518(9) 7 0.8731(8) 5 0.1262(30)
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APPENDIX A: TIME COMPLEXITY
OF THE CC CONSTRUCTION

As explained in Sec. II D, we use a simulated annealing
method for the dynamical construction of the Constant Coor-
dination lattice. We should point out that the outlined method
is rather expensive in comparison with typical O(N ln N )
methods, such as for the VD triangulation and the construction
of an RGG using a search tree. For the CC lattice, a scaling
of O(N2) can not be avoided, since lattices of all sizes should
be processed to the same degree. Furthermore, since Eq. (6)
is a quite severe constraint, the majority of update attempts
will be rejected if one applies the naive approach of a simple
trial and error. The acceptance rate can easily be increased by
optimizations, e.g., by picking the second link not completely
at random, but in the local neighborhood of the link selected
first. However, this changes only the constant prefactor of
the asymptotic O(N2). Another optimization that we use is
to start not from a fully random lattice, but from an initial
lattice where the sites are connected to their nearest neighbors
until the chosen q of each site is reached. In Fig. 11, where a
coordination number of q = 6 was chosen, a comparison of the
bond configurations before and after the simulated annealing
indicates that the algorithm works as intended. All bonds have
been shortened effectively. In our simulations, we performed
α q Ns N2 rewiring attempts for all of our lattices, where the
prefactor α ≈ 0.01 is found to be sufficient to achieve the
desired degree of locality and Ns ≈ 30 denotes the number
of (logarithmic) temperature steps looped over.

APPENDIX B: HARD CORE POINT PROCESS

A more ordered variant of the CC lattice can be obtained by
starting from a Hard Core Point Process (HCPP) instead of a
Poisson Point Process (PPP) [38]. In the hard core model, also
known as Poisson disk sampling, the random points are placed
respecting a minimum distance Rr from each other. Such distri-
butions find wide application in computer graphics, especially
in sampling algorithms, and can be generated through several
methods [74], the simplest of which is dart throwing, whereby
randomly drawn points that do not satisfy the minimum
distance requirement are discarded. There are more efficient

methods, but we adopt dart throwing nonetheless, since it is
easily generalized to higher dimensions [75] and the point
distribution generation takes only a small fraction of the run
time of our simulations. The minimum distance Rr cannot
exceed the closed packing value of (1/

4
√

12)L−1 ≈ 0.54L−1,
which corresponds to the hexagonal lattice [76]. For a PPP,
though, a large fraction of the construction attempts fails
for Rr � 0.41L−1. In practice, for a given N , we set Rr =
(3/8)L−1 = 0.375N−1/2, which results in a good coverage
without being so close to the densest packing as to be overly
expensive. A sample of the CC neighbor construction on this
hard core point process can be seen in Fig. 3.

The effective exponents we obtained are shown in Fig. 12
and listed in Table IV. Note that the scales of the ordinate
axis in the figure differ by up to one order of magnitude
from the ones in Fig. 10, thus already indicating much smaller
deviations from the universal values. In particular, in the top
panel, where ν is depicted, we find a smooth behavior and
a deviation of less than 0.8% from ν = 1 even for small
lattices. Moreover, the results indicate that the universal value
is approached significantly faster for large L, compared to
all other disordered models, including VD, although a direct
comparison can not be made, given that the starting distri-
butions are statistically different. A similar result is observed
for γ /ν, where the convergence towards the universal value
is also very pronounced and notably faster than in the VD
case. Interestingly, once more, a different situation arises for
(1 − β)/ν, where the values lie closer to 7/8 with only about
0.1% to 0.2% deviation, though they seem to remain in that
range with no visible trend in either direction for larger lattices.
This is in qualitative agreement with the other CC models.
Finally, for β/ν, all of the data points match the corresponding
universal value within error bars.

APPENDIX C: EFFECTIVE CRITICAL
EXPONENTS OF MODELS

Table IV lists the effective critical exponents of the models
VD, CC4, CC6, CC10, and CC6-HCPP.
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