
PHYSICAL REVIEW E 97, 022139 (2018)

Entropy generation and unified optimization of Carnot-like and low-dissipation refrigerators
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The connection between Carnot-like and low-dissipation refrigerators is proposed by means of their entropy
generation and the optimization of two unified, compromise-based figures of merit. Their optimization shows that
only a limited set of heat transfer laws in the Carnot-like model are compatible with the results stemming from
the low-dissipation approximation, even though there is an agreement of the related physical spaces of variables.
A comparison between two operation regimes and relations among entropy generation, efficiency, cooling power.
and power input are obtained, with emphasis on the role of dissipation symmetries. The results extend previous
findings for heat engines at maximum power conditions.
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I. INTRODUCTION

The pursuit of energy converter models to describe more
accurately efficient real-life devices, and refrigerators in
particular, has brought a variety of models and optimization
criteria according to the different nature and scale range: from
quantum [1–11] to macroscopic [12–19] passing through
mesoscopic [20–29] levels and including solar-assisted
cooling techniques [30,31].

Most models are based on finite-time thermodynamics
considerations [32,33]. Among them, but very different
in nature, are the Carnot-like (CL) [13–18,34] and the
low-dissipation (LD) [35–39] models, whose predicted results
are quite close to the region of experimental data [12]. The
key peculiarities of each model can be summarized as follows.
The CL engine makes use of thermal conductances and heat
transfer laws to model the heat fluxes and entropy production,
this gives information about the heat exchange’s nature and
thermal properties of the material involved in the device. The
LD model, on the other hand, allows obtaining upper and
lower performance bounds under certain operation regime
depending only on the dissipations’ symmetries, accounted by
an specific entropy generation without any information about
the heat fluxes’ nature. The optimization variables are, in the
CL case, the working substance temperatures at the isothermal
processes, while in the LD case they are the contact times
at the isothermal processes. The generality of the LD model
reproduces behaviors of both endoreversible and irreversible
engines, depending on time constraints [40]. For the CL engine
the difference between both behaviors is the presence of a heat
leak. This brings up the question of whether a correspondence
between these models can be established and, if so, to explain
the role of the heat leak in time constraints.

In recent years, the LD heat engine (HE) perspectives have
increased with its applicability to models that incorporate
fluctuations in microscopic and quantum systems [39,41–43].
Their relevance in microscopic refrigerator engines (REs),
whose studies are mostly based in specific heat transfer mech-
anisms, have not been widely explored, making the unified
study of HEs and REs energetics an ongoing task.

In a recent paper [44] the connection between the CL and
the LD models was proposed for HEs at maximum power,
showing that the set of variables that describe each model
can be related through the entropy generation. The particular
case of an inverse-of-temperature heat law has been recently
addressed in Ref. [45]. The physical space of parameters is
equivalent in the two descriptions. however, maximum-power
efficiencies do not match exactly for arbitrary heat transfer
laws. This could underlie the nature of each approach: the
LD model based on a specific entropy-generation law and the
CL model over the heat fluxes. Nevertheless, for a range of
heat transfer laws the correspondence between these models is
reasonably good.

Beyond models, another important point is the proposal
of unified figures of merit for any kind of energy converter
[19,39,46–51]. In particular, we consider in this paper two
optimization criteria: the so-called χ [36] and � [52] crite-
ria, whose validity for both REs and HEs has been widely
acknowledged [53–58].

To highlight the resemblance between the treatment of HEs
and REs we present a parallel description to that appearing in
Ref. [44] for HEs with special emphasis on the role played by
the heat leaks and contact times. We will present how well the
efficiencies from the CL RE (for a wide family of heat transfer
laws) fit the LD assumption.

The article is organized as follows: In Sec. II we present
the unified criteria χ and �. In Sec. III the mathematical
correspondence among the characteristics variables of both
models for REs is proposed. In Secs. IV and V, respectively,
we analyze the maximum-χ and -� regimes in both models; in
Sec. VI we present a comparison of the some relevant energetic
magnitudes, including the coefficient of performance (COP)
and entropy generation within the LD model framework.
Finally, concluding remarks are presented in Sec. VII.

II. UNIFIED FIGURES OF MERIT χ AND � FOR HEAT
AND REFRIGERATOR ENGINES

The function χ is defined as the efficiency of the engine
times the heat flux entering into the working substance in a
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cycle period,

χ = zQin

t
, (1)

where z = η (ε) the efficiency of the energy converter and
Qin = Qh (Qc) for HEs (REs), then

χ (HE) = η Qh

t
= P, (2)

χ (RE) = ε Qc

t
= εR, (3)

where P = (Qh − Qc)/t is the power output of the HE and
R = Qc/t is the cooling power of the RE. For RE the role of
the efficiency is taken by the COP, ε, and the analog of Carnot
efficiency ηC = 1 − τ and Curzon-Ahlborn (CA) efficiency
ηCA = 1 − √

1 − ηC is played by εC = τ/(1 − τ ) and εCA =√
1 + εC − 1 [36], where τ = Tc/Th being the cold-to-hot bath

temperature ratio.
In the line of unified studies of HEs and REs a relevant role is

played by the so-called � function. This ecological-like figure
of merit takes into account the unavoidable losses caused by
the irreversible nature of the finite-time periodic processes and
is defined as [53]

� ≡ (2z − zmax)
Ein

t
, (4)

where Ein is the heat input for HEs and the work input Win for
REs. Then

�HE = (2η − ηmax)
Qh

t
, (5)

�RE = (2ε − εmax)Pin, (6)

where Pin = (Qh − Qc)/t .

III. CORRESPONDENCE BETWEEN THE RE VARIABLES
OF BOTH MODELS

The LD model for RE considers a base-line Carnot refrig-
erator working between the temperatures Tc and Th > Tc [see
Fig. 1(a)]. A deviation from the reversible scenario is modeled
by additive terms in the entropy changes at the heat reservoirs,

FIG. 1. Sketches of a LD refrigeration (a) and of an irreversible
CL RE with a heat leak QL (b).

given by [53]

�STh = �S + �h

th
, (7)

�STc = −�S + �c

tc
, (8)

where �h and �c are some dissipative coefficients that contain
all the information of intrinsic dissipative device properties; th
and tc are the contact times with the hot and cold reservoirs. We
assume that the adiabatic processes time can be neglected. �S

is the entropy change of the working fluid in the cold isothermal
process. The total entropy change is

�Stot = �STh

Th
+ �STc

Tc
= �h

th
+ �c

tc
� 0, (9)

where the reversible scenario (�Stot = 0) is achieved in the
limits th → ∞ and tc → ∞.

By means of the dimensionless variables defined in
Ref. [59] that take into account the size of the system,
α ≡ tc/t , �̃c ≡ �c/�T and t̃ ≡ (t �S)/�T, where t = th + tc
and �T ≡ �h + �c, we define a characteristic total entropy
production per unit time:

˙̃�S tot ≡ �Stot

t̃�S
= �S tot

t

�T

�S2
= 1

t̃

[
1 − �̃c

(1 − α)̃t
+ �̃c

α̃t

]
. (10)

In the CL-RE the entropy change of the internal reversible
cycle is zero and the total entropy production is that generated
at the couplings with the external heat reservoirs as depicted
in Fig. 1(b). According to this figure Qh = Thw �S � 0 and
Qc = Tcw �S � 0, where �S is the entropy generation at the
heat reservoir Tcw, and QL � 0 is a heat leak between the
reservoirs Th and Tc, then

�STh = Qh

Th
− QL

Th
= �S + (−1 + a−1

h − τQ̃L)�S, (11)

�STc = −Qc

Tc
+ QL

Tc
= −�S + (−ac + 1 + Q̃L)�S, (12)

where ah = Th/Thw � 1, ac = Tcw/Tc � 1, and a characteris-
tic heat leak is defined as Q̃L ≡ QL/(Tc�S). A comparison
between Eqs. (7) and (8) gives the expressions associated with
�h and �c:

�h

th
= (−1 + a−1

h − τQ̃L)�S, (13)

�c

tc
= (−ac + 1 + Q̃L)�S. (14)

The heat leak is not a feature appearing in the LD model,
nevertheless (as will be shown later) it is possible to link it
within the effects of the dissipation term Tc�̃c/tc. From the
above two equations it is easy to obtain the following relations
between the variables of the LD and CL models:

�̃−1
c = 1 +

(
1 − α

α

)(−1 + a−1
h − τQ̃L

−ac + 1 + Q̃L

)
,

t̃ = 1

α(−ac + 1 + Q̃L)
[
1 + (

1−α
α

)(−1+a−1
h −τQ̃L

−ac+1+Q̃L

)] , (15)
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FIG. 2. (a) Thw and Tcw from Eq. (15). Note that as a heat leak appears, both internal temperatures cannot be in thermal equilibrium with
the external reservoirs. (b) Total operation time t̃(Q̃L,ac) according to Eq. (16). In both figures the representative values α = 1

5 , τ = 0.4, and
�̃c = 1

2 are considered; the qualitative behavior for other values is the same.

which can be summarized as

�̃c

α̃t
= −ac + 1 + Q̃L. (16)

This equation allows for a consistent, thermodynamics in-
terpretation of the heat leak in the LD model. It can be
rewritten as

QL = Tc
�c

tc
− (Tc − Tcw)�S, (17)

where the first term of the right-hand side is the heat dissipated
to the cold reservoir in the LD model (QLD

c, diss). Since �S is
the working-substance entropy change while in contact with
the Tcw heat reservoir, then Tc�S corresponds to the heat
exchanged when Tcw = Tc and (Tc − Tcw)�S is the difference
between the heat input at the totally reversible situation
(Qc,rev) and that of nonequilibrium (Qc, neq). We name this
quantity Qendo

c, loss ≡ Qc,rev − Qc, neq, a heat-input loss due to the
endoreversibility of the CL engine. In this way, Eq. (16) is

QL = QLD
c, diss − Qendo

c,loss. (18)

Thus, the heat leak is the part of the dissipated heat to the cold
reservoir that does not have an endoreversible origin in the CL
model. The term Qendo

c, loss is very similar to the one obtained in
the so-called “geometric dissipation” [60], where a dissipation-
like term can be attached to a reversible cycle if one subtracts
the heat released by a Carnot cycle from the heat released by the
reversible cycle, when both cycles operate between the same
heat reservoirs and with the same heat input.

Regarding the physical region for the REs it can be deduced
from the Clausius inequality in Eq. (9). Thus we require that for
any ac,h and Q̃L values −�STc � 0 and �STh � 0 [Eqs. (11)
and (12), respectively]. This yields a−1

h � τQ̃L and ac � Q̃L,
and since the latter condition is achieved first, it defines
the physical constraint Q̃L ∈ [0,ac]. This heat-leak constraint
(from CL model-based arguments) applied to Eq. (16) gives a
restriction on the LD RE variables:

�̃c � α̃t . (19)

Later, we will show that this is equivalent to requiring χ̃ �
0 (with only LD model considerations), showing that both
physical spaces of variables are in agreement.

The correspondence among the variables of both models
[Eq. (16)] is independent of heat transfer laws and operation
regime. Despite this, it is possible to see the influence of the
heat leak on Tcw and Thw (which usually requires an explicit
heat transfer law) and on the total operation time as can be seen
in Fig. 2(a) and 2(b), respectively.

In Fig. 2(a) the temperatures Tc, Tcw, Thw, and Th are
displayed as function of ac and Q̃L. For the CL RE it is well
known that thermal equilibrium between internal and external
reservoirs (reversible situation) is achieved only if Q̃L = 0. As
the heat leak increases, the temperature Thw departs from Th,
producing a larger thermal gradients, and preventing thermal
equilibrium. On the other hand, for the LD RE, t̃ as a function
of ac and Q̃L [see Eq. (16)] is depicted in Fig. 2(b), showing
that as the heat leak increases the total time decreases and only
when ac → 1 and Q̃L → 0 the reversible limit t → ∞ can be
achieved (if additionally ah → 1). Figure 2, where physical
constraints are considered, displays a similar behavior of that
reported for HEs (see Fig. 2 of Ref. [44]).

IV. MAXIMUM-χ REGIME

A. Low-dissipation RE

The input and output heats [see Fig. 1(a) are given by [59]

˙̃Qh ≡ Q̃h

t̃
= Qh

Tc�S

�T

t �S
=

[
− 1 − 1 − �̃c

(1 − α)̃t

]
1

t̃
, (20)

˙̃Qc ≡ Q̃c

t̃
= Qc

Tc�S

�T

t �S
=

(
1 − �̃c

α t̃

)
τ

t̃
= R̃, (21)

the corresponding dimensionless power input P̃in ≡
Pin/(Tc�S t̃) = ˙̃Qh − ˙̃Qc is

P̃in =
[

1 − τ + 1 − �̃c

(1 − α)̃t
+ τ�̃c

α̃t

]
1

t̃
, (22)
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thus, ε̃ and χ̃ [see Eq. (3)] are given by

ε̃ ≡ R̃

P̃in
= Qc

W
= ε =

(
1 − �̃c

α̃t

)
τ

1 − τ + 1−�̃c

(1−α)̃t
+ τ�̃c

α̃t

, (23)

χ̃ ≡ εQ̃c

t̃
= ε Qc

Tc�S

�T

t �S
=

(
1 − �̃c

α̃t

)2 τ 2

t̃

1 − τ + 1−�̃c

(1−α)̃t
+ τ�̃c

α̃t

. (24)

Note that from Eqs. (23) and (24) ε and χ̃ are positive if
�̃c � α̃t , which is exactly the constraint appearing in Eq. (19)
from heat-leak arguments. The maximization is achieved
through α and t̃ by solving the system ( ∂χ̃

∂t̃
)
α

= 0 and ( ∂χ̃

∂α
)̃
t
=

0. The first condition leads to the optimum value t̃∗:

t̃∗ = �̃c

2α

⎡⎣3 +
√

9 − τ + 8
(

α
1−α

)( 1−�̃c

�̃c

)
1 − τ

⎤⎦, (25)

and the further maximization of χ̃∗(α; �̃c,τ ) = χ̃(α,̃t∗; �̃c,τ )
with respect to α is made numerically. The lower and upper
bounds for εχ̃max are

ε−
χ̃max

= 0 � εχ̃max �
√

9 + 8εC − 3

2
= ε+

χ̃max
, (26)

corresponding to the �̃c = 0 and �̃c = 1, respectively. The
symmetric dissipation (�̃c = 1/2) optimized COP is

ε
sym
χ̃max

=
√

1 + εC − 1 ≡ εCA, (27)

a result which could be considered as the counterpart for re-
frigerators of the CA efficiency η = 1 − √

τ = 1 − √
1 − ηC

[19].

B. CL refrigerator model without heat leak
(endoreversible model)

Consider a reversible Carnot RE operating between the
absolute temperatures Thw and Tcw [see Fig. 1(b)] with Qh

and Qc given by the heat transfer laws

Qh = σh
(
T k

hw − T k
h

)
, th = T k

h σh
(
a−k

h − 1
)
, th � 0, (28)

Qc = σc
(
T k

c − T k
cw

)
, tc = T k

c σc
(
1 − ak

c

)
, tc � 0, (29)

where the exponent k �= 0 is a real number, σh and σc are
the conductances in each process, and th and tc are the
times at which isothermal processes are completed. Adiabatic
processes’ times are neglected. According to Eq. (3) χ is a
function depending on the variables ac, ah, tc/th, k, τ , and
σhc. The endoreversible hypothesis �STcw = −�SThw gives a
constraint on the time ratio tc/th:

tc

th
= σhcacahτ

1−k

(
a−k

h − 1

1 − ak
c

)
, (30)

where σhc ≡ σh/σc. Whenever a heat leak is not present
Tcw/Thw = acahτ = ε/(1 + ε) and the dependence on ah can
be replaced by ε. In terms of α = (1 + th/tc)−1, Eq. (30) can
be written as

α

1 − α
= σhcτ

k

(
1 + ε

ε

)[(
ετac
1+ε

)k − 1

1 − ak
c

]
. (31)

The optimization of χ = χ (ac,ε; σhc,τ,Th,k) is achieved
through ac and ε by solving ( ∂χ

∂ac
)
ε

= 0 for ac and ( ∂χ

∂ε
)
ac

= 0
for ε. From the first condition (a∗

c ) we obtain χ∗ as a function
of ε:

χ∗(ε; σhc,τ,Th,k) = χ (a∗
c ,ε; σhc,τ,Th,k)

= σhT
k

h ε
τ k − (

ε
1+ε

)k[√
σhc + (

ε
1+ε

) k−1
2

]2 , (32)

which shows a unique maximum, obtained by solving nu-
merically ( ∂χ∗

∂ε
)
a∗

c
= 0 for ε. Only for the cases σhc → {0,∞}

are the solutions analytical, which are displayed in Fig. 3(a)
(dot-dashed curves, green online). In Fig. 3, for σhc → ∞
beyond k ≈ 2 there are no mathematical solutions for χmax;
meanwhile, in the case σhc → 0 below k = −1 the solutions
are nonphysical (ε < 0). For any σhc ∈ (0,∞) all εχmax are
located between those curves. It can be seen that the LD bounds
provided by the LD model [Eqs. (26) and (27)] are fulfilled by
the endoreversible RE only for k = −1, which also occurred
for HEs. Outside the region bounded by the two curves no
σhc value can reproduce the LD-model COPs. The Newtonian
heat transfer law (k = 1) is the only case where all possible
values of σhc give the same COP (εCA). On the other hand, in
the LD model εCA is attached only to �̃c = 1/2. To reconcile

FIG. 3. (a) The upper and lower bounds of the COP for the CL RE at maximum-χ regime vs the heat transfer law exponent k. The
σhc → {0,∞} along with the σ

sym
hc case [Eq. (37)] are plotted. The bounds provided by Eqs. (26) and (27) are labeled. (b) A close view of εχmax

using σ
sym
hc from Eq. (37). In all cases the representative value of τ = 0.7 is used.
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these situations it will be shown that there is only one σhc

corresponding to a symmetric dissipation.
From the LD optimization α and t̃ for the case �̃c = 1/2 are

α
sym
χ̃max

= 1 + √
1 − τ

2 + √
1 − τ

, (33)

t̃
sym
χ̃max

= 2 + √
1 − τ√

1 − τ
, (34)

then ac can be computed according to Eq. (16) and ah is
obtained from the condition Tcw/Thw = acahτ = ε

1+ε
= 1 −√

1 − τ by using ε = εCA, then

asym
c,χmax

= 2 + √
1 − τ

2(1 + √
1 − τ )

, (35)

a
sym
h,χmax

= 2

2 + √
1 − τ

, (36)

that is, the above ac and ah are obtained from the LD
model optimization and the endoreversible hypothesis. If the
optimization of both models were equivalent, it is expected
that by means of Eq. (31) the corresponding σhc, given by

σ
sym
hc = τ k

(
1 + √

1 − τ

1 − √
1 − τ

)⎡⎣ 2k − ( 2+√
1−τ

1+√
1−τ

)k

(2 + √
1 − τ )k − 2k

⎤⎦, (37)

would reproduce εCA. In Fig. 3(b) it can be seen that the
εCA value is not perfectly reproduced but only in the cases
k = {−1,1}. However, there is a good agreement in the region
between these two values, a common feature with the HE
case. For k = 1, σhc = 1 + √

1 − τ and for k = −1, σhc =
(1 − √

1 − τ )−2.

C. CL refrigerator with heat leak

Now let us consider a heat leak of the same kind as Qc

and Qh,

QL = σL
(
T k

h − T k
c

)
(th + tc)

= T k
h σL(1 − τ k) (th + tc) � 0, (38)

where σL is the heat-leak conductance. Then

Q̃L = QL

Qc
= ac

T k
h σL(1 − τ k) (th + tc)

T k
c σc

(
ak

c − 1
)
tc

= ac σLc(1 − τ k)

τ k
(
ak

c − 1
) (

th

tc
+ 1

)
, (39)

where σLc ≡ σL/σL, and in this case R takes into account the
heat transferred by QL, thus, ε and χ read as

ε ≡ R

Pin
= (Qc − QL)

(Qh − Qc)
= (1 − Q̃L)(

Qh
Qc

− 1
) , (40)

χ ≡ ε R = R2

Pin
= (1 − Q̃L)2Qc(

Qh
Qc

− 1
)
t

, (41)

where R = (Qc − QL)/t . The heat leak diminishes the COP
and is responsible for the looplike COP versus χ curves.

The maximization of Eq. (41) is obtained through ah and
ac by solving numerically ( ∂χ

∂ac
)
ah

= 0 for ac and ( ∂χ

∂ah
)
ac

= 0

FIG. 4. Influence of the heat leak on the upper and lower bounds
of the COP at the χmax regime. The cases σL = {0, 0.005, 0.015} are
displayed. The representative value τ = 0.7 is used.

for ah. In the limit situations {σc, σh} → ∞ the solutions can
be obtained analytically, but in the general case their obtaining
requires numerical methods. In Fig. 4 they are depicted for
three cases. The effect of the heat leak is more noticeable for
higher COP values, and meanwhile for lower values it is scarce.

The similarity between the above results for RE and those
reported for HE [44] strengthen the road toward unified studies
of heat devices. In this sense, the � function will provide useful
insights due to the capability of obtaining analytical closed
expressions.

V. MAXIMUM-� REGIME

From Eq. (6) and since Pin = W/t = (Qh − Qc)/t , R =
Qc/t , and ε = Qc/W = R/Pin, if εmax = εC , then

�RE = � = 2R − τ

1 − τ
Pin. (42)

A. Maximum-� regime for an LD RE

From Eqs. (21) and (22) �̃ ≡ � t/(Tc �S t̃) is given by

�̃ = τ

t̃

[
1 − �̃c

α t̃

(
2 − τ

1 − τ

)
− 1 − �c

(1 − α) (1 − τ ) t̃

]
. (43)

Its optimization is achieved through α and t̃ as in the χ̃max

case by solving simultaneously the conditions ( ∂�̃
∂α

)̃
t
= 0 and

( ∂�̃
∂t̃

)
α

= 0, leading to

α�̃max
= 1

1 +
√

1−�̃c

�̃c(2−τ )

, (44)

t̃�̃max
= 2

1 − τ

[√
1 − �̃c +

√
�̃c(2 − τ )

]2
. (45)

�̃max and ε�̃max
are functions of �̃c and τ , the latter being an

increasing function of �̃c bounded by

ε−
�̃max

= 2

3
εC � ε�̃max

� 3 + 2εC

4 + 3εC

εC = ε+
�̃max

, (46)
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where the lower and upper bounds are obtained in the limits
�̃c → 0 and �̃c → 1, respectively. In the symmetric case �̃c =
1/2,

ε
sym
�̃max

= εC√
(1 + εC)(2 + εC) − εC

. (47)

These limits are in agreement with those reported in
Ref. [53] but obtained in a quite different manner.

B. Maximum-� regime for a CL endoreversible RE

The � function is given by

� = 2R − τ

1 − τ
Pin = Qc

(1 − τ ) t

(
2 − τ − τQh

Qc

)
. (48)

From the endoreversible hypothesis Qc
Qh

= Tcw
Thw

= acahτ , and

since ε = ( Thw
Tcw

− 1)
−1

it follows that

Qh

Qc
= Thw

Tcw
= 1 + ε

ε
, (49)

and by means of Eqs. (28) and (29) it leads to

th

tc
= τ kφ(1 − x)

σhc(x τ kφk − 1)
, (50)

where φ ≡ 1+ε
ε

and x ≡ ak
c . Then � is given by

� = T k
c σhτ

k

1 − τ

[
(1 − x)(2 − τ − τφ)

1 + τ kφ(1−x)
σhc(x τ kφk−1)

]
. (51)

Its maximization is achieved by solving ( ∂�
∂x

)
φ

= 0 for x

and ( ∂�
∂φ

)
x

= 0 for φ. From the first condition one obtains x∗,
given by

x∗ =
√

φ1−k + τ−kφ−k√σhc√
φ1−k + √

σhc

, k > 0,

(52)

=
√

φ1−k − τ−kφ−k√σhc√
φ1−k − √

σhc

, k < 0,

both cases lead to the same �∗ function, given by

�∗(φ; Th,σc,σhc,τ,k) = T k
h σcσhc

1 − τ

[
(2 − τ − τφ)(τ k − φ−k)

(
√

φ1−k − √
σhc)2

]
.

(53)

Finally, ε�max (σhc,τ,k) is obtained from the condition
( ∂�∗

∂φ
)
x∗ = 0. In Fig. 5 the limiting cases σhc → {0,∞} of ε�max

are depicted (continuous lines, purple online), these two curves
bound any other possible values of the COP; for k < −1 the
lower bound is given by ε = 0. Once more, the region of heat
transfer laws where the endoreversible and the LD RE results
overlap is limited. Only at k = −1 the upper and lower LD
bounds are recovered.

FIG. 5. COP of the endoreversible (QL = 0) RE operating at �max

and two cases with QL = {0.005,0.015}. The representative value of
τ = 0.7 is used.

C. Maximum � for a CL RE with heat leak

From Eq. (48), with the use of Eqs. (28), (29), (30),
and (38),

� = 2(Qc − QL)

t
− τ Qc

(1 − τ )t

(
Qh

Qc
− 1

)

= σcT
k

c

⎡⎣σhc
(2 − τ )acah − 1(

1 − τ k
)(

σhcacah
1−ak

c
+ τ k−1

a−k
h −1

) − 2σLc
1 − τ k

τ k

⎤⎦;

(54)

that is, the heat leak contributes with an additive term which
does not alter the optimization in terms of ac and ah. Figure 5
depicts the influence of the heat leak on ε for σhc → {0,∞}. A
noticeable difference with respect to the χmax (Fig. 4) is that
here the entire bounds are lowered by the heat leak.

Below we present a comparison between the two regimes
focused on the role of dissipation symmetries and the entropy
generation within the LD-model framework.

VI. χmax VERSUS �max FOR AN LD RE

A comparison between energetic properties involving en-
tropy production and COP in the two regimes in the LD
model is quite illustrative to get insights about the influence
of the dissipation symmetries beyond the particularities of
the heat transfer mechanisms, taking advantage that the LD
approximation is good for a certain set of them.

In Figs. 6(a)–6(f) we show the influence of the dissipation
symmetries on α, t̃ , P̃in, R̃, ε, and ˙̃�S under the χ̃max and �̃max

regimes (dashed lines and continuous lines, respectively).
As expected, the operation time and COP are larger for the

latter. When the dissipation is mostly located in the contact
with the cold reservoir (�̃c → 1) the entropy generation is
less [Fig. 6(f)], but not necessarily attached to the smallest
cooling power or power input [see Figs. 6(c)–6(d)] nor the
largest total time t̃ [Fig. 6(b)]. Notice that ε increases and
the entropy production diminishes as the contact time α

increases.
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FIG. 6. Left: �̃max (dashed lines, blue online) and χ̃max (continu-
ous lines, red online). Right: Comparison between �̃max and χ̃max. In
all cases τ = 0.7.

On the right side of Fig. 6 the comparison of both regimes
is complemented. Figures 6(g)–6(h) offer a measure of the
distance that each time variable has to be shifted in order
to change the operation regime. Note the existence of well-
defined maxima, while the ratios depicted in Figs. 6(i)–6(l) are
monotonous functions bounded by the limiting asymmetrical
dissipation cases �̃c = {0,1}. Depending on the dissipation
symmetry the transition of one regime to another can offer
certain advantages. For example, for small values of �̃c (when
the major part of the dissipation occur at the hot reservoir) the
transition gives the largest gain in terms of the COP; however,
it requires also the largest changes in the cooling power, power
input, and entropy production. Nevertheless the changes of
α as well as the total operation times are small, and a passing
from one regime into the other demands small changes of these
control parameters. In the opposite situation, when �̃c → 1 the
switching of regime demands also small variations of α and t̃ ,
with a small gain in the COP, but also with small increments
of the entropy production, cooling power, and power input,
resulting also in a suitable case since in each regime the COP
is the largest [see Fig. 6(e)].

By incorporating the study of the entropy production,
relevant information regarding the benefits of having certain
dissipation symmetries arise. In Fig. 7 a three-dimensional
plot of the total entropy production is shown under the
time constraints t̃ = t̃χ̃max and t̃ = t̃�̃max

. Over the surfaces,
curves of constant COP are displayed. As can be seen, the
entropy can significantly increase or decrease despite having
the same COP. This is more noticeable for the χmax regime.
The curve ε = 0 bounds the physical region of interest. As
the COP value increases, the set of possible α–�̃c combi-
nations that produce such a COP bound a narrower region,
until the limiting situation where only α → �̃c → 1 produces

FIG. 7. ˙̃�S tot under the time constraints t̃ = t̃χ̃max (upper surface)
and t̃ = t̃�̃max (lower surface). Over each surface the level curves
denote the configurations of �̃c and α that produce the same COP.
We use the representative value τ = 0.7.

the upper bounds ε+
�̃max,χ̃max

. As can be seen, the maximum
achievable COP does not correspond to the minimum entropy
production.

VII. CONCLUDING REMARKS

A relation between the variables that describe the low-
dissipation RE model and those that describe the Carnot-like
RE has been presented from considerations of the entropy
generation. The physical space of the variables is consistent
for both models. However, from the optimization process the
correspondence between both set of variables is valid only
for the heat transfer laws with exponent k = {−1,1} and very
close in the region (−1,1). Outside this range of exponents
are COP values stemming from the Carnot-like RE that cannot
be recovered from the low-dissipation model. These results
are consistent with previous studies of HEs, reinforcing the
concept of the unified criteria of merit by means of the χ and
� functions.

The role of entropy generation has been addressed together
with the criteria of merit, allowing for a complementary
vision of the role of dissipation symmetries and the nature
of the irreversibilities in the energetics of these kinds of
energy converters. In this way a global study of dissipation
symmetries’ effects on the COP, entropy generation, power
input, and cooling power can be obtained. As a result,
upper and lower bounds of the relative gaining or loosing
of such quantities in a change of operation regime can be
evaluated.

ACKNOWLEDGMENTS

J.G.-A. acknowledges CONACYT-MÉXICO for partial
financial support. We acknowledge financial support from
Junta de Castilla y Leon under project SA017P17.

022139-7



GONZALEZ-AYALA, MEDINA, ROCO, AND HERNÁNDEZ PHYSICAL REVIEW E 97, 022139 (2018)

[1] L. A. Correa, J. P. Palao, D. Alonso, and G. Adesso, Quantum-
enhanced absorption refrigerators, Sci. Rep. 4, 3949 (2014).

[2] L. A. Correa, J. P. Palao, and D. Alonso, Internal dissipation and
heat leaks in quantum thermodynamic cycles, Phys. Rev. E 92,
032136 (2015).

[3] P. Liuzzo-Scorpo, L. A. Correa, R. Schmidt, and G. Adesso,
Thermodynamics of quantum feedback cooling, Entropy 18, 48
(2016).

[4] A. E. Allahverdyan, K. Hovhannisyan, and G. Mahler, Optimal
refrigerator, Phys. Rev. E 81, 051129 (2010).

[5] R. Long and W. Liu, Performance of quantum Otto refrigerators
with squeezing, Phys. Rev. E 91, 062137 (2015).

[6] R. Long and W. Liu, Performance of micro two-level heat devices
with prior information, Phys. Lett. A 379, 1979 (2015).

[7] O. Abah and E. Lutz, Energy efficient quantum machines,
Europhys. Lett. 118, 40005 (2017).

[8] E. Torrontegui and R. Kosloff, Quest for absolute zero in the
presence of external noise, Phys. Rev. E 88, 032103 (2013).

[9] R. Kosloff and A. Levy, Quantum heat engines and refriger-
ators: Continuous devices, Annu. Rev. Phys. Chem. 65, 365
(2014).

[10] G. Su, T. Liao, L. Chen, and J. Chen, Performance evaluation
and optimum design of a new-type electronic cooling device,
Energy 101, 421 (2016).

[11] S. Su, Y. Zhang, J. Chen, and T. M. Shih, Thermal electron-
tunneling devices as coolers and amplifiers, Sci. Rep. 6, 21425
(2016).

[12] J. M. Gordon and K. C. Ng, Cool Thermodynamics (Cambridge
International Science Publishing, Cambridge, 2001).

[13] B. Sahin and A. Kodal, Thermoeconomic optimization of a two
stage combined refrigeration system: A finite-time approach, Int.
J. Refrig. 25, 872 (2002).

[14] P. K. Bhardwaj, S. C. Kaushik, and S. Jain, Finite time opti-
mization of an endoreversible and irreversible vapour absorp-
tion refrigeration system, Energy Convers. Manage. 44, 1131
(2003).

[15] C. Petre, M. Feidt, M. Costea, and S. Petrescu, A model for study
and optimization of real-operating refrigeration machines, Int.
J. Energy Res. 33, 173 (2009).

[16] Y. Ust, Performance analysis and optimization of irreversible
air refrigeration cycles based on ecological coefficient of perfor-
mance criterion, Appl. Therm. Eng. 29, 47 (2009).

[17] S. Sheng and Z. C. Tu, Universality of energy conversion effi-
ciency for optimal tight-coupling heat engines and refrigerators,
J. Phys. A 46, 402001 (2013).

[18] L. Chen, D. Ni, Z. Zhang, and F. Sun, Exergetic performance
optimization for new combined intercooled regenerative Bray-
ton and inverse Brayton cycles, Appl. Therm. Eng. 102, 447
(2016).

[19] Y. Izumida, K. Okuda, J. M. M. Roco, and A. Calvo Hernández,
Heat devices in nonlinear irreversible thermodynamics, Phys.
Rev. E 91, 052140 (2015).

[20] L. Chen, Z. Ding, and F. Sun, A generalized model of an
irreversible thermal Brownian refrigerator and its performance,
Appl. Math. Model. 35, 2945 (2011).

[21] S. Rana, P. S. Pal, A. Saha, and A. M. Jayannavar, Anomalous
Brownian refrigerator, Physica A 444, 783 (2015).

[22] R. Long, B. Li, and W. Liu, Performance analysis for Feynman’s
ratchet as a refrigerator with heat leak under different figure of
merits, Appl. Math. Model. 40, 10437 (2016).

[23] E. Açıkkalp, A. F. Savaş, N. Caner, and H. Yamık, Assessment of
nano-scale Stirling refrigerator using working fluid as Maxwell-
Boltzmann gases by thermo-ecological and sustainability crite-
ria, Chem. Phys. Lett. 658, 303 (2016).

[24] A. Dalkiran, E. Açıkkalp, and A. F. Savaş, Analysis of a
nano-scale thermo-acoustic refrigerator, Int. J. Refrig. 66, 1
(2016).

[25] M. H. Ahmadi, M. A. Ahmadi, A. Malekia, F. Pourfayaz, M.
Bidi, and E. Açıkkalp, Exergetic sustainability evaluation and
multi-objective optimization of performance of an irreversible
nanoscale Stirling refrigeration cycle operating with Maxwell-
Boltzmann gas, Renew. Sustain. Energy Rev. 78, 80 (2017).

[26] Z. Xu, J. Guo, G. Lin, and J. Chen, Optimal thermoeconomic
performance of an irreversible regenerative ferromagnetic Eric-
sson refrigeration cycle, J. Magn. Magn. Mater. 409, 71 (2016).

[27] H. Ouerdane, Y. Apertet, C. Goupil, A. Michot, and A. Abbout,
A linear nonequilibrium thermodynamics approach to optimiza-
tion of thermoelectric device, in Thermoelectric Nanomaterials,
edited by K. Koumoto and T. Mori, Springer Series in Materials
Science, Vol. 182 (Springer, New York, 2013), pp. 323–351.

[28] Y. Apertet, H. Ouerdane, A. Michot, C. Goupil, and P. Lecoeur,
On the efficiency at maximum cooling power, Europhys. Lett.
103, 40001 (2103).

[29] I. Iyyappan and M. Ponmurugan, Thermoelectric energy con-
verters under a trade-off figure of merit with broken time-reversal
symmetry, J. Stat. Mech. (2017) 093207.

[30] U. Eicker, D. Pietruschka, A. Schmitt, and M. Haag, Comparison
of photovoltaic and solar thermal cooling systems for office
buildings in different, Solar Energy 118, 243 (2017).

[31] F. M. Montagnino, Solar cooling technologies. Design, appli-
cation and performance of existing projects, Solar Energy 154,
144 (2017).

[32] L. Chen, C. Wu, and F. Sun, Finite time thermodynamic opti-
mization or entropy generation minimization of energy systems,
J. Non-Equilib. Thermodyn. 24, 327 (1999).

[33] A. Durmayaz, O. S. Sogut, B. Sahin, and H. Yavuz, Optimiza-
tion of thermal systems based on finite-time thermodynamics
and thermo-economics, Prog. Energy Combust. Sci. 30, 175
(2004).

[34] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at
maximum power output, Am. J. Phys. 43, 22 (1975).

[35] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck,
Efficiency at Maximum Power of Low-Dissipation Carnot En-
gines, Phys. Rev. Lett. 105, 150603 (2010).

[36] C. de Tomás, A. Calvo Hernández, and J. M. M. Roco, Optimal
low symmetric dissipation Carnot engines and refrigerators,
Phys. Rev. E 85, 010104(R) (2012).

[37] Y. Wang, M. Li, Z. C. Tu, A. Calvo Hernández, and J. M. M.
Roco, Coefficient of performance at maximum figure of merit
and its bounds for low-dissipation Carnot-like refrigerators,
Phys. Rev. E 86, 011127 (2012)

[38] Y. Hu, F. Wu, Y. Ma, J. He, J. Wang, A. Calvo Hernández, and
J. M. M. Roco, Coefficient of performance for a low-dissipation
Carnot-like refrigerator with nonadiabatic dissipation, Phys.
Rev. E 88, 062115 (2013).

[39] V. Holubec and R. Artem, Efficiency at and near maximum
power of low-dissipation heat engines, Phys. Rev. E 92, 052125
(2015)

[40] J. Gonzalez-Ayala, A. Calvo Hernández, and J. M. M. Roco,
Irreversible and endoreversible behaviors of the LD-model for

022139-8

https://doi.org/10.1038/srep03949
https://doi.org/10.1038/srep03949
https://doi.org/10.1038/srep03949
https://doi.org/10.1038/srep03949
https://doi.org/10.1103/PhysRevE.92.032136
https://doi.org/10.1103/PhysRevE.92.032136
https://doi.org/10.1103/PhysRevE.92.032136
https://doi.org/10.1103/PhysRevE.92.032136
https://doi.org/10.3390/e18020048
https://doi.org/10.3390/e18020048
https://doi.org/10.3390/e18020048
https://doi.org/10.3390/e18020048
https://doi.org/10.1103/PhysRevE.81.051129
https://doi.org/10.1103/PhysRevE.81.051129
https://doi.org/10.1103/PhysRevE.81.051129
https://doi.org/10.1103/PhysRevE.81.051129
https://doi.org/10.1103/PhysRevE.91.062137
https://doi.org/10.1103/PhysRevE.91.062137
https://doi.org/10.1103/PhysRevE.91.062137
https://doi.org/10.1103/PhysRevE.91.062137
https://doi.org/10.1016/j.physleta.2015.06.012
https://doi.org/10.1016/j.physleta.2015.06.012
https://doi.org/10.1016/j.physleta.2015.06.012
https://doi.org/10.1016/j.physleta.2015.06.012
https://doi.org/10.1209/0295-5075/118/40005
https://doi.org/10.1209/0295-5075/118/40005
https://doi.org/10.1209/0295-5075/118/40005
https://doi.org/10.1209/0295-5075/118/40005
https://doi.org/10.1103/PhysRevE.88.032103
https://doi.org/10.1103/PhysRevE.88.032103
https://doi.org/10.1103/PhysRevE.88.032103
https://doi.org/10.1103/PhysRevE.88.032103
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1016/j.energy.2016.02.059
https://doi.org/10.1016/j.energy.2016.02.059
https://doi.org/10.1016/j.energy.2016.02.059
https://doi.org/10.1016/j.energy.2016.02.059
https://doi.org/10.1038/srep21425
https://doi.org/10.1038/srep21425
https://doi.org/10.1038/srep21425
https://doi.org/10.1038/srep21425
https://doi.org/10.1016/S0140-7007(01)00062-7
https://doi.org/10.1016/S0140-7007(01)00062-7
https://doi.org/10.1016/S0140-7007(01)00062-7
https://doi.org/10.1016/S0140-7007(01)00062-7
https://doi.org/10.1016/S0196-8904(02)00101-2
https://doi.org/10.1016/S0196-8904(02)00101-2
https://doi.org/10.1016/S0196-8904(02)00101-2
https://doi.org/10.1016/S0196-8904(02)00101-2
https://doi.org/10.1002/er.1433
https://doi.org/10.1002/er.1433
https://doi.org/10.1002/er.1433
https://doi.org/10.1002/er.1433
https://doi.org/10.1016/j.applthermaleng.2008.01.024
https://doi.org/10.1016/j.applthermaleng.2008.01.024
https://doi.org/10.1016/j.applthermaleng.2008.01.024
https://doi.org/10.1016/j.applthermaleng.2008.01.024
https://doi.org/10.1088/1751-8113/46/40/402001
https://doi.org/10.1088/1751-8113/46/40/402001
https://doi.org/10.1088/1751-8113/46/40/402001
https://doi.org/10.1088/1751-8113/46/40/402001
https://doi.org/10.1016/j.applthermaleng.2016.03.058
https://doi.org/10.1016/j.applthermaleng.2016.03.058
https://doi.org/10.1016/j.applthermaleng.2016.03.058
https://doi.org/10.1016/j.applthermaleng.2016.03.058
https://doi.org/10.1103/PhysRevE.91.052140
https://doi.org/10.1103/PhysRevE.91.052140
https://doi.org/10.1103/PhysRevE.91.052140
https://doi.org/10.1103/PhysRevE.91.052140
https://doi.org/10.1016/j.apm.2010.12.008
https://doi.org/10.1016/j.apm.2010.12.008
https://doi.org/10.1016/j.apm.2010.12.008
https://doi.org/10.1016/j.apm.2010.12.008
https://doi.org/10.1016/j.physa.2015.10.095
https://doi.org/10.1016/j.physa.2015.10.095
https://doi.org/10.1016/j.physa.2015.10.095
https://doi.org/10.1016/j.physa.2015.10.095
https://doi.org/10.1016/j.apm.2016.07.027
https://doi.org/10.1016/j.apm.2016.07.027
https://doi.org/10.1016/j.apm.2016.07.027
https://doi.org/10.1016/j.apm.2016.07.027
https://doi.org/10.1016/j.cplett.2016.06.064
https://doi.org/10.1016/j.cplett.2016.06.064
https://doi.org/10.1016/j.cplett.2016.06.064
https://doi.org/10.1016/j.cplett.2016.06.064
https://doi.org/10.1016/j.ijrefrig.2016.01.022
https://doi.org/10.1016/j.ijrefrig.2016.01.022
https://doi.org/10.1016/j.ijrefrig.2016.01.022
https://doi.org/10.1016/j.ijrefrig.2016.01.022
https://doi.org/10.1016/j.rser.2017.04.097
https://doi.org/10.1016/j.rser.2017.04.097
https://doi.org/10.1016/j.rser.2017.04.097
https://doi.org/10.1016/j.rser.2017.04.097
https://doi.org/10.1016/j.jmmm.2016.02.063
https://doi.org/10.1016/j.jmmm.2016.02.063
https://doi.org/10.1016/j.jmmm.2016.02.063
https://doi.org/10.1016/j.jmmm.2016.02.063
https://doi.org/10.1209/0295-5075/103/40001
https://doi.org/10.1209/0295-5075/103/40001
https://doi.org/10.1209/0295-5075/103/40001
https://doi.org/10.1209/0295-5075/103/40001
https://doi.org/10.1088/1742-5468/aa85b8
https://doi.org/10.1088/1742-5468/aa85b8
https://doi.org/10.1088/1742-5468/aa85b8
https://doi.org/10.1016/j.solener.2015.05.018
https://doi.org/10.1016/j.solener.2015.05.018
https://doi.org/10.1016/j.solener.2015.05.018
https://doi.org/10.1016/j.solener.2015.05.018
https://doi.org/10.1016/j.solener.2017.01.033
https://doi.org/10.1016/j.solener.2017.01.033
https://doi.org/10.1016/j.solener.2017.01.033
https://doi.org/10.1016/j.solener.2017.01.033
https://doi.org/10.1515/JNETDY.1999.020
https://doi.org/10.1515/JNETDY.1999.020
https://doi.org/10.1515/JNETDY.1999.020
https://doi.org/10.1515/JNETDY.1999.020
https://doi.org/10.1016/j.pecs.2003.10.003
https://doi.org/10.1016/j.pecs.2003.10.003
https://doi.org/10.1016/j.pecs.2003.10.003
https://doi.org/10.1016/j.pecs.2003.10.003
https://doi.org/10.1119/1.10023
https://doi.org/10.1119/1.10023
https://doi.org/10.1119/1.10023
https://doi.org/10.1119/1.10023
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevE.85.010104
https://doi.org/10.1103/PhysRevE.85.010104
https://doi.org/10.1103/PhysRevE.85.010104
https://doi.org/10.1103/PhysRevE.85.010104
https://doi.org/10.1103/PhysRevE.86.011127
https://doi.org/10.1103/PhysRevE.86.011127
https://doi.org/10.1103/PhysRevE.86.011127
https://doi.org/10.1103/PhysRevE.86.011127
https://doi.org/10.1103/PhysRevE.88.062115
https://doi.org/10.1103/PhysRevE.88.062115
https://doi.org/10.1103/PhysRevE.88.062115
https://doi.org/10.1103/PhysRevE.88.062115
https://doi.org/10.1103/PhysRevE.92.052125
https://doi.org/10.1103/PhysRevE.92.052125
https://doi.org/10.1103/PhysRevE.92.052125
https://doi.org/10.1103/PhysRevE.92.052125


ENTROPY GENERATION AND UNIFIED OPTIMIZATION … PHYSICAL REVIEW E 97, 022139 (2018)

heat devices: The role of the time constraints and symmetries on
the performance at maximum χ figure of merit, J. Stat. Mech.
(2016) 073202.

[41] T. Schmiedl and U. Seifert, Efficiency at maximum power:
An analytically solvable model for stochastic heat engines,
Europhys. Lett. 92, 20003 (2008).

[42] V. Holubec, An exactly solvable model of a stochastic heat en-
gine: Optimization of power, power fluctuations and efficiency,
J. Stat. Mech. (2014) P05022.

[43] P. R. Zulkowski and M. R. DeWeese, Optimal protocols for
slowly driven quantum systems, Phys. Rev. E 92, 032113
(2015).

[44] J. Gonzalez-Ayala, J. M. M. Roco, A. Medina, and A. Calvo
Hernández, Carnot-like heat engines versus low-dissipation
models, Entropy 19, 182 (2017).

[45] R. S. Johal, Heat engines at optimal power: Low-dissipation
versus endoreversible model, Phys. Rev. E 96, 012151 (2017).

[46] F. Angulo-Brown, An ecological optimization criterion for
finite-time heat engines, J. Appl. Phys. 69, 7465 (1991).

[47] S. Velasco, J. M. M. Roco, A. Medina, and A. Calvo Hernán-
dez, Irreversible refrigerators under per-unit-time coefficient of
performance optimization, Appl. Phys. Lett. 71, 01130 (1997).

[48] J. Guo, J. Wang, Y. Wang, and J. Chen, Universal efficiency
bounds of weak-dissipative thermodynamic cycles at the maxi-
mum power output, Phys. Rev. E 87, 012133 (2013).

[49] E. Açıkkalp, Exergetic sustainability evaluation of irreversible
Carnot refrigerator, Physica A 436, 311 (2015).

[50] B. Cleuren, B. Rutten, and C. Van den Broeck, Universality of
efficiency at maximum power: Macroscopic manifestation of
microscopic constraints, Eur. Phys. J. Special Topics 224, 879
(2015).

[51] Y. Zhang, J. Guo, G. Lin, and J. Chen, Universal optimization
efficiency for nonlinear irreversible heat engines, J. Non-Equilib.
Thermodyn. 42, 253 (2017).

[52] A. Calvo Hernández, A. Medina, J. M. M. Roco, J. A. White, and
S. Velasco, Unified optimization criterion for energy converters,
Phys. Rev. E 63, 037102 (2001).

[53] C. de Tomás, J. M. M. Roco, A. Calvo Hernández, Y. Wang,
and Z. C. Tu, Low-dissipation heat devices: Unified trade-off
optimization and bounds, Phys. Rev. E 87, 012105 (2013).

[54] Y. Yuan, R. Wang, J. He, Y. Ma, and J. Wang, Coefficient of
performance under maximum χ criterion in a two-level atomic
system as a refrigerator, Phys. Rev. E 90, 052151 (2014).

[55] S. Sheng, P. Yang, and Z. C. Tu, Coefficient of performance
at maximum χ -criterion for Feynman ratchet as a refrigerator,
Commun. Theor. Phys. 62, 589 (2014).

[56] R. Long and W. Liu, Coefficient of performance and its bounds
with the figure of merit of a general refrigerator, Phys. Scr. 90,
025207 (2015).

[57] Y. Zhang, C. Huang, G. Lin, and J. Chen, Universality of
efficiency at unified trade-off optimization, Phys. Rev. E 93,
032152 (2016).

[58] C. Lu and L. Bai, Nonlinear dissipation heat devices in finite-
time thermodynamics: An analysis of the trade-off optimization,
J. Non-Equilib. Thermodyn. 42, 277 (2017).

[59] A. Calvo Hernández, A. Medina, and J. M. M. Roco, Time,
entropy generation, and optimization in low-dissipation heat
devices, New J. Phys 17, 075011 (2015); Corrigendum, 18,
019501 (2016).

[60] J. Gonzalez-Ayala, L. A. Arias-Hernández, and F. Angulo-
Brown, A graphic approach to include dissipative-like effects
in reversible thermal cycles, Eur. Phys. J. B 90, 86 (2017).

022139-9

https://doi.org/10.1088/1742-5468/2016/07/073202 
https://doi.org/10.1088/1742-5468/2016/07/073202 
https://doi.org/10.1088/1742-5468/2016/07/073202 
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1088/1742-5468/2014/05/P05022
https://doi.org/10.1088/1742-5468/2014/05/P05022
https://doi.org/10.1088/1742-5468/2014/05/P05022
https://doi.org/10.1103/PhysRevE.92.032113
https://doi.org/10.1103/PhysRevE.92.032113
https://doi.org/10.1103/PhysRevE.92.032113
https://doi.org/10.1103/PhysRevE.92.032113
https://doi.org/10.3390/e19040182
https://doi.org/10.3390/e19040182
https://doi.org/10.3390/e19040182
https://doi.org/10.3390/e19040182
https://doi.org/10.1103/PhysRevE.96.012151
https://doi.org/10.1103/PhysRevE.96.012151
https://doi.org/10.1103/PhysRevE.96.012151
https://doi.org/10.1103/PhysRevE.96.012151
https://doi.org/10.1063/1.347562
https://doi.org/10.1063/1.347562
https://doi.org/10.1063/1.347562
https://doi.org/10.1063/1.347562
https://doi.org/10.1063/1.120437
https://doi.org/10.1063/1.120437
https://doi.org/10.1063/1.120437
https://doi.org/10.1063/1.120437
https://doi.org/10.1103/PhysRevE.87.012133
https://doi.org/10.1103/PhysRevE.87.012133
https://doi.org/10.1103/PhysRevE.87.012133
https://doi.org/10.1103/PhysRevE.87.012133
https://doi.org/10.1016/j.physa.2015.04.036
https://doi.org/10.1016/j.physa.2015.04.036
https://doi.org/10.1016/j.physa.2015.04.036
https://doi.org/10.1016/j.physa.2015.04.036
https://doi.org/10.1140/epjst/e2015-02433-8
https://doi.org/10.1140/epjst/e2015-02433-8
https://doi.org/10.1140/epjst/e2015-02433-8
https://doi.org/10.1140/epjst/e2015-02433-8
https://doi.org/10.1515/jnet-2016-0065
https://doi.org/10.1515/jnet-2016-0065
https://doi.org/10.1515/jnet-2016-0065
https://doi.org/10.1515/jnet-2016-0065
https://doi.org/10.1103/PhysRevE.63.037102
https://doi.org/10.1103/PhysRevE.63.037102
https://doi.org/10.1103/PhysRevE.63.037102
https://doi.org/10.1103/PhysRevE.63.037102
https://doi.org/10.1103/PhysRevE.87.012105
https://doi.org/10.1103/PhysRevE.87.012105
https://doi.org/10.1103/PhysRevE.87.012105
https://doi.org/10.1103/PhysRevE.87.012105
https://doi.org/10.1103/PhysRevE.90.052151
https://doi.org/10.1103/PhysRevE.90.052151
https://doi.org/10.1103/PhysRevE.90.052151
https://doi.org/10.1103/PhysRevE.90.052151
https://doi.org/10.1088/0253-6102/62/4/16
https://doi.org/10.1088/0253-6102/62/4/16
https://doi.org/10.1088/0253-6102/62/4/16
https://doi.org/10.1088/0253-6102/62/4/16
https://doi.org/10.1088/0031-8949/90/2/025207
https://doi.org/10.1088/0031-8949/90/2/025207
https://doi.org/10.1088/0031-8949/90/2/025207
https://doi.org/10.1088/0031-8949/90/2/025207
https://doi.org/10.1103/PhysRevE.93.032152
https://doi.org/10.1103/PhysRevE.93.032152
https://doi.org/10.1103/PhysRevE.93.032152
https://doi.org/10.1103/PhysRevE.93.032152
https://doi.org/10.1515/jnet-2016-0071
https://doi.org/10.1515/jnet-2016-0071
https://doi.org/10.1515/jnet-2016-0071
https://doi.org/10.1515/jnet-2016-0071
https://doi.org/10.1088/1367-2630/17/7/075011
https://doi.org/10.1088/1367-2630/17/7/075011
https://doi.org/10.1088/1367-2630/17/7/075011
https://doi.org/10.1088/1367-2630/17/7/075011
https://doi.org/10.1088/1367-2630/18/1/019501
https://doi.org/10.1088/1367-2630/18/1/019501
https://doi.org/10.1088/1367-2630/18/1/019501
https://doi.org/10.1140/epjb/e2017-80001-4
https://doi.org/10.1140/epjb/e2017-80001-4
https://doi.org/10.1140/epjb/e2017-80001-4
https://doi.org/10.1140/epjb/e2017-80001-4



