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This study investigated the typical performance of approximation algorithms known as belief propagation, the
greedy algorithm, and linear-programming relaxation for maximum coverage problems in sparse biregular random
graphs. After we used the cavity method for a corresponding hard-core lattice-gas model, results showed that
two distinct thresholds of replica-symmetry and its breaking exist in the typical performance threshold of belief
propagation. In the low-density region, the superiority of three algorithms in terms of a typical performance
threshold is obtained by some theoretical analyses. Although the greedy algorithm and linear-programming
relaxation have the same approximation ratio in worst-case performance, their typical performance thresholds are
mutually different, indicating the importance of typical performance. Results of numerical simulations validate
the theoretical analyses and imply further mutual relations of approximation algorithms.
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I. INTRODUCTION

Approximation algorithms, which are important for hard
optimization problems, have attracted researchers’ interest
because, for NP-hard optimization problems, one encoun-
ters difficulty when solving optimal solutions exactly in the
polynomial time of the problem size. Since the P versus
NP problem arose, development and performance analyses of
approximation algorithms have persisted as a central issue of
computer science and operations research.

Two performance evaluations of approximation algorithms
exist: worst-case performance and typical (or average-case)
performance. As described in this paper, we specifically
examine the latter mainly using statistical-mechanical meth-
ods, although the former has been investigated mainly in
the literature of theoretical computer science [1]. Worst-case
performance is defined by the pair of an optimization problem
and its approximation algorithm. An approximation ratio is
then defined by the maximal ratio of an optimal value to
an approximation value over all instances if the problem
is a maximization problem (and vice versa, otherwise). It
is important to provide a strict performance guarantee of
the algorithm, although the worst-case instance is sometimes
pathological. However, the typical performance is defined as
the average performance of the approximation algorithm for
a given optimization problem over randomized instances. It is
sometimes useful for practical use. It sheds light on properties
of optimization problems and approximation algorithms in a
perspective that is different from worst-case analysis.

An interesting point of the typical property of optimization
problems is found in a close relation to the spin-glass theory in
statistical physics. Extensive studies of various computational
problems have revealed that the concept of replica symmetry
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(RS) and its breaking (RSB) in spin-glass theory reflects
average computational complexity [2] and structure of the
solution space [3] of the problems.

The typical performance of approximation algorithms often
exhibits a phase transition on typical goodness or accuracy
of approximation, which is called the threshold phenomenon
in the literature of theoretical computer science [4]. Some
approximation algorithms for minimum vertex covers (min-
VCs) are good examples of threshold phenomena. The problem
is defined in a graph. The randomized problem is characterized
using a random graph ensemble with c being the average
degree. From a statistical-mechanical perspective, the problem
in Erdös-Rényi random graphs has the RS-RSB threshold at
c = e = 2.71 . . . [5]. Moreover, three approximation algo-
rithms have been investigated: belief propagation (BP) (or
message passing) [6], the greedy leaf-removal algorithm [7],
and linear-programming (LP) relaxation [8,9]. Approximation
algorithms other than BP naively have no direct connection to
the spin-glass theory. Nevertheless, for Erdös-Rényi random
graphs, these algorithms have the same performance threshold
as the RS-RSB threshold. However, subsequent studies of
general random graphs [10] indicate that their thresholds are
not equivalent for some random graphs because of their graph
structure. Using statistical-mechanical techniques, typical per-
formance has been studied for variants of leaf removal [11–15]
and relaxation technique such as LP relaxation [16,17] and
semidefinite-programming relaxation [18]. These studies have
revealed not only typical approximate performance itself but
also a suggestive connection to typical properties of opti-
mization problems, random graph structure, and the spin-glass
theory.

As described in this paper, we examine the unweighted
maximum coverage (max-COV) problem defined in the next
section. Although the max-COV belongs to the class of NP-
hard, it has several practical applications such as pan and scan
problems [19], multitopic blog watch [20], and text summa-
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rization [21]. Our main purpose is to examine the typical
performance of approximation algorithms for the problem
and to compare their performance thresholds. We specifically
examine three approximation algorithms: belief propagation,
the greedy algorithm, and LP relaxation. Some statistical-
mechanical methods applied to both analytical and numeri-
cal analyses together with mathematical rigorous discussions
clarify the typical performance of those algorithms and a
suggestive mutual relation among approximation algorithms.

This paper is organized as follows. In the next section,
we define details of the max-COV and its approximation
algorithms. As a random graph ensemble, biregular random
graphs are also defined. In Sec. III, a hard-core lattice-gas
model for the problem is introduced. Its BP equations are
obtained based on the Bethe-Peierls approximation. In Sec. IV,
we present a study of the typical performance of BP using the
RS cavity method. Calculation of the spin-glass susceptibility
provides the threshold below which BP typically approximates
max-COV with high accuracy. In Sec. V, the greedy algorithm
is analyzed based on a mean-field rate equation of its deletion
process. Using the obtained solution, we evaluate the typical
performance threshold of the greedy algorithm. In Sec. VI,
LP-relaxed approximate values are evaluated rigorously. The
theorem is proved using the weak duality theorem. In Sec. VII,
we describe some numerical results which support the validity
of theoretical analyses presented in the previous sections. We
also execute some additional simulations to consider the typical
performance of a modified greedy algorithm and randomized
rounding of LP relaxation. These results provide a suggestive
relation between approximation algorithms. The last section is
devoted to a summary and discussion of the results.

II. MAX-COVER PROBLEM AND APPROXIMATION
ALGORITHMS

A. Maximum coverage problem

The max-COV is defined as follows: Let S be a set of M

elements and S = {S1, · · · ,SN } be a collection of subsets of S.
For a given positive integer K(�N ), the problem is to choose
at most K subsets to maximize the total number of elements in
the union of chosen subsets. An example of an instance with
M = 4 and N = 3 is shown in Fig. 1(a). Given that K = 2, one
can select subsets S1 and S3 such that all elements are included
in the union of the subsets.

Converting an instance to a bipartite graph, one obtains
an integer-programming (IP) representation of the max-COV.
Let G = (V1,V2,E) be a bipartite graph where each edge in

(a) (b)

FIG. 1. Example of the maximum coverage problem. (a) An
example with M = 4 and N = 3. S1, S2, and S3 represent subsets
of S = {1,2,3,4}. (b) A bipartite graph corresponding to panel (a).
Each vertex in V1 stands for a subset in panel (a).

E connects to a vertex in V1 and a vertex in V2. Vertices
in V1 and V2 are labeled respectively by i ∈ {1, . . . ,N} and
a ∈ {1, . . . ,M}. V1 corresponds to a collection of subsets S ,
whereas V2 represents S. Each edge (i,a) is set if subset Si

includes element a. In Fig. 1, the example in panel (a) is
converted to a bipartite graph in panel (b). We then introduce
binary variables {xi} and {ya}, respectively, to V1 and V2. Also,
xi is set to 1 if vertex i (or subset Si) is selected and 0 otherwise.
Similarly, ya is set to 1 if vertex a is connected to a selected
vertex (or element a belongs to the union of chosen subsets)
and 0 otherwise. The problem is therefore represented by the
following IP problem:

Max.
M∑

a=1

ya,

subject to ya �
∑

i; (i,a)∈E

xi ∀a ∈ V2,

N∑
i=1

xi � K,

xi ∈ {0,1} ∀i ∈ V1, ya ∈ {0,1} ∀a ∈ V2.

(1)

The inequality in the second constraint can be replaced with an
equality sign because the problem is a maximization problem.

As described in this paper, the typical-case property of the
max-COV is analyzed by randomizing its instance. Then, we
introduce ρx = K/N and assume that ρx ∈ [0,1] is constant.
For random bipartite graphs, we specifically examine (L,R)-
biregular random graphs where degrees of each vertex in V1

and V2 respectively denote L and R. When we use this simple
random graph ensemble, our statistical-mechanical analyses
reveal interesting properties of the problem.

To take the large-graph limit, the number of vertices in V2 is
rescaled as M = αN with a constant factor α. We assume that a
random graph is sparse, i.e., L and R are constant with respect
to N . For the randomized max-COV, we define an average
optimal cover ratio over random graphs with cardinality N +
M and a given ρx by

ρy(ρx ; N ) = 1

M

M∑
a=1

y
opt
a (G,ρx), (2)

where {yopt
a (G,ρx)} represents optimal solutions inV2 and (· · · )

represents an average over random bipartite graphs with size
N + M . Its limiting value to N → ∞ is denoted by ρy . We
simply call it the average optimal cover ratio.

B. Approximation algorithms

We introduce three approximation methods for max-COVs.
The first algorithm is BP. The recursive equations called BP
equations are derived from the Bethe-Peierls approximation for
a spin system corresponding to a given optimization problem.
For systems on trees, graphs with no cycles, the Bethe-Peierls
approximation and BP are exact. In general, however, there
exist cycles in a graph yielding correlations between variables
or spins, which result in inexact estimation of solutions (or
configurations). BP in graphs with some cycles is regarded as
an approximation method. It is called loopy BP [22].
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The second one is a simple greedy algorithm. At each step,
this algorithm has the following procedure: (i) choose one
vertex named i with the maximum degree in V1, (ii) delete
vertices neighboring to vertex i from V2, and (iii) update V1

to V1\i and return to step (i) if |V1| > N − K . This simple
algorithm gives an approximation ratio of 1 − 1/e [23]. The
problem cannot be approximated within this ratio unless P =
NP [24].

The last is LP relaxation. An integer programming problem
including the max-COV is relaxed to LP problems by replacing
integral constraints with real constraints. The LP-relaxed max-
COV is given as

Max.
M∑

a=1

ya,

subject to ya �
∑

i; (i,a)∈E

xi ∀a ∈ V2,

N∑
i=1

xi � K,

xi ∈ [0,1] ∀i ∈ V1, ya ∈ [0,1] ∀a ∈ V2.

(3)

Actually, the LP approximation value gives the upper bound
of the problem. Because LP problems are solvable exactly in
polynomial time, LP relaxation is a widely used approximation
technique. The approximate solution obtained by LP relaxation
usually involves nonintegers. One must round those numbers
appropriately to obtain an approximate integral solution for
the IP problem. Here, we consider randomized rounding [25].
Using the obtained approximation solution {xLP

i }, one selects
vertex i ∈ V1 to set I ⊂ V1 with probability xLP

i /K up to K

vertices. Then, the rounded solution {xLPr
i } is set to xLPr

i = 1
for i ∈ I and xLPr

i = 0 otherwise. The rounded approximation
value is readily calculated from {xLPr

i }. In terms of the worst-
case performance, LP relaxation and its randomized rounding
in expectation has the same approximation ratio as the greedy
algorithm.

As described in this paper, we study the typical performance
of these approximation algorithms. It is evaluated by approxi-
mate values averaged over randomized max-COVs defined in
the last subsection. Similar to the average optimal cover ratio,
the average cover ratio is defined as the average ratio of the
approximate value to the cardinality M of vertex set V2. It is
regarded as exhibiting good typical performance if the average
cover ratio obtained by an approximation algorithm is equal
to the average optimal cover ratio in the large-N limit. The
main aim of this paper is to evaluate the typical performance
threshold of ρx below which an approximate algorithm exhibits
good typical performance with L and R fixed. Evaluation of
the approximation algorithms is accomplished by comparing
their typical performance thresholds.

III. BP EQUATIONS FOR MAX-COV

As explained in this section, BP equations for max-COV
are derived based on the statistical-mechanical model for the
problem. We set particles on vertices in V1 and V2, which
respectively occupy vertex i and a if xi = 1 and ya = 1. The
hard-core lattice-gas model for max-COVs in bipartite graph

G is then naively given as the following partition function:

�0(μ; G) =
∑

x∈{0,1}N

∑
y∈{0,1}M

exp

(
μ

M∑
a=1

ya

)
H

(
K −

N∑
i=1

xi

)

×
M∏

a=1

H

(∑
i∈∂a

xi − ya

)
, (4)

Therein, H (x) = 1 (x � 0), 0 (x < 0) is the Heaviside step
function and ∂a = {i ∈ V1 | (i,a) ∈ E} stands for a set of
neighbors of vertex a ∈ V2. In the partition function, μ repre-
sents a chemical potential for particles on V2. One can construct
BP equations for this model. However, it is inconvenient for
practical use because of the constraint

∑N
i=1 xi � K .

Therefore, we use the following alternative partition func-
tion:

�(μ; G) =
∑

x∈{0,1}N

∑
y∈{0,1}M

exp

(
μ′

N∑
i=1

xi + μ

M∑
a=1

ya

)

×
M∏

a=1

H

(∑
i∈∂a

xi − ya

)
, (5)

where μ′ = μ′(μ,ρx ; G) is a chemical potential for particles
on V1. The ratio of μ′ with respect to μ is defined as

κ = −μ′

μ
. (6)

This parameter is regarded as a Lagrange multiplier for the
constraint on the number of selected vertices. The appropriate
value of κ must satisfy the condition given by

ρx(μ,κ) = ρx, ρx(μ,κ) ≡
〈

1

N

N∑
i=1

xi

〉
μ

, (7)

where 〈· · · 〉μ is a grand-canonical average with a given μ.
To consider ground states, we take the large-μ limit with the
parameter κ being fixed.

First, we construct BP equations for Eq. (5). Using the
Bethe-Peierls approximation, we give the single-spin proba-
bility Pi(x), in which xi takes x, as

Pi(x) � Z−1
i e−μκx

∏
a∈∂i

Pa→i(x), (8)

where ∂i = {a ∈ V2 | (i,a) ∈ E} is a set of neighbors of vertex
i ∈ V1. Z∗ is a normalization factor hereinafter. Pa→i(x)
represents the marginal probability of x∂a\i and ya under the
condition xi = x. Similarly, the single-spin probability Pa(y),
in which ya takes y, reads

Pa(y) � Z−1
a eμy

∑
x∂a

H

(∑
i∈∂a

xi − y

) ∏
i∈∂a

Pi→a(x), (9)

where Pi→a(x) is the probability of xi taking x in the cavity
graph G\a. These probabilities satisfy the following recursive
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relations under the same approximation:

Pi→a(x) � Z−1
i→ae

−μκx
∏

b∈∂i\a
Pa→i(x), (10)

Pa→i(x) � Z−1
a→i

∑
y

eμy
∑
x∂a\i

H

⎛
⎝x +

∑
j∈∂a\i

xj − y

⎞
⎠

×
∏

j∈∂a\i
Pj→a(x). (11)

To take the large-μ limit later, it is convenient to intro-
duce the cavity fields {hia} and {ĥai} defined respectively by
Pi→a(x) ∝ exp(μhiax) and Pa→i(y) ∝ exp(μĥaiy). Then, BP
equations for cavity fields are given as

hia = −κ +
∑

b∈∂i\a
ĥbi , (12)

ĥai = − 1

μ
ln

⎡
⎣1 − 1

1 + e−μ

∏
j∈∂a\i

1

1 + eμhja

⎤
⎦. (13)

By rescaling the single-spin probabilities as Pi(x) ∝
exp(μξix) and Pa(y) ∝ exp(μξ̂ay) using local fields {ξi} and
{ξ̂a}, respectively, Eqs. (8) and (9) then read

ξi = −κ +
∑
a∈∂i

ĥai , (14)

ξ̂a = − 1

μ
ln

[
1 − 1

1 + e−μ

∏
i∈∂a

1

1 + eμhia

]
. (15)

One can estimate the single-spin probability by solving the BP
equations (12) and (13) as the loopy belief propagation.

IV. REPLICA-SYMMETRIC SOLUTION

In this section, the typical performance of BP is studied
using the RS cavity method based on the simplest RS ansatz.
The RS ansatz assumes that cavity fields {h} and {ĥ} are inde-
pendent random variables respectively following probability
distributions P (h) and P̂ (ĥ). For biregular random graphs, it
is apparent that these distributions have no variance because of
the absence of fluctuation of degree in V1 and V2. We therefore
introduce the cavity fields h and ĥ in (L,R)-biregular random
graphs. When we use the BP equations (12) and (13) they
satisfy the following RS cavity equations in the large-N limit:

h = −κ + (L − 1)ĥ, (16)

ĥ = − 1

μ
ln

[
1 − 1

(1 + e−μ)(1 + eμh)R−1

]
. (17)

Similarly, the local fields in (L,R)-biregular random graphs
are set to ξ and ξ̂ , which satisfy

ξ = −κ + Lĥ, (18)

ξ̂ = − 1

μ
ln

[
1 − 1

(1 + e−μ)(1 + eμh)R

]
. (19)

According to Eq. (7), for a given ρx , the local field ξ is
determined as

eμξ

1 + eμξ
= ρx. (20)

Then, using Eqs. (18) and (20), we represent the appropriate
parameter κ as

κ = Lĥ − 1

μ
ln r, (21)

where r = ρx/(1 − ρx).
By substituting Eqs. (16) and (21) in Eq. (17) and

by introducing x = e−μĥ, one obtains the self-consistent
equation as

(1 + rx)R−1(1 − x) = 1

1 + e−μ
. (22)

The order of this solution changes depending on the value of
ρx . The solution x vanishes as μ becomes large if ρx < 1/R

holds. Using Taylor expansion of the left-hand side of Eq. (22),
we estimate it as

x = e−μ

1 − (R − 1)r
+ O(e−2μ). (23)

Using Eq. (19), we obtain an average density of particles on
V2 as follows:

lim
M→∞

〈
1

M

M∑
i=1

ya

〉
μ

= 1 − (1 + rx)−R

1 − (1 + rx)−R + e−μ
(24)

= Rρx + O(e−μ). (25)

Taking the large-μ limit, we obtain the average cover ratio for
ρx < 1/R as

ρRS
y = Rρx. (26)

This relation indicates that each vertex in V2 is connected to at
most one chosen vertex in V1. However, if ρx is larger than 1/R

(R � 2), then the solution x remains constant for sufficiently
large μ. In this case, a simple solution ρRS

y = 1 is obtained
by using Eq. (24) because the average cover ratio in Eq. (26)
touches to 1 at ρx = 1/R.

Before closing this section, we discuss the stability of the
RS solutions using the spin-glass susceptibility defined as

χSG(μ) = 1

N + M

∑
i∈V1

∑
a∈V2

(〈xiya〉μ − 〈xi〉μ〈ya〉μ)2. (27)

Another representation of χSG using cavity fields is known
based on the fluctuation-dissipation theorem [26]. As shown
in Ref. [27], in the case of biregular random graphs, it reads

χSG(μ) �
∞∑

d=0

λd, λ = E

⎡
⎣ ∑

j∈∂a\i; b∈∂j\a

(
∂ĥai

∂ĥbj

)2
⎤
⎦, (28)

where E[· · · ] represents an average over vertices in V1 and
random graphs. The cavity fields are mutually correlated in
general. Actually, BP cannot converge any more [28] if the
susceptibility diverges. In this sense, the divergence of χSG

means not only the instability of the RS solution but also poor
typical performance of BP as an approximation algorithm in
the static sense. In the low-density region where ρx < 1/R
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FIG. 2. RS-RSB thresholds ρRS
x (squares) and ρRS′

x (circles) in
(3R,R)-regular random graphs.

holds, it is evaluated as

λ = (L − 1)(R − 1)

[
r(1 − x)

1 + rx

]2

→ (L − 1)(R − 1)r2 (μ → ∞). (29)

The RS-RSB threshold in the large-μ limit therefore reads

ρRS
x = 1

1 + √
(L − 1)(R − 1)

. (30)

Otherwise, the other threshold ρRS′
x (>1/R) satisfies

(L − 1)(R − 1)

[
ρRS′

x (1 − x∗)(
1 − ρRS′

x

)
(1 + x∗)

]2

= 1, (31)

where x∗ is a solution of(
1 + ρRS′

x

1 − ρRS′
x

x∗
)R−1

(1 − x∗) = 1. (32)

In Fig. 2, RS-RSB thresholds ρRS
x and ρRS′

x in (3R,R)-
regular random graphs are shown as a function of R. Except
for the case R = 1, the RS-RSB thresholds separate RS and
RSB regions. The RSB region remains for a finite ρx while the
RS-RSB thresholds converge to 0 in the large-R limit.

V. TYPICAL ANALYSIS OF THE GREEDY ALGORITHM

In this section, typical behavior of the greedy algorithm
in (L,R)-biregular random graphs is investigated in the low-
density region of ρx < 1/R. The corresponding RS solution
indicates that one can choose vertices in V1 without overlap-
ping their neighbors. It is therefore sufficient to analyze the
fraction of vertices in V1 with the maximum degree during the
deletion process. Here we analyze a rate equation that is used
frequently for analyses of similar greedy algorithms [4,29]. Let
V (T ) be the expected number of vertices with the maximum
degree in V1 at the T th step of the algorithm. By the definition
of the algorithm in Sec. II B, we find that

NV (T + 1) = NV (T )−1−L(R−1)
NV (T )

N − RT
+ O(N−1),

(33)

where the assumption L = O(1) is used. By introducing v(t) =
V (T )/N and t = T/N , we obtain the following differential
equation in the large-graph limit:

dv(t)

dt
= −1 − L(R − 1)

1 − Rt
v(t). (34)

Under the initial condition v(0) = 1, the solution reads

v(t) = (L − 1)(R − 1)(1 − Rt)
L(R−1)

R − (1 − Rt)

LR − L − R
. (35)

Let ρ
g
x be a threshold below which vertices with the maximum

degree are left at the end of the algorithm. Considering that t

represents a fraction of chosen vertices in V1, we find v(ρg
x ) =

0, that is,

ρg
x = 1

R

{
1 − [(L − 1)(R − 1)]−

R
LR−L−R

}
. (36)

If ρx < ρ
g
x , then no chosen vertex in V1 has overlapped

neighbors in V2, resulting in a good typical performance
of the algorithm, i.e., ρ

g
y = Rρx . However, the algorithm

typically mistakes selections of vertices in V1 and underes-
timates the average cover ratio. Results show that ρ

g
x � ρRS

x

where the equality holds for R = 1, indicating that BP is better
than the greedy algorithm in terms of the typical performance
threshold.

VI. ANALYSIS OF LP RELAXATION

An LP-relaxed value of the max-COV in any biregular graph
is evaluated exactly using the LP duality [30] as follows.

Theorem 1. An LP-relaxed value of the max-COV in any
(L,R)-biregular graph is LK if K � 1/R holds.

Proof. xi = K/N (1 � i � N ) and ya = RK/N (1 � a �
M) is a feasible solution of LP-relaxed max-COV (3). The
value of the cost function is then RKM/N = LK .

The Lagrangian function of Eq. (3) is written as

L(x, y,p,q) =
M∑

a=1

ya + p

(
K −

N∑
i=1

xi

)

+
M∑

a=1

qa

(∑
i∈∂a

xi − ya

)
, (37)

where p ∈ R and q ∈ RM . Using the weak duality theorem,
one finds the following inequalities:

max
x, y

min
p,q

L(x, y,p,q) � min
p,q

max
x, y

L(x, y,p,q)

� max
x, y

L(x, y,p,q). (38)

Consequently, maxx, y L(x, y,p,q) is an upper bound of the
LP-relaxed value. Because Eq. (37) is represented by

L(x, y,p,q) =
N∑

i=1

(
−p +

∑
a∈∂i

qa

)
xi +

M∑
a=1

(1−qa)ya+pK,

(39)

the solution xi = ya = 1 (1 � i � N,1 � a � M) realizes the
maximum of the function with p and q satisfying −p +
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∑
a∈∂i qa � 0 and 1 − qa � 0(1 � a � M). Assuming that

qa = q holds for 1 � a � M , one finds that

max
x, y

L(x, y,p,q) = −pN + LNq + M − Mq + pK. (40)

On the right-hand side, setting (p,q) = (M/N,K/N ) results
in LK , which indicates that the upper bound of the LP-relaxed
max-COV in an (L,R)-biregular graph is LK . Because the
approximate solution denoted above achieves this bound, the
LP-relaxed value is equivalent to the bound. �

This theorem claims that ρy = Rρx (ρx � 1/R), suggesting
that LP relaxation typically finds good approximate values in
the RS regime. The LP-relaxed value is equivalent to ρRS

y in
the high-density regime where ρx > 1/R.

VII. NUMERICAL RESULTS

This section presents a description of some numerical
results for validation of the theoretical analyses. Here, we set
(L,R) = (9,3) as an example. Then, the RS-RSB threshold and
the typical performance threshold of the greedy algorithm are
evaluated as ρRS

x = 0.2 and ρ
g
x = (1 − 2−4/5)/3 = 0.1418 . . . .

Biregular random graphs are generated based on implemen-
tation of the configuration model [31]. At least 400 random
graphs are used to take a random graph average.

A. Average cover ratio

To examine the validity of theoretical analyses on the typical
performance of approximation algorithms, the average cover
ratio ρy is evaluated using several methods. We employ a BP-
guided decimation (BPD) algorithm [22] as a variant of loopy
BP to obtain a feasible solution satisfying all the constraints.
The algorithm fixes a value of a variable based on a solution
of the BP equation (11) until all variables are fixed to either
0 or 1. When a variable is fixed, BP equations are updated by
applying the fixed value. If the number of variables in V1 fixed
to 1 reaches toK , the remainders of x are immediately fixed to 0
to satisfy the constraint. An approximate value of the algorithm
is thus a function of the parameter κ , which depends on inputs,
i.e., μ, K , and a graph. Here, the BP equations with μ = 20 are
solved iteratively up to 150 steps, which enables the algorithm
to fix a variable practically even if the iterations cannot reach
to the RS fixed point. The parameter κ is tuned to maximize an
approximate value while the detail will be reported elsewhere.
In addition, the RS estimation of the average cover ratio ρRS

y

in the RS regime ρx < ρRS
x is used for comparison to the BPD

algorithm, though its typical performance is possibly evaluated
directly as in Ref. [32].

The theoretical result presented in Sec. VI is used for
LP relaxation, which is valid for arbitrary biregular graphs.
Average approximate values of the greedy algorithm are
estimated numerically with N = 103.

We also evaluate the average optimal value using the replica
exchange Monte Carlo (EMC) method [33]. Results show that
single-spin-flip updates of the model (4) take a long relaxation
time for equilibration even using the EMC method, indicating
the existence of deep valleys of the free energy. Consequently,
it is necessary to accelerate equilibration for a system with
sufficiently small chemical potential μ. To avoid such slow
relaxation, we consider an alternative lattice-gas model in
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FIG. 3. Maximum cover ratio ρy obtained by some approximation
algorithms as a function of ρx . Average optimal cover ratios are
estimated for the cardinality N = 200 (squares) and 400 (triangles)
by the replica EMC method, for N = 1000 by the greedy algorithm
(circles) and for N = 400 by the BPD algorithm (cross marks). The
solid line is the RS solution, equivalent to the LP-relaxed value.
Two vertical lines respectively represent the analytical performance
threshold ρg

x of the greedy algorithm and the RS-RSB threshold ρRS
x .

Inset: The difference 
ρy between the RS optimal cover ratio and
numerical estimations by corresponding approximation algorithms
as a function of ρx .

bipartite graph G represented as

�1(μ; G) =
∑

x∈{0,1}N
exp

[
μ

M∑
a=1

θ

(∑
i∈∂a

xi

)]
δ

(
K,

N∑
i=1

xi

)
,

(41)

where θ (x) takes 1 if x > 0 and 0 otherwise, and δ(x,y)
is Kronecker’s δ. In this model, variables y are eliminated
because ya = θ (

∑
i∈∂a xi) holds in the large-μ limit. The

ground states of the alternative model therefore correspond
to the optimal solutions of the max-COV in the same graph.
Moreover, single-spin-flip updates in the model are substan-
tially equivalent to multispin updates in the original model (4),
which makes the relaxation time to equilibrium states markedly
short. Because optimal values are invariant by replacing the
inequality constraint

∑N
i=1 xi � K with an equality one, the

equality constraint is adopted and Kawasaki dynamics for a
density-conserved system [34] is applied.

The results are presented in Fig. 3. Numerical results are
compatible to the RS estimation nearly up to the RS-RSB
threshold ρRS

x = 0.2 for the BPD algorithm and the EMC
method, and up to the typical performance threshold ρ

g
x

predicted analytically for the greedy algorithm. As shown
in the inset of Fig. 3, the average cover ratio by the greedy
algorithm deviates from the average optimal cover ratio above
ρ

g
x , while other estimates split above ρRS

x , indicating that the
Bethe-Peierls approximation and LP relaxation are no longer
appropriate. In fact, as shown in Fig. 4, the loopy BP for
N = 400 fails its convergence above ρx � 0.195, which may
imply the existence of a dynamical one-step RSB phase. It is
expected that the BPD algorithm finds approximate solutions
with good accuracy if a corresponding loopy BP converges to a
fixed point. Otherwise, decimation in the BPD algorithm is per-
formed based on a wrong estimation by the Bethe-Peierls ap-
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FIG. 4. Probability of successfully convergent samples in the
loopy BP for (9,3)-biregular random graphs as a function of ρx . The
dotted vertical lines represent RS-RSB thresholds shown in Fig. 2.

proximation. We emphasize, however, that the BPD algorithm
finds relatively good approximate solutions even in the RSB
phase as shown in Fig. 3. From these observations, we con-
firm that statistical-mechanical analyses successfully predict
typical performance thresholds by approximation algorithms.

B. Greedy algorithm and its variant

Here we examine the greedy algorithm more closely. To val-
idate the correctness of our analysis, we specifically examine
a fraction of selected vertices without the maximum degree.
The value rg is evaluated by

rg = 1 − ρ
g
x

ρx

, (42)

where ρ
g
x is given as Eq. (36). The algorithm finds an optimal

solution of the problem if rg = 0. As depicted in Fig. 5, the
analytical estimations of rg averaged over biregular random
graphs agree well with the numerical results. The fraction
arises atρg

x corresponding to the typical performance threshold.
Additionally, we modify the greedy algorithm to reduce

the gap of its typical performance to that of BP. As suggested
above, the reason lies in the point that the greedy algorithm

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.12 0.14 0.16 0.18 0.2

ρg
x

L = 9, R = 3

r g

ρx

Greedy (N = 1000)

Greedy (N = 5000)

Theory

Modified (N = 1000)

Modified (N = 5000)

FIG. 5. Fraction rg of selected vertices without the maximum
degree until the greedy algorithm stops as a function of ρx . Symbols
represent numerical results of the greedy algorithm with cardinality
N = 1000 (squares) and 5000 (circles) and the modified one with
N = 1000 (cross marks) and 5000 (stars). The solid line exhibits the
analytical estimation of the fraction rg.

often chooses wrong vertices leading to a shortage of vertices
with a maximum degree. To avoid the situation, one must select
a vertex to preserve as many vertices to a maximum degree
as possible, meaning that the optimal selection requires an
exhaustive search. We therefore propose a modified algorithm
in consideration of the influence of the selection on other
vertices in V1, the simplest improved algorithm toward the
optimal selection. Let ∂2i = {j ∈ V1\i | j ∈ ∂a (∀a ∈ ∂i)} be
a set of the second neighbors of vertex i ∈ V1. We also define
the subset of vertices with the maximum degree in V1 by W1.
The modified greedy algorithm is given as follows: at each
step, (i) choose the vertex named i ∈ W1 so that |∂2i ∩ W1|
is minimized, (ii) delete vertices neighboring to vertex i from
V2, and (iii) update W1 and V1 and return to step (i) if |V1| >

N − K . In Fig. 5, the fraction rg of the modified algorithm is
also shown with that of the original greedy algorithm. As shown
in Fig. 5, the typical performance threshold of the proposed
algorithm is improved, although it is still below the RS-RSB
threshold. This fact suggests that the typical performance of
greedy algorithms depends on vertex choices in V1 and BP
selects vertices better than those greedy selections.

C. Randomized rounding of LP relaxation

In Sec. VII A, we examine the typical performance of LP
relaxation in terms of its approximate value. In this subsection,
randomized rounding, a practical means of constructing a
feasible integer solution from LP relaxation, is applied to LP-
relaxed solutions. It is noteworthy that the typical performance
of randomized rounding probably depends on the selection of
an LP solver and its setting. Here, we use IBM ILOG CPLEX
with a default setting. The approximate value of the rounded
solution is compared to that of the RS solution in the RS phase,
which is LK . One considers that the rounding finds an optimal
integer solution of the problem if two estimates mutually
coincide. We define a success ratio pr by the fraction of
random graphs in which the rounding finds an optimal solution.
Figure 6 presents the average approximation ratio ρr

y and the
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FIG. 6. Typical performance of randomized rounding of LP re-
laxation as a function of ρx (left vertical axis). Symbols represent
approximation values ρr

y of rounded LP-relaxed solutions with car-
dinality N = 1000 (squares) and 5000 (cross marks). The solid line
represents the average cover ratio equivalent to that of LP relaxation in
the region shown. Squares and stars respectively represent the success
ratio pr (right vertical axis) of randomized rounding with N = 1000
and 5000.
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success ratio pr as a function of ρx , which strongly suggest that
the randomized rounding exhibits a phase transition in terms
of its typical performance. The threshold ρr

x is less than 0.1,
which is much lower than ρ

g
x , whereas the LP-relaxed value is

regarded as nearly optimal in the RS region ρx < ρRS
x = 0.2.

We therefore conclude that the typical performance of the
randomized rounding of LP-relaxed solution is inferior to that
of the greedy algorithm.

VIII. SUMMARY AND DISCUSSION

As described in this paper, we investigate the typical perfor-
mance of approximation algorithms called belief propagation,
the greedy algorithm, and linear-programming relaxation for
the maximum coverage problem in sparse biregular random
graphs. The typical performance of BP is studied by application
of the RS cavity method to a correspondent hard-core lattice-
gas model. Results show that, in the large-μ limit, there exist
two distinct RS-RSB thresholds regarded as typical perfor-
mance thresholds of BP. In addition, the greedy algorithm
performance and LP relaxation were studied especially in the
low-density region. Results show that the typical performance
threshold of the greedy algorithm is lower than that of BP
and that LP-relaxed values are always equivalent to the RS
solutions, leading to the threshold equivalent to that of BP.
Those analytical results were validated by executing some
numerical simulations. Results of additional numerical studies
suggest that BP typically works better than the modified greedy
algorithm and that randomized rounding of LP-relaxed solu-
tions has a threshold lower than that of the greedy algorithm.

To assess the typical performance of BP as an approximation
algorithm, we concentrated on statistical-mechanical analysis
of max-COV up to the RS level. Further analyses based on the
one-step RSB will be necessary to reveal statistical-mechanical
properties of the problem and typical performance analysis of
another algorithm called survey propagation. Another possible
avenue of future work is the extension of our analyses to
other random bipartite graphs. As with min-VCs, it is an

attractive question whether the magnitude relation of typical
performance thresholds changes depending on the random
graph ensembles.

Our results provide not only respective typical performance
of approximation algorithms but also their suggestive mutual
relations. Specifically examining LP relaxation, it is worth
emphasizing that the LP relaxation finds good approximate
values compared to optimal values but the typical performance
of its randomized rounding has the smallest threshold among
the approximation algorithms studied here. To fill the gap of
thresholds, it is important to examine modifications of LP
relaxation such as the cutting-plane approach [35]. As for
the greedy algorithm and its modification, numerical results
suggest that evaluation of the influence of their deletion process
affects the marked improvement of the typical performance
threshold. The fact that BP is better than the greedy algo-
rithm and its modification indicates that BP incorporates the
influence more efficiently. These suggestions are expected to
be of great help in understanding properties and relations of
approximation algorithms in terms of typical performance. In
addition, our analyses of the greedy algorithm and randomized
rounding of LP relaxation illustrate that typical-case and worst-
case evaluations capture different notions of approximate
performance in optimization problems. This fact indicates
the importance of the typical-case analysis of approximation
algorithms. We hope that the arguments and results presented
herein stimulate further studies and that the typical perfor-
mance analyses of approximation algorithms will attract the
interest of researchers in many diverse fields.
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