
PHYSICAL REVIEW E 97, 022137 (2018)

Stationary mass distribution and nonlocality in models of coalescence and shattering
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We study the asymptotic properties of the steady state mass distribution for a class of collision kernels in
an aggregation-shattering model in the limit of small shattering probabilities. It is shown that the exponents
characterizing the large and small mass asymptotic behavior of the mass distribution depend on whether the
collision kernel is local (the aggregation mass flux is essentially generated by collisions between particles of
similar masses) or nonlocal (collision between particles of widely different masses give the main contribution
to the mass flux). We show that the nonlocal regime is further divided into two subregimes corresponding to
weak and strong nonlocality. We also observe that at the boundaries between the local and nonlocal regimes,
the mass distribution acquires logarithmic corrections to scaling and calculate these corrections. Exact solutions
for special kernels and numerical simulations are used to validate some nonrigorous steps used in the analysis.
Our results show that for local kernels, the scaling solutions carry a constant flux of mass due to aggregation,
whereas for the nonlocal case there is a correction to the constant flux exponent. Our results suggest that for
general scale-invariant kernels, the universality classes of mass distributions are labeled by two parameters: the
homogeneity degree of the kernel and one further number measuring the degree of the nonlocality of the kernel.
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I. INTRODUCTION

Many-body systems controlled by coalescence arise in
many branches of science. The microscopic particles constitut-
ing such systems have a tendency to merge irreversibly upon
collision or contact. Some examples include hydrogels for
biomedical applications [1], supramolecular polymer gels [2],
aerosol formation [3], cloud formation [4,5], ductile frac-
ture [6], and charged biopolymers [7,8]. By understanding the
kinetics of coalescence, the macroscopic properties of such
systems can be related to the microphysics of the fundamental
collision and merging processes. For more applications and
known results, see the reviews [9,10]. In some applications,
colliding particles may also fragment or shatter into smaller
particles. Whether the collision between particles will result
in coagulation or fragmentation of the constituent particles
depends on the energy of the colliding particles [11,12].
Typically, particles with higher kinetic energy fragment, while
slow moving ones coalesce or rebound. The size distribution of
the fragmented particles is typically a power law distribution
[13–16], reproducible in simple tractable models [17,18]. Such
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fragmentation processes find application in geophysics [19],
astrophysics [20,21], glacier modeling [22], etc.

In this paper, we are interested in situations where both
coalescence and collisional fragmentation are simultaneously
relevant. Examples include the fluctuations of phase coherent
domains in high-temperature superconductors [23], the statis-
tical properties of insurgent conflicts [24], the dynamics of
herding behavior in financial markets [25], and the formation
and stability of planetary rings [26,27] where a coalescence-
fragmentation model has recently been proposed to explain the
particle size distribution of Saturn’s rings over several orders
of magnitude [12,28]. When coalescence and fragmentation
occur together, one might expect the system to reach a nonequi-
librium steady state in which the depletion of smaller particles
due to coalescence is balanced by the depletion of larger
particles due to fragmentation. These nonequilibrium states
are expected to be insensitive to fine details of aggregation-
fragmentation processes provided that the mass scales at which
fragmentation acts as an effective source of light particles
and the sink of heavy particles are widely separated. The
simplest model of fragmentation for which the described scale
separation occurs naturally is such that all fragmented particles
are of the size of the smallest possible particle [12,28]. We
refer to such extreme fragmentation as shattering and use
m0 to denote the mass of the smallest particles generated.
The expected universality of coalescence-shattering models
explains the diversity of their applications and motivates a
parametric study of how the particle size distribution depends
on the form of the collision kernel K(m1,m2). The kernel
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depends on the nature of particle motion and interaction and
gives the dependence of the microscopic collision rate on the
masses m1 and m2 of the colliding particles.

A particularly important class of collision kernels are
homogeneous functions describing collisions that do not have
a characteristic mass scale. This class includes many scien-
tifically relevant cases, including the previously mentioned
examples. We therefore restrict our attention to homogeneous
kernels and denote the degree of homogeneity by β. Let us
now consider how the stationary mass distribution should
scale for a general homogeneous kernel. In the limit of small
shattering probability p, there is a divergent mass scale M(p)
beyond which there are very few heavy particles due to a
high cumulative probability of shattering. For a large range
of masses m0 � m � M(p), we expect N (m) to be such that
the flux of mass due to coalescence J (m) is m independent due
to local mass conservation. In the well-mixed limit, the mass
scaling of the flux can be determined from the following mean
field scaling (see [29] for details):

J (m) ∼ m3mβN2(m).

Constant aggregation flux J implies that

N (m) ∼ m− 3+β

2 . (1)

By analogy with wave turbulence, we refer to the scaling
exponent (3 + β)/2 as the Kolmogorov-Zakharov or constant
flux exponent. It depends only on the kernel homogeneity
β, and therefore possesses a high degree of universality. In
particular, it will not change if we perturb the kernel while
preserving the value of β or change the nature of of sinks and
sources (e.g., by removing heavy particles from the system
once they become heavier than a fixed mass M as in [29] or
removing colliding particles at a certain rate as in [30]).

It is natural to ask when these constant flux solution
is realized? This question can be answered by substituting
the scaling solution as in Eq. (1) into the analytic integral
expression for the flux J and checking that it remains finite
in the limit of small shattering probability p (see Refs. [29,31]
for details of the derivation). It turns out that the realizability of
constant flux solution depends on the locality of the collision
mechanism. To characterize locality carefully, let us further
reduce the class of kernels we are studying by assuming that
in addition to having homogeneity degree β, K(m1,m2) has
the following asymptotic scaling when one of the colliding
particles is much heavier than the other:

K(m1,m2) ∼ m
μ
1 mν

2 for m2 � m1.

Clearly, β = μ + ν. This second reduction of generality is
as natural for scale-free kernels as the homogeneity. It turns
out that the realizabiliity of the Kolmogorov-Zakharov scaling
depends not on β, but on the difference

θ = |μ − ν|,
which we call the locality exponent. In [29], we showed
that for pure coalescence, the constant flux scaling (1) is
realized if the locality exponent θ < 1. Physically, kernels
with θ < 1 lead to the flux of mass due to coalescence
being dominated by collisions between similar mass particles.
Hence the term “locality.” For pure coalescence, the scaling

of the particle size distribution for local kernels is strongly
universal: when the characteristic scales of the source and
sink are widely separated, it becomes independent of their
details and depends only on the degree of homogeneity β

of the collision kernel. We therefore expect intuitively that
for the coalescence-fragmentation case with θ < 1, the scaling
of the particle size distribution in the limit of small shattering
probability p is given by the constant flux expression (1).

This paper confirms this intuition and addresses the nonlocal
case θ > 1. We will use the simplest family of collision kernels
labeled by two exponents ν and μ (or equivalently by β =
ν + μ and θ = ν − μ):

K(m1,m2) = m
μ
1 mν

2 + mν
1m

μ
2 . (2)

Without loss of generality, we assume that ν � μ. This family
has been widely used in general studies of aggregation (see
Refs. [9,10] for a review). Furthermore, we will always assume
that the mean field approximation is applicable, which will
allow us to calculate the mass distribution N (m) by deriving
and solving the corresponding Smoluchowski equation [32].

For the family of kernels (2) we will show that if θ > 1,
the scaling exponent of the mass distribution in the limit
of small shattering probability is both β and θ dependent.
Moreover, this dependence is different depending on whether
1 < θ < 2 (weak nonlocality) or θ > 2 (strong nonlocality).
The amplitude of the mass distribution in the nonlocal regime
is nonuniversal in the sense that it depends on the effective
shattering scale and the mass of dust particles. It is interesting
to note that these results for the aggregation-shattering model
which conserves mass parallel the answers for a noncon-
served system with coalescence, input of small particles, and
collision-dependent evaporation studied in [30]. It seems that
fine details of the mechanisms leading to effective sources
and sinks of particles are irrelevant for a large class of
coalescent models even in the nonlocal regime. An important
conclusion from our analysis is that the mass distribution for
the model kernel (2) for θ > 1 is different from the mass
distribution for the local kernel (m1m2)β/2 with the same degree
of homogeneity.

The paper is organized as follows. In Sec. II we define
the model precisely and state our main quantitative results. In
Sec. III we discuss the numerical algorithm that we use to solve
for the steady state mass distribution. It is an iterative procedure
that we show to reproduce known exact solutions. In Sec. IV
we solve the model exactly for two special cases: first when
μ = ν (θ = 0) and second the addition model in which two
particles coalesce only when at least one particle is a monomer
(θ = ∞). These exact solutions help us to benchmark the
numerical algorithm. It is possible to obtain exact results for
all integer θ ’s. This is discussed in Sec. V, where the presence
of logarithmic corrections is established for some values of θ .
In Sec. VI, the small mass behavior of the mass distribution is
studied using the exact relations between different moments.
This enables us to determine the exponents when the kernel
is local, and relations between the exponents when the kernel
is nonlocal. In Sec. VII, we analyze the large mass behavior
of the mass distribution by studying the singularities of the
generating functions. By stitching together the small and large
mass behavior, we are able to determine both the small and
large mass asymptotic behavior of the mass distribution. In
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Sec. VIII, we discuss the implications of our findings for the
specific case of planetary rings since it is an interesting example
where both local and nonlocal cases may be relevant. Finally,
we conclude with a overview of results and directions of future
research in Sec. IX.

II. MODEL

Consider a collection of particles, each characterized by a
single scalar parameter, mass. The mass of particle i will be
denoted by mi , i = 1,2,, . . ., and will be measured in terms of
the smallest possible mass in the system m0, corresponding to
the smallest possible dust particle, such that mi is an integer.
Given a certain initial configuration, the system evolves in time
via coagulation and collision-dependent fragmentation. Two

particles of masses m1 and m2 collide at rate (1 + λ)K(m1,m2),
where K(m1,m2) is the collision kernel. On collision, with
probability 1/(1 + λ), the two particles coalesce to form a
particle of mass m1 + m2, and with probability λ/(1 + λ),
fragment into (m1 + m2) particles of mass 1. Note that both
the dynamical processes conserve mass, so that total mass is
a constant of motion. We would be interested in the limiting
case when the fragmentation rate tends to zero, i.e., λ → 0.
Also, we will be considering the well-mixed mean field limit
when the spatial correlations between the particles may be
neglected.

Let N (m,t) denote the number of particles or mass m per
unit volume at time t . In the well-mixed dilute limit, the
time evolution of N (m,t) is described by the Smoluchowski
equation

dN(m,t)

dt
= 1

2

∞∑
m1=1

∞∑
m2=1

N (m1,t)N (m2,t)K(m1,m2)δ(m1 + m2 − m) − (1 + λ)
∞∑

m1=1

N (m1,t)N (m,t)K(m1,m)

+ λ

2
δm,1

∞∑
m1=1

∞∑
m2=1

N (m1,t)N (m2,t)K(m1,m2)(m1 + m2). (3)

The first term in the right hand side of Eq. (3) is a gain term
that accounts for the number of ways a particle of mass m

may be created through a coalescence event. The second term
is a loss term that accounts for the number of ways in which
N (m,t) decreases due to coalescence or fragmentation. The
last term describes the creation of particles of mass 1 due to
fragmentation events. It is easy to check that the mean mass
density is conserved. In this paper, we will be interested in the
steady state solution of Eq. (3) obtained by setting the time
derivative to 0. We will denote the steady state solution by
N (m). N (m) satisfies the equation

0 = 1

2

∞∑
m1=1

∞∑
m2=1

N (m1)N (m2)K(m1,m2)δ(m1 + m2 − m)

− (1 + λ)
∞∑

m1=1

N (m1)N (m)K(m1,m)

+ λ

2
δm,1

∞∑
m1=1

∞∑
m2=1

N (m1)N (m2)K(m1,m2)(m1 + m2).

(4)

We consider the general class of kernels given by

K(m1,m2) = m
μ
1 mν

2 + mν
1m

μ
2 , ν � μ. (5)

The kernel may also be classified using two other exponents.
The first is the homogeneity exponent β defined through
K(hm1,hm2) = hβK(m1,m2):

β = ν + μ. (6)

The second is the nonlocality exponent θ defined as

θ = ν − μ. (7)

When β > 1, the kernel is referred to as a gelling kernel and
nongelling otherwise. We will refer to kernels with θ < 1 as
local kernels and nonlocal otherwise.

We also consider another kernel that corresponds to the
so called addition model [33–38]. Here, collision events are
allowed only if at least one of the particles has mass 1. The
kernel for the addition model is

Kadd(m1,m2) = mν
1m

ν
2(δm1,1 + δm2,1), (8)

which is characterized by a single exponent ν. This kernel turns
out to be exactly solvable (see Sec. IV B).

In this paper, we will determine the asymptotic behavior
of N (m) through analysis of the moments as well as the
singularities. Moments and generating function are defined as

Mα =
∞∑

m=1

mαN (m), (9)

Fα(x) =
∞∑

m=1

mαN (m)xm. (10)

Clearly, Fα(1) = Mα . Multiplying Eq. (4) by xm and sum-
ming over all m, we obtain a relation between moments and
generating functions

Fμ(x)Fν(x) − (1 + λ)[MμFν(x) + MνFμ(x)]

+ x(1 + 2λ)MμMν = 0. (11)

We also define the exponents that characterize the mass
distribution N (m). We assume that the only relevant mass scale
in the problem is the cutoff mass M and hence N (m) has the
scaling form

N (m) = m−τ f

(
m

M

)
, m,M � 1 (12)
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TABLE I. Summary of results obtained in this paper. The expo-
nents y, τs , ηs , τ
, and η
 are as defined in Eqs. (13), (14), and (15). For
θ = 1 and 2, there are additional logarithmic corrections as described
in Eqs. (81) and (60), respectively.

θ y τs ηs τ
 η


0 2 3+β

2 max[0,
1−β

2 ] 3+β

2 max[0,
1−β

2 ]

(0,1) 2
θ+1

3+β

2 max[ 1−β

2 ,0] 2+β

2 max[ 2−β

2 , 1
2 ]

(1,2) 1 μ + 2 max[−μ,0] 2+β

2 ηs + 2−θ

2

(2,∞) 1 ν max[2 − ν,0] ν max[2 − ν,0]

where τ is an exponent and f (x) is a scaling function. M

denotes the cutoff scale below and above which N (m) behaves
differently. There are two cutoff mass scales in the problem.
One is the total mass in the system and the other is the scale
introduced by fragmentation. We will be working in the limit
when total mass is infinite, but mean density is finite, leaving
only one cutoff scale. The divergence of the cutoff mass scale
as the fragmentation rate λ → 0 is captured by

M ∼ λ−y, λ → 0, (13)

where the exponenty will depend on the kernel. To characterize
the scaling behavior for small and large masses, we introduce
four new exponents τs , ηs , τ
, and η
 which are defined as

N (m) � as

mτs Mηs
, m � M (14)

N (m) � a


mτ
Mη

e−m/M, m � M. (15)

The exponential decay for large mass is a conjecture. For
m � M , the exponential decay with mass will be supported
by exact solutions for special cases and numerical observation
for more general cases. Further justification for arbitrary
kernels follows from the additivity principle using which it
has been argued that, for generic conserved mass models, the
mass distribution has an exponential decay [39,40]. The four
exponents are not independent. It is straightforward to obtain
from Eq. (12) that

τs + ηs = τ
 + η
 = τ. (16)

The results obtained in this paper for the different exponent as
a function of the exponents θ and β are summarized in Table I.

III. NUMERICAL ALGORITHM

In this section, we describe the numerical scheme for
obtaining the steady state mass distribution N (m). Solving
Eq. (4) in the steady state for m = 1, we obtain

N (1) = 2λ + 1

1 + λ

MμMν

Mμ + Mν

. (17)

For m � 2, N (m) may be determined from Eq. (4) in the steady
state, provided Mμ, Mν , and all N (k) for k < m are known:

N (m) =
∑m−1

m1=1 N (m1)N (m − m1)K(m1,m − m1)

2(1 + λ)(mμMν + mνMμ)
. (18)

Thus, Mμ and Mν determine N (m) for m � 1.

FIG. 1. Flowchart describing the iterative numerical algorithm for
determining the steady state distribution N (m).

Consider scaled variables Ñm = N (m)/N(1) and M̃α =
Mα/N(1). In terms of these variables, Eqs. (17) and (18)
reduce to

1 = 2λ + 1

1 + λ

M̃μ
˜Mν

M̃μ + M̃ν

, (19)

Ñ (m) =
∑m−1

m1=1 Ñ (m1)Ñ(m − m1)K(m1,m − m1)

2(1 + λ)(mμM̃ν + mνM̃μ)
. (20)

M̃μ and M̃ν determine Ñ (m) for m � 1. The two unknowns
M̃μ and M̃ν are not independent and related to each other
through Eq. (19).

To determine M̃μ, we follow an iterative procedure as sum-
marized in the flowchart shown in Fig. 1. We start by assigning
a numerical value (close to 1.0) for M̃μ. M̃ν is determined
from Eq. (19). We then solve for Ñ (m) up to a value of m

for which Ñ (m) is larger than a predetermined value (10−16

in our analysis), setting N (m) = 0 for larger values of m. We
then check for self-consistency, i.e., whether

∑
mμÑ (m) is

equal to the preassigned value of M̃μ. We increment M̃μ in
small steps until the self-consistency condition is satisfied to
the required precision. In our numerical analysis, we demand
that the difference between the assumed and calculated values
of M̃μ should be smaller than 10−10.

To determine the unscaled variables N (m), we use the fact
that mass is conserved:

∑∞
1 mN (m) = ρ, where ρ will be

treated as a parameter. We then scale all Ñ (m) by the same
factor so that the desired mass density ρ is achieved, thereby
determining N (m). In our numerical measurements, we set
ρ = 1. There is no proof that the algorithm will result in the
convergence of N (m) to its correct value. However, we verify
the convergence for special solvable kernels (see Sec. IV),
leading us to expect that the mass distribution converges to
its correct value for more general kernels.

From the numerically computed N (m), we observe that, for
all values of μ and ν that we have studied, N (m) decays expo-
nentially at large masses [as in Eq. (15)]. The exponential cutoff
mass M is determined by solving for the three parameters
(τ
, M , and a
/M

η
) in Eq. (15) using N (m) for three
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consecutive m’s and extrapolating to large m. Once M is
determined, the compensated mass distribution N (m)em/M

is a power law with exponent τ
, allowing us to verify the
theoretical results for the exponents at large mass.

IV. EXACT SOLUTIONS

The steady state mass distribution N (m) may be determined
exactly for two cases: (1) when μ = ν = β/2 and (2) the
addition model (defined in Sec. IV B).

A. Multiplicative kernel: μ = ν = β/2 (θ = 0)

When μ = ν = β/2, the kernel (5) reduces to the mul-
tiplicative kernel. In this case, Eq. (11) for the generating
function reduces to the quadratic equation

F 2
β/2(x) − 2(1 + λ)Mβ/2Fβ/2(x) + x(1 + 2λ)M2

β/2 = 0
(21)

which may be solved to yield

Fβ/2(x) = (1 + λ)Mβ/2

[
1 −

√
1 − x

xc

]
, (22)

where

xc = (1 + λ)2

(1 + 2λ)
, (23)

and the sign of the square root of the discriminant is fixed by
the constraint Fμ(0) = 0. The coefficient of xm is the Taylor
expansion of Fμ(x) is N (m) and is

N (m) = (2m − 2)!

22m−2m!(m − 1)!

N (1)

mβ/2xm−1
c

, m = 2,3, . . . (24)

where

N (1) = Mβ/2(1 + λ)

2xc

. (25)

For large m, the factorials may be approximated using Stirling
formula, and the asymptotic behavior of N (m) for large m may
be derived to be

N (m) � N (1)xc√
π

e−m/M

m(3+β)/2
, m � 1 (26)

where

M = 1

λ2
, λ → 0, (27)

or equivalently the exponent y = 2.
In Eq. (26), N (1) is determined by the condition that

M1 = ρ is a constant. It is not possible to find a closed form
expression for N (1) for arbitrary β, however, when β/2 is
an integer, it is possible to determine it by differentiating or
integrating Eq. (22) with respect to x and setting x = 1. It is
then straightforward to obtain N (1) = 2λ(1+λ)ρ

2xc(1+2λ) for β = 0, and

N (1) = ρ(1+λ)
2xc

for β = 2. For generic β, we use the asymptotic
form (26) to obtain the dependence of 〈m〉 on the cutoff, thus
determining N (1). We thus obtain

N (m) ∝ ρ

Mmax[0,(1−β)/2]

e−mλ2

m(3+β)/2
, θ = 0. (28)

10-20

10-16

10-12

10-8

10-4

100

100 101 102 103 104 105

N
(m

) e
m

/M

m

(a)

(b)

(c)

(d)

ν=0.00; μ=0.00
ν=0.50; μ=0.50
ν=1.00; μ=1.00
ν=2.00; μ=2.00

 0

 3000

 6000

 9000

 0  0.02  0.04  0.06  0.08

M

λ

ν=0; μ=0
Eq.(16)

FIG. 2. N (m)em/M when ν = μ for ν = 0, 1
2 ,1,2. The solid lines

are power laws with an exponent −(3 + β)/2: (a) − 3
2 , (b) −2, (c) − 5

2 ,
and (d) − 7

2 . The evaporation rate is λ = 0.01. Inset: M , obtained from
numerical analysis, is compared with the analytical result in Eq. (23).

In the limit of λ → 0, N (m) tends to a finite limit only when the
kernel is gelling, i.e., β > 1. For nongelling kernels with β <1,
the prefactor tends to zero with decreasing fragmentation rate
λ. This observation may be rationalized by the fact the mass
capacity of gelling kernels is finite and infinite for nongelling
kernels. Summarizing the results for θ = 0, we have derived
the results

τs = τ
 = 3 + β

2
, (29a)

ηs = η
 = max[0,(1 − β)/2], (29b)

y = 2. (29c)

The exact solution for the case μ = ν can be used to
benchmark the numerical scheme described in Sec. III. In
Fig. 2, we plot the numerical solution to Eq. (4), obtained
using the aforementioned algorithm, for four different values
of μ. The numerically determined cutoff scale M is in excellent
agreement with the exact solution (see inset of Fig. 2). The data
for the compensated mass distribution N (m)em/M are power
laws with exponents matching the ones obtained from the
exact solution (see Fig. 2). We thus conclude that the numerical
scheme is accurate and stable.

B. Addition model with fragmentation

In this section, we calculate N (m) for the addition model.
In this case, collisions between particles are allowed only if
at least one of the masses is one, and the resulting collision
kernel is as in Eq. (8). While this model is expected to mimic
the kernel (5) with ν � μ when collisions between dissimilar
masses dominate, the exact regime of applicability will become
clear only on comparing with the full solution for N (m). For the
addition model, the Smoluchowski equation (4) in the steady
state is

0 = N (1)[(m − 1)νN (m − 1) − (1 + λ)mνN (m)]

+ δm,1[λN(1)(Nν + Nν+1) − (1 + λ)NνN (m)mν]. (30)
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This is easily solved to give

N (m) = λMν+1 − Mν

mν(1 + λ)m
, m = 1,2, . . . (31)

which in the limit of large mass and vanishing λ reduces to

N (m) � N (1)

mν
e−m/M, m � 1 (32)

where M = λ−1[1 + O(λ)]. The unknown parameter N (1)
is determined by the constraint that mass is conserved:∑∞

1 mN (m) = ρ. We thus obtain

N (m) ∝ ρ

Mmax[2−ν,0]

e−m/M

mν
, m � 1. (33)

To summarize, we have obtained

τs = τ
 = ν, (34a)

ηs = η
 = max[0,2 − ν], (34b)

y = 1 (34c)

for the addition model.

V. MASS DISTRIBUTION FOR INTEGER θ

It is possible to obtain exact results for the case when
the locality exponent θ is an integer, namely, θ = n, n is an
integer. The starting point is Eq. (11). If ν = μ + n, where
n = 1,2, . . ., Eq. (11) reduces to a closed differential equation
for Fμ:

[Fμ(x) − (1 + λ)Mμ](x∂x)nFμ(x) − (1 + λ)MνFμ(x)

+ x(1 + 2λ)MμMν = 0. (35)

We expect the singularities to occur at the points in the complex
x plane where the coefficient in front of the highest order term
is zero. Therefore, at the singular point xc, Fμ satisfies

Fμ(xc) = (1 + λ)Mμ. (36)

Introduce new variables f (x) as follows:

Fμ(x) = (1 + λ)Mμ + f (x), (37)

t = ln(x), (38)

where f (xc) = 0 and tc = ln(xc) > 0. Then, Eq. (35) may be
rewritten as

f ∂n
t f − (1+ λ)Mνf − (1+ 2λ)MμMν

[
(1+ λ)2

(1+ 2λ)
− et

]
= 0.

(39)

Equation (39) becomes more tractable under the following
transformations:

t = ln

(
(1 + λ)2

(1 + 2λ)

)
+ τ, (40)

f (t) = (1 + λ)Mνg(τ ), (41)

such that we obtain

g(τ )∂n
τ g(τ ) − g(τ ) − j (1 − eτ ) = 0, (42)

where

j = Mμ

Mν

. (43)

We note that g(τc) = 0. We now analyze Eq. (42) for specific
integer values of θ .

A. θ = 1

When n = 1, near the critical point Eq. (42) reduces to

gg′ = j (1 − eτc ) + o(1) (44)

since g(τc) = 0. Solving for g(τ ), we obtain

g(τ ) =
√

2j (eτc − 1)
√

τc − τ + o(
√

τc − τ ). (45)

The generating function g must be real for τ ∈ R, τ < τc.
Therefore, we must have τc > 0 or in terms of the original
variables

xc >
(1 + λ)2

(2λ + 1)
. (46)

We conclude that for θ = 1,

f (x) = A
√

xc − x + o(
√

xc − x), (47)

where the amplitude is

A =
√

2(1 + 2λ)MμMν

[
1 − (1 + λ)2

(1 + 2λ)
x−1

c

]
. (48)

We conclude that in the limit of large masses,

Nμ(m) ∼ A

∫ ∞

0

dx

π
(xc + x)−m−1√x (49)

∼ Ax
1/2
c

2
√

π
m−3/2e−m ln(xc). (50)

Equivalently,

N (m) ∼
√

(1 + 2λ)MμMν

2π

[
xc − (1 + λ)2

(1 + 2λ)

]
x−m

c

mμ+3/2
. (51)

An independent moment equations analysis shows that for
λ ↓ 0 [see Eqs. (78a) and (86)],

xc = 1 + 1

M
, where M ∼ λ−1. (52)

Then, the small λ limit of Eq. (51) is

N (m) ∼
√
MμMν

2πM

e−m/M

m(2+β)/2
, θ = 1. (53)

B. θ = 2

When n = 2, near the critical point Eq. (42) reduces to

gg′′ = j (1 − eτc ) + o(1), g(τc) = 0, (54)

which has a solution given by

g(τ ) =
√

2j (eτc − 1) ln
�

τc − τ
(τc − τ ) + · · · ,

where � is a positive constant which sets a reference scale
in τ space. Notice that the solution depends on an arbitrary
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constant �, which is consistent with the solution of a second
order ordinary differential equation subject to a single bound-
ary condition g(τc) = 0. In principle, � may be determined by
matching this singularity dominated solution with the solution
far from the singular point. In the original variables this
reads as

f (y) =
√

2J

[
xc − (1 + λ)2

(1 + 2λ)

]
y

xc

√
ln

�xc

y
+ · · · , (55)

where y = xc − x, and

J = (1 + 2λ)MμMν . (56)

Calculating the jump over the branch cut singularity of f ,
we find that

Nμ(m) =
√

J

2

[
xc − (1 + λ)2

1 + 2λ

]

×
∫ ∞

0
dy

y[ln �xc

y
]−1/2

xc(xc + y)m+1
+ · · · . (57)

Changing variables y → yxc/m and taking the large-m limit
of the integral we obtain

N (m) ∼
√

J

2

[
xc − (1 + λ)2

(1 + 2λ)

]
e−m ln xc

mν
√

ln m
m0

, (58)

where m0 is a reference scale in the mass space.
In the limit of small λ, we expect that [see Eqs. (78a)

and (86)]

xc = 1 + 1

M
, where M ∼ λ−1. (59)

Then, Eq. (58) simplifies to

N (m) ∼
√
MμMν

2M

e−m/M

mν
√

ln m
m0

. (60)

Therefore, we find that there are logarithmic corrections to the
scaling form, and θ = 2, τ
 = ν, η
 = 1

2 , and a
 = √
J/2.

C. θ = 3,4, . . .

Finally, we analyze Eq. (42) for n > 2. Near the critical
point,

g(τ )∂n
τ g(τ ) = j (1 − eτc ) + · · · . (61)

We try the family of solutions

g(τ ) = pn−2(τc − τ ) + A(τc − τ )n−1 log

(
�

τc − τ

)
+ · · · ,

(62)

where pn−2 is a polynomial of (n − 1)st degree such that
pn−2(0) = 0,

pn(x) = d1x + d2x
2 + · · · + dn−2x

n−2. (63)

Note that Eq. (62) depends on n arbitrary constants [before
we impose the condition g(τc) = 0], which makes it a good

candidate for a general solution. Differentiating the above
ansatz, we find

∂n
τ g(τ ) = (−1)nn!

A

τc − τ
. (64)

Substituting this into Eq. (61) gives an answer for the ampli-
tude:

A = (−1)n−1

(n − 1)!
· j (1 − eτc )

d1
. (65)

The coefficient d1 can be expressed in terms of Fμ+1: it follows
from the definition of Fμ that

d1 = ∂τg(xc) = Fμ+1(xc)

(1 + λ)Mν

. (66)

Applying the inversion formula and using the fact that the
analytic part of g(τ ) does not contribute to the large mass
asymptotic, one finds that

N (m) ∼ J

Fμ+1(xc)

[
xc − (1 + λ)2

1 + 2λ

]
e−m ln(xc)

mν
. (67)

For small λ’s,

N (m) ∼ MμMν

MFμ+1(xc)

e−m/M

mν
, m � M,θ = 3,4, . . . . (68)

The logarithmic corrections to the mass distribution for
integer θ calculated in this section may be summarized as
follows:

N (m) ≈ a
e
−m/M

mν(ln m)α
, m � M,θ = 2,3, . . . , (69)

where α = 1
2 for θ = 2 and zero otherwise. We also note that

these results coincide with the results obtained using analysis
of singularities for noninteger θ > 2 [see Eq. (107)]. The
solution (69) is now verified using the numerical solution
for N (m) for integer θ . Equation (69) has three unknown
parameters a
, M , and α. These parameters are determined
as a function of m by using N (m) for three consecutive m. The
variation of α with m is shown in Fig. 3. In these data, a large
value of λ (λ = 20.0) is chosen so that the small mass regime
is suppressed and the large mass regime is exaggerated. It can
be seen from Fig. 3 that the exponents converge, albeit slowly,
to their predicted theoretical values [see Eq. (69)].

VI. MOMENT ANALYSIS

An exact solution is possible only when θ = 0. In this
section, we use moment analysis to determine some of the
exponents characterizing N (m) for general θ and β. In partic-
ular, we study the small mass behavior of the mass distribution
N (m) as described by Eq. (14). Our aim is to determine the
exponents τs , ηs , and y as a function of β and θ . For this, we
will require the equations satisfied by the different moments
of m. These may be obtained by differentiating Eq. (11) with
respect to x or by multiplying Eq. (4) by mn and summing over
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m from 1 to ∞. Doing so gives

λ(Mμ+nMν + MμMν+n) = (1 + 2λ)MμMν

+ (1 − δn,0)
n−1∑
r=1

(
n

r

)
Mμ+rMν+n−r ,n = 0,1, . . . (70)

which for n = 0,2 may be explicitly written as

λ(Mμ+1Mν + MμMν+1) = (1 + 2λ)MμMν, (71a)

λ(Mμ+2Mν + MμMν+2) = 2Mμ+1Mν+1

+ (1 + 2λ)MμMν . (71b)

Given the small mass behavior of N (m) as in Eq. (14), the
dependence of the αth moment of mass on the cutoff mass M

may be determined as:

Mα ∼ asM
−ηs

∫ M

dm mα−τs , (72)

where by x ∼ y, we mean that x/y = O(M0) when λ → 0.
There is no divergence at small masses as the integral is cut off
at the smallest mass m0 = 1. Thus, we obtain

Mα ∼
{

M−ηs ln M, α = τs − 1

M−ηs+max(α+1−τs ,0), α �= τs − 1.
(73)

We first derive upper and lower bounds for the exponent
τs . We first show that τs < ν + 2. Assume that τs > ν + 2. We
immediately obtain from Eq. (73) thatMμ ∼ Mμ+1 ∼ Mν ∼
Mν+1 ∼ M−ηs . In this case, Eq. (71a) simplifies to λM−2ηs ∼
M−2ηs or equivalently λ ∼ O(1). But, λ is a parameter which
tends to 0, hence, we arrive at a contradiction. Hence, τs �
ν + 2. We now show that τs �= ν + 2. Assume τs = ν + 2. We
immediately obtain from Eq. (73) thatMμ ∼ Mμ+1 ∼ Mν ∼
M−ηs and Mν+1 ∼ M−ηs ln M . It is then straightforward to
obtain from Eq. (71a) that λ ∼ 1/ ln M . Knowing thatMν+2 ∼
M1−ηs , Eq. (71b) simplifies to λM ∼ ln M or λ ∼ M−1 ln M ,

in contradiction with the earlier result λ ∼ 1/ ln M . Hence, we
conclude that τs < ν + 2.

We now show that τs > μ + 1. Suppose τs < μ + 1. Then,
from Eq. (73), Mμ+n ∼ MMμ and Mν+n ∼ MMν for
n � 0. In this case, Eq. (71b) simplifies to λM2MμMν ∼
M2MμMν or λ ∼ O(1). But, λ is a parameter which tends
to 0, hence we arrive at a contradiction. Hence, τs � μ + 1.
We now show that τs �= μ + 1. In this case, from Eq. (73), it
follows that Mμ ∼ M−ηs ln M , Mμ+n ∼ MMμ/ ln M , and
Mν+n ∼ MMν for n � 0. It is straightforward to show that
substituting into Eq. (71a) gives λ ∼ M−1, while substituting
into Eq. (71b) gives λ ∼ 1/ ln M , leading to a contradiction.
We thus obtain τs > μ + 1. Combining the two bounds,

μ + 1 < τs < ν + 2. (74)

The equations for moments [see Eq. (71)] may be further
simplified if only the order of magnitude of the different terms
is considered. Consider Eq. (71a). We will argue that the left
hand side of Eq. (71a) is dominated by the second term. Let r =
MμMν+1/(Mμ+1Mν). If the integral . (72) determining Mν

does not diverge, then neither will the integral for Mμ diverge,
implying that Mν ∼ Mμ. Then, r ∼ Mν+1/Mμ+1. Since
ν � μ, clearly r ∼ O(Mx) where x � 0. On the other hand, if
the integral for Mν diverges, then Mν+1 ∼ MMν . Then, r ∼
MμM/Mμ+1. Since Mμ+1/Mμ can diverge utmost as M ,
we again obtain r ∼ O(Mx) where x � 0. Equation (71a) then
reduces to λMν+1 ∼ Mν or, equivalently, λ ∼ Mν/Mν+1.

The same reasoning may be used to argue that the left
hand side of Eq. (71b) is dominated by the second term. The
left hand side is then λMμMν+2 ∼ MμMνMν+2/Mν+1,
where we substituted for λ. Since τs < ν + 2 [see Eq. (74)],
Mν+2/Mν+1 ∼ M , and the left hand side simplifies to
MMμMν . The right hand side of Eq. (71b) has to be then
dominated by 2Mμ+1Mν+1. The equations for moments [see
Eq. (71)] may then be rewritten as

Mν

Mν+1
∼ λ, (75a)

M1 ∼ 1, (75b)

Mμ+1Mν+1 ∼ MMμMν, (75c)

where Eq. (75b) follows from conservation of mass.
We can now derive τs , ηs , and y in terms of the known

parameters. We have already shown that μ + 1 � τs < ν + 2
[see Eq. (74)]. For this range of τs , and applying Eq. (73), we
obtain

Mμ ∼ M−ηs , (76a)

Mμ+1 ∼ M−ηs+max(μ+2−τs ,0), (76b)

Mν ∼ M−ηs+max(ν+1−τs ,0), (76c)

Mν+1 ∼ M−ηs+ν+2−τs . (76d)

Substituting Eq. (76) into Eq. (75), we obtain

1

y
= ν + 2 − τs − max(ν + 1 − τs,0),

(77a)

ηs = max(2 − τs,0), (77b)

max(ν + 1 − τs,0) = max(μ + 2 − τs,0) + ν + 1 − τs.

(77c)
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To make further progress, we consider different regimes of
τs . Consider first τs < ν + 1. Equation (77) implies that

y = 1, (78a)

ηs = max(2 − τs,0), θ > 1 (78b)

μ + 2 � τs < ν + 1, (78c)

where we obtained the constraint on θ from requiring that a
nonzero interval should exist for the inequality satisfied by
τs in Eq. (78c). Note that the values of τs and ηs cannot be
determined using moment analysis alone.

Consider now the second case: τs > ν + 1. In this regime,
Eq. (77a) implies that y−1 = ν + 2 − τs , while Eq. (77c)
reduces to

ν + 1 − τs + max(μ + 2 − τs,0) = 0. (79)

If τs � μ + 2, then Eq. (79) implies that τs = ν + 1 but we
had assumed that τs > ν + 1. Therefore, we conclude that
τs < μ + 2. This, in conjunction with the assumption τs >

ν + 1, implies that θ = ν − μ < 1, i.e., the kernel is local.
We immediately obtain from Eq. (79) that τs = (3 + β)/2.
Knowing τs allows to derive all the exponents. To summarize,

τs = 3 + β

2
, (80a)

ηs = max

[
1 − β

2
,0

]
, θ < 1 (80b)

y = 2

θ + 1
. (80c)

We now verify numerically that the correctness of Eq. (80a) for
θ < 1. In Fig. 4, we show the variation of N (m) with m for two
different values of β, and varying θ < 1. The data for N (m)
for small masses are independent of θ , and are consistent with
a power law with exponent given by Eq. (80a).

Thus, when the kernel is local, all exponents describing the
small mass behavior of the mass distribution can be obtained
using moment analysis, unlike the case when the kernel is
nonlocal. However, the analysis of singularities will enable
us to determine the unknown exponents.

We now study the case when θ = ν − μ = 1, the boundary
between the kernel being local or nonlocal. For this special
case, we expect that the power laws will be modified by addi-
tional logarithmic corrections [30]. We assume the following
form for N (m):

N (m) ∼ (ln m)−x(ln M)−z

mν+1Mηs
, m � M,θ = 1 (81)

where the cutoff mass scale M could have a logarithmic
dependence on λ, and x and z are new exponents that charac-
terize the logarithmic corrections. The choice of τs = ν + 1 is
motivated from θ → 1 behavior of Eq. (80a). It is then straight-
forward to obtain Mμ ∼ M−ηs (ln M)−z, Mμ+1 ∼ Mν ∼
M−ηs (ln M)−z+max(0,1−x), andMν+1 ∼ M1−ηs (ln M)−x−z. For
ν = μ + 1, Eq. (75c) reduces toMν+1 ∼ MMμ. Substituting
for the moments, we immediately obtain

x = 0. (82)

For this choice of x, Eq. (75a) immediately yields λ ∼
M−1 ln M or

M ∼ − ln λ

λ
, θ = 1. (83)

Substituting for the different moments into Eq. (75b), it is
straightforward to derive

η = max(1 − ν,0), θ = 1, (84)

z = δν,1, θ = 1. (85)

VII. SINGULARITY ANALYSIS

In this section, we analyze the equation [see Eq. (11)]
satisfied by the generating functions Fμ(x) and Fν(x), based
on their singular behavior. This will allow us to determine
the exponents τ
 and η
 [see Eq. (15) for definition]. This,
in turn, will allow us to determine the exponents τs and ηs

characterizing the small mass behavior of N (m) for nonlocal
kernels.

Let the singularity of Fμ(x) closest to the origin be denoted
by xc. Comparing with Eq. (15), we immediately obtain

M = 1

ln xc

. (86)

Consider x = xc − ε, ε → 0. If the large behavior of N (m)
is as in Eq. (15), then the leading singular behavior of the
generating functions Fν and Fμ close to the singular point is
proportional to ετ−ν−1 and ετ−μ−1, respectively. Depending
on the value of τ , Fν(xc) or Fμ(xc) may diverge or tend to a
constant as ε → 0.

Expressing Fν(x) in terms of Fμ(x) from Eq. (11), we obtain

Fν(x) = (1 + λ)MνFμ(x) − x(1 + 2λ)MμMν

Fμ(x) − (1 + λ)Mμ

. (87)
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We now claim that Fμ(xc) = (1 + λ)Mμ. Suppose this were
not the case and Fμ(xc) �= (1 + λ)Mμ. Then, the denominator
in Eq. (87) may be set to a constant when expanding about
xc, and it follows that Fν(x) has the same singular behav-
ior as Fμ(x) near x = xc. This implies that μ = ν. When
μ = ν, we have determined the generating function Fμ(x)
exactly (see Sec. IV), and it is easily seen from Eq. (22) that
Fμ(xc) = (1 + λ)Mμ. This contradicts our initial assumption
that Fμ(xc) �= (1 + λ)Mμ. When μ �= ν, Fμ(x) and Fν(x)
should have different singular singular behavior near x = xc,
again leading to a contradiction. We therefore conclude
that

Fμ(xc) = (1 + λ)Mμ. (88)

Expanding the generating functions aboutx = xc, we obtain

Fμ(xc − ε) = (1 + λ)Mμ − ετ
−μ−1R1(ε) − εR2(ε),

(89a)

Fν(xc − ε) = ετ
−ν−1R3(ε) + R4(ε), (89b)

where Ri’s are regular in ε, R1(0) �= 0, and R3(0) �= 0. Also,

τ
 > μ + 1, (90)

so that Eq. (88) is satisfied. We now examine the numerator
of Eq. (87) when x = xc. On simplifying by using Eq. (88), it
reduces to (1 + 2λ)MμMν[1 + λ2 − xc + O(λ3)]. However,
xc ∼ 1 + M−1 ∼ 1 + λy when λ → 0. We have shown earlier
that y < 2 for θ > 0 [see Eqs. (78a) and (80c)]. Thus, the
numerator of Eq. (87) is nonzero and equal to −MμMνM

−1,
when x = xc, λ → 0, and θ > 0. Substituting the expansions
[Eq. (89)] into Eq. (87) we obtain

ετ
−ν−1R3(ε) + R4(ε) = −MμMνM
−1

−ετ
−μ−1R1(ε) + εR2(ε)
. (91)

Since τ
 > μ + 1 [see Eq. (90)], the right hand side of Eq. (91)
diverges. This implies that

τ
 < ν + 1, (92)

and the left hand side of Eq. (91) is dominated by the first
term. We can now compare the leading singular behavior on
both sides of Eq. (91). There are two possible cases: 0 < τ
 −
μ − 1 < 1 and 0 < τ
 − μ − 1 > 1.

A. τ� − μ − 1 < 1

First, consider the regime 0 < τ
 − μ − 1 < 1. The de-
nominator of Eq. (91) is dominated by −ετ
−μ−1R1(ε), and
comparing the singular terms on both sides, we obtain

τ
 = β + 2

2
, θ < 2, (93)

where we obtain the constraint on θ from our assumption
0 < τ
 − μ − 1 < 1. We now verify numerically that the
correctness of Eq. (93) for θ < 2. In Fig. 5, we show the
variation of N (m) with m for two values of θ , one between
zero and one and the other between one and two, and varying
β. The data for compensated mass distribution for large masses
are consistent with a power law with exponent given by
Eq. (93).
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FIG. 5. The compensated steady mass distribution N (m)em/M for
kernels with fixed θ < 2 and different β. (a) θ = 2
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Comparing now the coefficients of the leading singular
terms we obtain

R3(0)R1(0) = MμMνM
−1, θ < 2. (94)

Once R1(0), R3(0), and τ
 are known, mμN (m) and mνN (m)
may be obtained from Fμ(x) and Fν(x) by doing inverse
Laplace transforms. Thus,

mμN (m) = −R1(0)xτ
−μ−1
c (τ
 − μ − 1)

xm
c mτ
−μ�(2 − τ
 + μ)

, (95)

mνN (m) = R3(0)xτ
−ν−1
c (τ
 − ν − 1)

xm
c mτ
−ν�(2 − τ
 + ν)

, (96)

where �(x) is the gamma function. Multiplying together
Eqs. (95) and (96), setting τ
 = (2 + β)/2 [see Eq. (93)], and
using the property

�(x)�(1 − x) = π

sin(πx)
, (97)

we obtain

N (m) �
√
MμMνθ sin πθ

2

2πM

e−m/M

m(2+β)/2
, m � M (98)

for 0 < θ < 2. The prefactor depends on Mμ and Mν , which
are determined by the behavior of N (m) at small masses. Their
dependence on the cutoff M [see Eq. (76)] will determine η
:

η
 = 1
2 + ηs − 1

2 max(ν + 1 − τs,0). (99)

Knowing τ
 = (2 + β)/2 [see Eq. (93)], the relation τs + ηs =
τ
 + η
 [see Eq. (16)] reduces to

τs = 3 + β

2
− 1

2
max(ν + 1 − τs,0). (100)

We consider the two cases ν + 1 − τs < 0 and ν + 1 − τs > 0
separately.
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Case I. ν + 1 − τs < 0. In this case, Eq. (100) immediately
gives τs = (3 + β)/2. To satisfy the inequality ν + 1 − τs < 0,
we require that θ < 1. This result for τs is consistent with what
we derived earlier for the local kernel using moment analysis
[see Eq. (80a)]. Knowing τs and ηs = max[(1 − β)/2,0] [see
Eq. (80b)], we obtain from Eq. (99)

η
 = 1

2
+ max

[
1 − β

2
,0

]
, θ < 1. (101)

Case II. ν + 1 − τs > 0. In this case, Eq. (100) immediately
gives

τs = 2 + μ = 4 + β − θ

2
, 1 < θ < 2, (102)

where the constraint on θ is obtained from the inequality ν +
1 − τs < 0. This result for τs is consistent with the inequality
derived for τs using moment analysis [see Eq. (78c)], Knowing
τs , ηs , and η
 may be derived from the Eqs. (78b) and (99) to
be

ηs = max [−μ,0], 1 < θ < 2, (103)

η
 = 2 − θ

2
+ max [−μ,0], 1 < θ < 2. (104)

For τs = μ + 2, then there is the possibility of logarithmic
corrections.

Thus, we have derived all the exponents characterizing both
the small and large mass behavior of N (m) when θ < 2.

B. τ� − μ − 1 > 1

Consider now the second case when τ
 − μ − 1 > 1. The
denominator of Eq. (91) is dominated by εR2(ε). Again
comparing the singular terms on both sides of Eq. (91), we
obtain

τ
 = ν, θ > 2, (105)

where we obtain the constraint in θ from our assumption τ
 −
μ − 1 > 1. Comparing the coefficients of the leading singular
terms we obtain

R2(0)R3(0) = MμMνM
−1, θ > 2. (106)

It is easy to see that R2(0) = Fμ+1(xc). Doing an inverse
Laplace transform, we obtain

N (m) � m−ν

MFμ+1(xc)
e−m/M, m � M,θ > 2. (107)

The dependence of R2(0) = Fμ+1(xc) on M may be
determined as follows. The integral for Fμ+1(xc) has two
power laws:

Fμ+1(xc) ∼
∫ M

dm
mμ+1

Mηs mτs
+

∫ ∞

M

dm
mμ+1

Mη
mν
. (108)

Using the bound (78c), it is straightforward to argue that
to leading order Fμ+1(xc) ∼ M− min(ηs ,η
+θ−2). Substituting
R3(0) ∼ M−η
 and R2(0) ∼ M− min(ηs ,η
+θ−2) into Eq. (106),
we immediately obtain

η
 + min(ηs,η
 + θ − 2) = 2ηs, θ > 2. (109)
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FIG. 6. Left: ν = 1.5; μ = −1. Right: ν = 2.5; μ = −0.33. Left:
does not scale as ληS . The compensated steady mass distribution
N (m)em/M for kernels with fixed ν and different θ > 2. (a) ν = 5

2
for θ = 17

6 , 5
2 , 13

6 and (b) ν = 7
2 for θ = 23

6 , 7
2 , 19

6 . The solid lines are
power laws with exponents ν, as derived in Eq. (111). The data are
for λ = 0.01.

We consider the two cases ηs < η
 + θ − 2 and ηs > η
+θ−2
separately.

Case I. ηs < η
 + θ − 2. From Eq. (109), we obtain

η
 = ηs, θ > 2, (110)

where the constraint on θ is obtained from the assumption that
ηs < η
 + θ − 2. Equation (16) then yields τs = τ
. Therefore,
Eqs. (105) and (78b) imply that

τs = ν, (111)

ηs = max(2 − ν,0), θ > 2, (112)

η
 = max(2 − ν,0). (113)

Case II. ηs > η
 + θ − 2. From Eq. (109), we obtain

η
 = ηs + 1 − θ

2
. (114)

This solution in conjunction with our assumption that ηs >

η
 + θ − 2 imply that θ < 2. But, the solution (105) is valid
only for ν > 2. Hence, there is no solution for this case. We
note that the results for τ
 and η
 coincide with those for the
addition model when θ > 2 [see Eq. (33)].

We now verify numerically that the correctness of Eq. (111)
for θ > 2. In Fig. 6, we show the variation of N (m) with m

for two values of ν, for different values of θ > 2. The data for
compensated mass distribution for large masses are consistent
with a power law with exponent given by Eq. (111).

VIII. AGGREGATION-FRAGMENTATION MODELS
FOR PLANETARY RINGS

When background stars are occulted by the rings of Saturn,
the properties of the scattered light depend on the particle
size distribution of the rings. Observation of such occulta-
tions suggests a power law distribution of particle sizes. The
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FIG. 7. The scaling exponent q: N (R) ∼ R−q extracted from the
occultation data obtained by the Voyager Radio Science Subsystem
in [42]. The exponent is extracted separately for each of the four
subregions of the A-ring. The size and the position of each region is
indicated by the horizontal red bars on the graph. All distances are
measured in the units of Saturn’s radius RS .

exponent describing the distribution of particle sizes near the
outer edge of the A-ring of Saturn extracted from Cassini
data in Ref. [41] varies between 3.5 and 2.8 depending on
the star occulted. Simple particle models of coalescence and
shattering have been proposed to explain the power law scaling.
Model-based extractions [42] of the scaling exponent suggest
an increase in steepness of the distribution with distance to
Saturn (see Fig. 7). The graph shows an almost linear increase
of the scaling exponent with distance (see Ref. [43] for an
overview and Refs. [12,28] for recent theoretical work). In
this section, we discuss the implications of our results for
these modeling efforts. In the simplest model it is supposed
that binary collisions dominate the dynamics and the collision
kernel, K(m1,m2) depends on the velocity distribution of
particles within the rings. The colliding particles coalesce into
a single particle of mass m1 + m2 with probability 1 − p and
shatter with probability p to create “dust”: m1+m2

m0
particles

of the smallest mass m0 present in the system. For example,
the collision kernel obtained under the assumption of energy
equipartition of particles constituting Saturn’s ring is

K (E)(m1,m2) = C
∣∣m− 1

2
1 + m

− 1
2

2

∣∣(m 1
3
1 + m

1
3
2

)2
, (115)

where C is a positive constant. The first mass-dependent factor
accounts for the relative particle velocity and the second for the
area of collisional cross section. The homogeneity degree of the
kernel (115) is β = 1

6 . The rings of Saturn are a nonequilibrium
system, therefore, the equipartition of energy does not follow
from any general principles. As is suggested in [28], the whole
range of velocity distributions from equipartition of energy to
mass-independent root mean square velocity might be present
across the different subrings. The latter extreme leads to the
following kernel:

K (Vrms)(m1,m2) = C
(
m

1
3
1 + m

1
3
2

)2
, (116)

which is just proportional to the geometrical cross section. This
kernel is also homogeneous with β = 2

3 . The kernels (115)
and (116) belong to the class of homogeneous kernels de-
scribed in the Introduction: their asymptotic behavior is cap-
tured by exponents ν and μ. Studying these kernels when
m2 � m1 gives ν = 2

3 and μ = − 1
2 for the kernel (115) and

ν = 2
3 and μ = 0 for the kernel (116). Therefore, θ = 7

6 for the
energy equipartition kernel (115) and θ = 2

3 for the constant
root mean square velocity kernel (116).

Kernel (116) is local and the corresponding distribution
of particle masses scales as m−11/6. This implies that the
distribution of particle radii is given by R2N (R3) ∼ R−7/2.
The exponent 7

2 is consistent with the upper range of scaling
exponents describing the distribution of constituent sizes in
Saturn’s rings [44]. On the other hand, the energy equipartition
kernel (115) is not local: the substitution of (1) with β =
1
6 1/6 into the corresponding formula for the flux will lead
to a divergence in the limit of small shattering probability.
Correspondingly, a conclusion of [12,28] that the mass dis-
tribution of particles in the coalescence-shattering model with
the kernel (115) scales as m−19/12 (equivalently, the distribution
of particle sizes scales as R−11/4) is probably incorrect1 and
there is no constant-flux scaling in this case. According to the
analysis of Secs. VI and VII in the regime of weak nonlocality
(1 < θ < 2), the correct answer for the mass distribution is

N (m) ∼ m−( β+3
2 − θ−1

2 ). (117)

Weak nonlocality results in θ -dependent correction to the
Kolmogorov-Zakharov exponent. For the kernel (115), this
answer means that N (m) ∼ m−3/2, or the distribution of
particle sizes scales as R−10/4.

Of course, the exponents 10
4 and 11

4 are indistinguishable
from the observational point of view given that (i) there
are no precise measurements of the spectral exponents for
Saturn’s rings, (ii) there is no way to fix the parameters of
the collision kernel from the existing data on the statistics
of particles constituting the rings. By looking at a range
of reasonable distributions of velocities of particles in the
ring and solving the corresponding Smoluchowski equations,
the authors of [28] found the range of scaling exponents
describing the distribution of particle sizes to be [2.75,3.5],
which agrees with the numbers accepted by planetary scientists
(see, e.g., [41,44,45]). Accounting for the nonlocality of the
kernel (115), which corresponds to the left boundary of the
range, the interval should change to [2.5,3.5]. This is neither
here nor there, as the observational knowledge of the exponents
is not good enough to distinguish between these predictions.
Our conclusions are therefore of a more qualitative nature: the
distribution of particles for coalescence-shattering models with
homogeneous kernels possessing a well-defined locality expo-
nent is indeed universal in the limit of small shattering proba-
bilities. However, the universality classes are labeled by both

1The “experimental” curve plotted in Fig. 3 from [28] does not
show raw “data from Voyager RSS.” It was obtained in [42] using
model-based analysis of Voyager occultation data based on a number
of assumed model parameters such as the particle’s density. Moreover,
the curve does not pertain to the whole A-ring, but just one of its
subregions (A2.14) where the inferred exponent happens to be 2.75.
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the homogeneity degree β and the locality exponent θ rather
than by β alone as suggested in [12,28]. In the local regime,
θ < 1, the dependence of the mass distribution on θ disappears
and we are left with the constant flux distributions (1). For
θ > 1 the mass distribution scales with an exponent, which
depends on both θ and β. We note that we only describe
the universality classes of scaling exponents. The amplitude
of N (m) for nonlocal kernels is nonuniversal and depends
explicitly on the position of sources and sinks in mass space.

IX. CONCLUSION

In this paper, we determined the steady state mass distri-
bution for a system of particles that on undergoing two-body
collisions either coalesce into a single particle or fragment
into dust (particles of the smallest mass). The total mass is
conserved by the dynamics. Fragmentation acts as a source of
particles of small mass while coagulation depletes smaller par-
ticles and creates particles of larger mass. We considered a class
of homogeneous collision kernels modeled by K(m1,m2) =
m

μ
1 mν

2 + mν
1m

μ
2 with ν � μ, characterized by the homogeneity

exponent β = μ + ν and nonlocality exponent θ = ν − μ.
The results for the exponents characterizing the small and large
mass distributions, obtained through a combination of moment
analysis, singularity analysis, and exact solutions for special
cases, are summarized in Table I for different β and θ .

The presence of a nonzero fragmentation rate λ introduces
a cutoff scale M beyond which the mass distribution N (m)
crosses over from a power law behavior to an exponential
decay with increasing mass m. Thus, a nonzero λ is a useful
regularization scheme by which instantaneous gelation is
prevented for kernels that are gelling (μ + ν > 1) and one may
study the behavior as the regularization is removed by taking
the limit λ → 0. Here, we find that the form of N (m) depends
only on whether the kernel is local (θ < 1) or nonlocal (θ � 1)
and not on whether it is gelling or nongelling.

We find two distinct nonlocal regimes corresponding to
1 < θ < 2 and θ > 2. When θ < 1, the distribution is universal
in the sense that the small mass behavior does not depend
on the source or sink. Thus, the limit λ → 0 is well defined.
In the regime 1 < θ < 2 the mass distribution N (m) depends
on the sink scale M but is independent of the source scale m0.
In the regime θ > 2, N (m) depends on both source and sink.
Logarithmic corrections are found at the boundaries between
regimes. These are similar to the two nonlocal regimes that we
found for the nonconserved model driven by input of particles
at small masses and collision-dependent evaporation [30]. The
logarithmic corrections are also analogous to the correction
proposed by Kraichnan [46] to account for the marginal
nonlocality of the enstrophy cascade in two-dimensional fluid
turbulence.

As we saw in Sec. VIII, the study of Saturn rings provides
examples of both local and nonlocal kernels. Clearly, there are
many open questions relating to the size distribution of ring
particles. Can we determine the kernels describing particle
collisions in different parts of Saturn’s rings so that more
quantitative predictions of particle size distributions can be
made? In particular, can the dependence in Fig. 7 be confirmed
theoretically? Can one predict regions within the rings of Sat-
urn, where the scaling is of Kolmogorov-Zakharov or constant

flux type? Are there regions dominated by weak nonlocality or
regions correctly described by the addition model? Answering
these questions could open up interesting new avenues of
research into coalescence-fragmentation models.

Our results also have implications for the addition model in
which clusters grow only through reactions with the monomer.
The addition model has been studied both as a model for island
diffusion though desorption and adsorption of monomers
as well as a solvable approximation for more complicated
collision kernels [33–38]. While the time-dependent as well
as steady state solutions have been determined for the addition
model, in the latter case, it is not clear when this approximation
of restricting collisions only with monomers reproduces the
same result as the original kernel. The results of this paper
show that for θ > 2 the exponents characterizing the mass
distribution for the general kernel coincide with that for
addition model for the same θ . Thus, we conclude that the
addition model is a good description of systems with θ > 2.

In this paper, we studied the steady state but not the
dynamics leading to it. This question is important to consider.
Even in the local case θ < 1, the dynamics leading to the steady
state must be very different for gelling (β > 1) and nongelling
(β < 1) kernels. Furthermore, in the nonlocal case, evidence
from closely related models [36,47] suggests that the steady
state could become unstable for λ → 0. Such an instability
would result in persistent oscillatory kinetics. Indeed, such
oscillations have been seen in a recent paper [48]. This would
have interesting consequences for the mass distribution in
Saturn rings which could be experimentally verifiable.

In other models of aggregation and fragmentation, where
fragmentation occurs spontaneously and not due to a collision,
an interesting phase transition occurs when the fragmentation
is limited to a finite mass chipping off to a neighbor [49–54].
This model undergoes a nonequilibrium phase transition from
a phase in characterized by an exponential mass distribution
to a phase characterized by power law mass distribution in the
presence of a condensate. The condensate is one single mass
which carries a finite fraction of the total mass. It would be
interesting to see whether the model considered in the paper
exhibits a similar transition in some parameter regimes.

In this paper, we have assumed that the system is well mixed,
and hence it was possible to ignore spatial variations in the
densities. Also, the effects of stochasticity were completely
ignored. Introducing stochasticity, even at the level of zero
dimensions, can give rise to new phenomenology like an
absorbing-active phase transition in the λ-density plane. This
is because, if total mass is small enough, then the system
has a finite probability of getting stuck in an absorbing state
where all particles have coalesced into one particle. Including
spatial variation would make the problem even richer. This is
a promising area for future study.
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