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Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous
two-dimensional problem
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The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by
means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions
and orientations was considered. The initial state before drying was produced using a model of random sequential
adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear
velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC
simulations were run at different initial number concentrations (the numbers of sticks per unit area), pi , and solvent
evaporation rates, u. For completely dried films, the spatial distributions of the sticks, the order parameters, and
the electrical conductivities of the films in both the horizontal, x, and vertical, y, directions were examined.
Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed.
The extent of stratification increased with increasing values of u. The anisotropy of the electrical conductivity of
the film can be finely regulated by changes in the values of pi and u.
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I. INTRODUCTION

The technique of vertical drying of suspensions is frequently
applied for producing colloidal crystals with many intriguing
properties [1]. However, this technique requires precise control
of the drying conditions, including the concentration of parti-
cles, their size distribution, the temperature, humidity, drying
time, etc. [2]. Moreover, the drying process can be complicated
by the formation of a skin barrier at the top of the drying
film and the emergence of irregular structures and of vertical
segregation as well as the development of evaporation-induced
self-assembly [3,4].

Uniformity in particle arrangement during vertical drying
is controlled by solvent evaporation, sedimentation processes,
and diffusion of the particles. It is useful to introduce the
so-called Péclet number that is the ratio of the characteristic
diffusive (τD) and evaporation (τE) times, Pe = τD/τE . These
times can be defined as τD = H 2/D and τE = H/u, where
H is the initial thickness of the film in the vertical direction,
D is a diffusion constant for the particle, and u is the rate of
evaporation. Uniformity in particle arrangement is expected at
Pe = uH/D � 1, i.e., at small u or high D, whereas in the
opposite case, for large Péclet numbers, a spatial gradient is
typically observed in the density profile [3].

Different regimes of vertical drying of suspensions filled
with spherical and anisotropic colloidal particles have been
extensively studied in experimental works (for a review see
Ref. [3]). Experimental studies of the drying of colloidal
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suspensions filled with rodlike particles (with aspect ratios
ranging from 4 to 15) revealed parallel orientation of the rods in
several layers close to the contact line [5]. Special interest has
been paid to the behaviors of dried films of highly anisotropic
carbon nanotubes (for a review, see Ref. [6]). These transparent
and electrically conductive films present particular interest for
the production of electrodes for super-capacitors, thin film
transistors, and fuel cells.

However, it is hard, experimentally, to determine many
of the properties of the final dried films and the density
profiles of the particles through those films [3]. Computation
approaches can therefore provide valuable information, helpful
for understanding the mechanisms of vertical drying and for
determining the properties of the eventual dried films.

For spherical particles, Brownian, Langevin dynamics, and
kinetic Monte Carlo (MC) simulations have been applied
to study the vertical drying of one-, two-, three-component
and polydisperse three-dimensional (3D) colloidal suspensions
[7–13]. For binary systems, either random spatial distribution
or heterocoagulation were observed in dependence on differ-
ences in the surface charges of constituents [7]. The formation
of ordered hexagonal or tetragonal domains and random
packing at low and high evaporation rates, respectively, has also
been observed [8]. The simulation models have also included
the effects of inter-particle and particle-surface interactions and
size polydispersity [9,10]. At a relatively low evaporation rate,
films with low porosity and low surface roughness were formed
[10]. For polydispersed systems a dynamic stratification by size
in the drying films was noted, with a layer of larger particles
at the bottom and one of smaller particles on the top [11]. A
segregation mechanism for this has been explained through
the so-called colloidal diffusiophoresis effect related to the
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presence of a colloidal osmotic pressure gradient developed
during the drying. Stratification has also been observed for
ternary and polydisperse mixtures [12]. The proposed model
predicted a power-law dependence of the phoretic velocity on
particle size. Kinetic MC simulations of vertical drying using
two-dimensional (2D) models at various Péclet numbers have
been performed [13]. At Pe � 1, the particles accumulated at
the top of the layer whereas, at Pe � 1, significant aggregation
of particles in the bulk colloid could be observed and the
resulting film structure became highly porous. Vertical drying
has also been studied using a hybrid simulation method based
on a cell model [14]. Various cases of hard or soft particles,
different interaction potentials, and different drying conditions
were tested. A linear increase of concentration gradient with
increased value of Pe, was observed although this effect was
partially hindered in systems with strong repulsive interaction
between the particles.

Computational studies of vertical drying have been per-
formed much less frequently for particles with anisotropic
shape. Recently, the vertical drying of 2D colloidal films
filled with anisotropic particles by means of a kinetic MC
simulation has been studied [15]. The oversimplified lattice
problem in which the particles are represented by linear k-
mers (particles occupying k adjacent sites) was addressed.
The initial state of the film before drying was produced
using a model of random sequential adsorption (RSA) on
a square lattice, with only two restricted orientations along
the lattice axes being allowed. During the drying, the upper
interface falls with a linear velocity in the vertical direction,
and the particles undergo translational Brownian motion. For
completely dried films, the density profiles of the particles and
the electrical conductivity in both directions were calculated.
The simulations revealed significant evaporation-driven self-
assembly together with orientation stratification of the particles
with different orientations. It is well known that molecular
dynamics simulation can offer more precise description of
behavior in compare with kinetic Monte Carlo simulation (see,
e.g., Ref. [16]). Nevertheless, such the simulation is extremely
time-consuming.

Note that studies of self-assembly and phase behavior in
equilibrium colloidal systems filled with anisotropic particles
have a fairly long history and have attracted a great deal of
attention for many years. The existence of a nematic phase
was firstly predicted by Onsager for a 3D continuous systems
of very long rods (needles) that interact only through the
excluded volume effect [17]. The theory predicted a transition
to this nematic phase with strong orientation ordering at some
critical number density, ρn ≈ 4.19. Moreover, the coexisting
isotropic and nematic phases between ρi ≈ 3.29 and ρn were
also predicted. Several extended approaches have subsequently
been proposed, and they all agree with Onsager’s estimations
in the limit of low densities for sufficiently long rods [18–21].

A reduction in spatial dimensionality from 3D to 2D
influences the nature of the ordered phases. The 2D version
of the Onsager theory for a system of needles predicted
a continuous nematic-isotropic (N-I) transition at a critical
density of ρi = 3π/2 ≈ 4.7 [22]. The 2D equivalent of the
Maier-Saupe theory predicted a continuous N-I transition [23].
A transition from disordered to a partially ordered phase was
also confirmed using the MC technique for particles confined

to the sites of a triangular lattice [23]. The MC simulations
demonstrated the presence of N-I transitions as particle density
was increased [24,25]. It was shown that for the 2D sys-
tems, only a quasi-long-range order with algebraic decay of
the order-parameter correlation function can be realized. At
relatively small densities ρ < 7 the ordered phase became
absolutely unstable with respect to disclination unbinding,
but at ρ � ρn ≈ 7.25, a 2D nematic phase with algebraic
order appeared. The phase behavior of hard ellipses with an
aspect ratio of k = 6 has been studied using MC simulations
[26]. The system exhibited two first-order phase transitions:
a solid-nematic one (at high density) and an N-I one (at a
density 1.5 times smaller). These transitions were attributed to
geometrical factors. No evidence for a first order N-I transition
was found using MC simulation of hard rods [24]. The nematic
phase demonstrated algebraic order (quasi-long-range order)
and the occurrence of a disclination-unbinding transition of
the Kosterlitz-Thouless (KT) type has been suggested. A mean
field model has predicted nematic, columnar, and crystalline
order in dense systems of parallel hard rods in 2D systems
[27]. A density functional theory for the N-I transition in a 2D
system of rods has been developed and it predicts a continuous
(second order) N-I transition [28]. MC simulations have been
applied to study the phase behavior of continuous 2D fluid
systems with spherocylinders (tapered cylinders) [25]. At high
density for long rods with high aspect ratios k � 7, a 2D
nematic phase of the KT type occurred. Shorter rods exhibited a
melting transition to an isotropically arranged phase dominated
by chains of particles that aligned side-by-side. An off-lattice
model of liquid crystals has been proposed and applied to
description of N-I transitions [29].

For nonequilibrium 2D systems obtained using the RSA
process, further self-assembly is possible owing to deposition-
evaporation processes or to the diffusion motion of the
anisotropic particles. Several problems related to such types
of self-assembly of k-mers have previously been discussed
[30–36]. Dynamic MC simulations using a deposition-
evaporation algorithm for simulation of the dynamic equi-
librium of k-mers on square lattices have been applied [30].
For long k-mers (k � 7), two entropy-driven transitions as a
function of density, ρ, were revealed: first, from a low-density
isotropic phase to a nematic phase with an intermediate density
at ρin, and, second, from the nematic phase to a high-density
disordered phase at ρnd . A lattice-gas model approach has
been applied to study the phase diagram of self-assembled
k-mers on square lattices [31]. It has been observed that an
irreversible RSA process leads to an intermediate state with
purely local orientational order, while, in the equilibrium
model, the nematic order can be stabilized for sufficiently long
k-mers [34,35]. It was also demonstrated that equilibration of
the RSA structure by Brownian diffusion of the particles on a
square lattice resulted in the segregation of clusters of k-mers
with different orientations [36].

Therefore, self-assembly in colloidal suspensions filled
with anisotropic particles is fairly typical for both 3D and
2D systems, and it can develop in different manners for
continuous and lattice problems, depending on the initial state
of the system and the equilibration procedure applied. This
self-assembly can be even more complicated during the vertical
drying processes. Nevertheless, in spite of great interest in the
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problem, it has never previously been discussed for the more
advanced off-lattice model taking account of the Brownian
diffusion of sticks during vertical drying.

This paper analyzes the self-assembly in 2D colloidal
suspensions of sticks during vertical drying. It has been
assumed that the sticks are infinitely thin, and kinetic MC
simulations have been applied. The initial state was produced
using RSA with isotropic orientations of the sticks, after which
the drying was started and the sticks were allowed to undergo
both translational and the rotational diffusion. The kinetics of
the changes of structure and the electrical conductivity in the
horizontal (x) and vertical (y) directions have been analyzed.

The rest of the paper is constructed as follows. In Sec. II
the technical details of the simulations are described, all nec-
essary quantities are defined, and some test results are given.
Section III presents our principal findings. Section IV summa-
rizes the main results.

II. COMPUTATIONAL MODEL

The RSA model was used to produce a distribution of
sticks with a desirable initial number density ρi [37]. Sticks
with length of ls and zero thickness, ds = 0 (i.e., with infinite
aspect ratio, k = ls/ds = ∞), were deposited on a plane ran-
domly (both their positions and orientations were random) and
sequentially, while their overlapping with previously placed
particles was forbidden. The kinetics of RSA deposition for
such systems has been studied in detail [38–40]. Note that since
the sticks have zero thickness, the jamming number density
ρj is never reached for this model. However, for sticks with
large but finite aspect ratios k, the number density is finite and
increases with k as ρj ∼ k0.8 [40,41].

The length of the system was L along the horizontal
x direction and initial height was Hi along the vertical y

direction. In the present work, all calculations were performed
using L = Hi = 32ls . Our choice is based on scaling analysis.
Example of scaling analysis is presented in Appendix B. In our
computations of vertical drying, periodic boundary conditions
were applied along the x axis. A zero flux boundary condition
was applied at the bottom border (liquid-substrate interface).
The upper border (liquid-vapor interface) moves down due to
evaporation, and this interface is impenetrable for the sticks.
An isotropic initial orientation of the sticks was assumed.

The simulation of the vertical drying procedure assumed
simultaneous Brownian motion of the sticks and a downward
movement of the vapor-liquid interface. The Brownian diffu-
sion of sticks was simulated using the kinetic MC procedure.
At each step, an arbitrary stick was randomly chosen. The 2D
translational and rotational diffusion motions were taken into
consideration. For 2D translation, Dt , and rotational, Dr , the
diffusion coefficients, the formulas for long, k � 1, rodlike
particles were used [42],

Dt = 3kBT [ln(k) + γt ]

8πηls
, Dr = kBT [ln(k) + γr ]

πηl3
s

, (1)

where kBT is the thermal energy, η is the viscosity of sur-
rounding liquid, and γr ≈ 0.219 and γr ≈ −0.447 are the end
correction coefficients [43–45].

The ratio of the mean-square rotation 〈�θ2〉 and mean-
square displacement in the center of mass position 〈�l2〉 over

the time �t was calculated as

〈�θ2〉
〈�l2〉 = 2Dr�t

4Dt�t
≈ 4. (2)

In each MC step, displacement in an arbitrary direction
by a value of

√
〈�l2〉 or rotation by value a of

√
〈�θ2〉

with probabilities proportional to the corresponding diffusion
coefficients Dt and Dr , respectively, were attempted. The value
of maximum MC displacement

√
〈�l2〉 was chosen to be

small enough (α =
√

〈�l2〉/l ≈ 0.1 − 0.05) in order to obtain
satisfactory acceptance of the MC displacement [46]. Each one
time MC step,�tMC, corresponds to an attempted displacement
and rotation of the total number of sticks in the system. The
value of �tMC corresponds to the real time τBα2, where

τB = l2
s /(4Dt ) (3)

is the Brownian time. Time counting was started from the
value of tMC = 1, being the initial moment (before drying and
diffusion), and the total duration of the simulation was typically
106–107 MC time units.

As the interface moves downward, the sticks tend to accu-
mulate below it. Some sticks become trapped at the interface
because of the effects of surface tension, and these are unable
to move above the interface. Below the interface the sticks can
diffuse normally.

For characterization of the processes, some parameters were
calculated during the course of the simulation:

(1) The relative height of the film, h = H/Hi

(2) The running number density, ρ

(3) The mean order parameter of the system S

(4) The distributions of local number density, ρ(y), and
local order parameter S(y) along the vertical axis y

(5) The electrical conductivities along the x and y axes.
The mean order parameter was calculated as

S = 1

N

∑

i

(2 cos2 θi − 1), (4)

where θi is the angle between the axis of the ith stick and the
horizontal axis x, and the summation runs over all N particles
in the system.

To calculate the distributions of local number density, ρ(y),
and local order parameter, S(y), along the vertical axis y, the
film was divided into regular strips with width of �y = H/32.
In calculations of the density and order parameter profiles,
those sticks with coordinates of a center of mass inside the
given strip, y � yi < y + �y, were taken into account (Fig. 1).

FIG. 1. To the calculation of the distributions of local number
density,ρ(y), and local order parameter,S(y), along the vertical axisy.
Here yi is the vertical coordinate of the center of the stick, �y = H/32
is the width of the strip, H is the running height of the film, θi is the
angle between axis of the stick and the horizontal axis x.
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(a) (b)
h=0.7 h=0.7

h=0.5 h=0.5

h=0.1 h=0.1

FIG. 2. Evolution of drying patterns at different values of the relative height of the film, h, for a constant drying rate, u = 10−3 [ρc = ∞
in Eq. (5)] (a), and for a variable drying rate [ρc = 7 in Eq. (5)] (b). The initial concentration of sticks was ρi = 1.0.

For calculation of the electrical conductivity, the discretiza-
tion scheme of the problem with a supporting square lattice
of size m × m (m = 256, 512, and 1024) was used. The sites
of the supporting lattice covered by sticks were assumed as
conducting and the others were assumed as insulating. See
Appendix A for details. The Frank-Lobb algorithm was applied
to evaluate the electrical conductivity [47]. We put σi = 1 and
σc = 106 in arbitrary units for the conductivities of insulating
and conducting sites, respectively. In our calculations, the
two conducting buses were applied to the opposite borders of
the lattice, and electrical conductivity was calculated between
these buses in the horizontal, σx and vertical σy directions (see
Refs. [15,36] for the details).

Note that our assumption of the constancy of the drying rate
is a rather rough approximation. The formation of a more dense
layer (crust or barrier) near the upper vapor-liquid interface
can result in a restriction of the evaporation of the liquid and a
decreasing value of u. To account for this effect, the maximum
number density ρm in the crust was calculated, and a running
value of the drying rate u was evaluated using an exponential
approximation,

u = ui exp(−ρm/ρc), (5)

where ui is the initial drying rate, and ρc is a parameter
(characteristic density) that controls the effect of the crust on
the drying rate.

This oversimplified approximation was used only for qual-
itative estimations of the barrier properties of a dense layer
on the drying rate. In the general case, the barrier properties

can depend on details of the structure, density, and thickness
of the layer of sticks oriented along the evaporating interface
(see Ref. [48] and references therein for the details). The
transition from the isotropic to the ordered nematic phase
was observed at ρ ≈ 7 [24,25]. Enhancement of the barrier
properties can be assumed in the nematic phase structure, and,
in this investigation, we put ρc = 7.

Figure 2 presents examples of the drying patterns at different
values of the relative height of the film,h = H/Hi . The cases of

(a)

(b)

FIG. 3. Drying rate, u (a), relative height of the film, h, and
average order parameter, S (b), for constant and variable drying rates
vs MC steps. The initial concentration of sticks was ρi = 1.0.
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(a)

(b)

(c)

(d)

FIG. 4. Profiles of number density, ρ(y/Hi) at different values of relative height of the film, h, for initial number density ρi = 0.5 and
drying rate u = 10−5 (a), ρi = 0.5, u = 5 × 10−3 (b), ρi = 2.0, u = 10−5 (c), and ρi = 2.0, u = 5 × 10−3 (d).

a constant drying rate, u = 10−3 [ρc = ∞ in Eq. (5)] (a) and of
a variable drying rate [ρc = 7 in Eq. (5)] (b) are presented. The
initial number density was ρi = 1.0. Comparison of the data
presented in Fig. 2 allows the following preliminary conclusion
to be drawn. In both cases the formation of the surface crust is
evident. However, for the constant drying rate, u = 10−3 this
crust is very thin and has a high number density as compared
with the corresponding characteristic for the variable drying
rate. The quantitative differences in the drying behavior of
the systems considered above are demonstrated in Fig. 3.
For the variable drying rate, the function u(tMC) is highly
nonlinear with the most considerable drop at high values of tMC

[Fig. 3(a)]. For both the constant and variable drying rates the
relative height of the film, h, decreased while the average order
parameters S increased in the course of the drying [Fig. 3(b)].
However, the kinetics were much slower for the variable drying
rate, naturally reflecting a slowdown in the drying rate. In the

(a)

(b)

FIG. 5. Profiles of number density, ρ(y/Hi) (a), and local order
parameter, S(y/Hi) (b), at different values of initial number density,
ρi , at fixed value of the relative height of the film, h = 0.2, for the
relatively high drying rate, u = 10−3.

final stages of drying, the values of S tended to one, although
the nematic order was relatively homogeneous only for the
variable drying rate [Fig. 2(a)], whereas isotropic order in the
bulk of the dried film was observed for the constant drying rate
[Fig. 2(b)].

The relationship between the experimental drying rate ur

and the computational value, u, can be expressed as

u = ur �tMC

ls
= ur α2τB

ls
. (6)

For example, using the data for water viscosity η = 8 ×
104 Pa s, drying rate ur = 3.76 × 10−7 m/s at room tempera-
ture, T = 298 K [49], and Eq. (3) with parameters α = 1/20

ρ
i
=0.5, h=0.2

ρ
i
=1, h=0.2

ρ
i
=2, h=0.2

ρ
i
=5, h=0.2

FIG. 6. Comparison of the drying patterns at different values of
the initial number density, ρi , at a fixed value of the relative height of
the film, h = 0.2, for the relatively high drying rate, u = 10−3. See
Ref. [50].
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and k = 103, we can obtain u = 1.34 × 10−3 for ls = 5 μm
and u = 5.37 × 10−5 for ls = 1 μm.

The Péclet number can be evaluated as

Pe = Hr
i ur/Dt = 4Hi

α2
u, (7)

where Hr
i = Hils is the real initial height of the film. For Hi =

32 as used in this work, we have Pe ≈ 2.56 × 103u.
For each given value of ρi or u, the computer experiments

were repeated 100 times, and then the data were averaged. The
error bars in the figures correspond to the standard deviation
of the mean. When not shown explicitly, they are of the order
of the marker size.

III. RESULTS AND DISCUSSION

Vertical drying processes were studied using drying rates, u
in the interval between 10−5 and 5 × 10−3, that corresponded
to the Péclet numbers in the interval between ≈ 2.56 × 10−2

and 12.8.
Figure 4 compares the profiles of number density, ρ(y),

for initial number density ρi = 0.5 [at different drying rates,
u = 10−5 (Pe ≈ 2.56 × 10−2) (a), and u = 5 × 10−3 (Pe ≈
12.8) (b)] and for ρi = 2.0 [at u = 10−5 (c), and u = 5 × 10−3

(d)]. The observed ρ(y) dependencies were rather different
for drying modes with small and large Péclet numbers, and
this was in qualitative correspondence with the previously
discussed impact of the Péclet number on the spatial gradient
in the density profiles [3]. For small Péclet numbers homoge-
neous density profiles inside the drying films were observed
[Figs. 4(a) and 4(c)], whereas for large Péclet numbers peaks
appeared near the upper interfaces [Figs. 4(b) and 4(d)] that
obviously reflected the formation of crusts.

This conclusion is supported by the data on the profiles
of the number density, ρ(y), and local order parameter, S(y)
[Figs. 5(a) and 5(b)]. Here the profiles are compared at
different initial number densities, ρi , at the fixed value of
the relative height of the dried film, h = 0.2, for a relatively
high drying rate, u = 10−3. The average number density at
the given value of h can be evaluated as ρ = ρi/h. The
corresponding patterns for different initial number densities,
ρi , are presented in (Fig. 6). We see that at the highest value of
ρi = 5 insignificant densifications were observed near both the
upper and bottom interfaces, while almost ideal ordering with
S ≈ 1 was observed inside the dried film. At smaller initial
densities, the densification (crust) and significant nematic
ordering were observed only near the upper interface. Less
significant orientational ordering was also observed near the
bottom interface [Fig. 5(b)], and it decreased with decreasing
values of ρi .

Figure 7 presents examples of the mean order parameter, S,
versus the relative height of the film, h, at different drying rates,
u, for initial number densities, ρi = 0.5 (a), 1.0 (b), 2.0 (c), and
5.0 (d). Development of the drying process corresponds to the
decrease in value of h and the increase in value of ρ.

The order parameter, S, always increased with increase of
h. The observed S(h) dependencies were also rather different
for drying modes with small and large Péclet numbers. At rela-
tively small initial concentrations of sticks [ρi = 0.5, ρi = 1.0,
and ρi = 2.0, Figs. 7(a)–7(c)] an increase of u resulted in a

(a)

(b)

(c)

(d)

FIG. 7. Mean order parameter, S, versus the relative height of
the film, h, at different drying rates, u, and initial number densities,
ρi = 0.5 (a), 1.0 (b), 2.0 (c), and 5.0 (d). The corresponding densities,
ρ, are also presented on the upper horizontal axis.

more pronounced increase in the value of S with decreasing
value of h.

For high evaporation rates, u = 5 × 10−3 and u = 10−3, a
continuous increase in the value of S with decreasing value
of h was observed, and this increase evidently reflected the
formation of the crust layer near the vapor-liquid interface.
For the small evaporation rates, u = 10−4 and u = 10−5, a
noticeable increase in the value of S was only observed in
the final stages of drying. This could reflect the formation of
dried layers with bulk ordering of the sticks. However, at the
highest initial concentration of sticks [ρi = 5; Fig. 7(d)] the
opposite behavior was observed, and an increase of u resulted
in a less pronounced increase in S with decreasing value of h.
Such behavior could reflect the effects of bulk ordering at high
concentrations of sticks.

Figure 8 presents examples of the electrical conductivity
in the horizontal, σx , (a, c), and vertical, σy , (b, d), directions
versus the relative height of the film, h. The initial density
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(a)

(b)

FIG. 8. Electrical conductivity in the horizontal, σx , and vertical,
σy , directions versus the relative height of the film, h, at an initial
density of ρi = 0.1 and different drying rates, u = 10−4 (a) and u =
10−3 (b). The data are presented for different sizes of the supporting
square lattice, m = 256, 512, and 1024. The dashed lines correspond
to the evolution of order parameter, S, during the drying.

was ρi = 0.1 and different drying rates, u = 10−4 (a, b) and
u = 10−3 (c, d), were considered. The data are presented for
different sizes of the supporting square lattice, m = 256, 512,

and 1024. In fact, the use of the supporting square lattice for
the calculation of electrical conductivity is equivalent to the
rasterization of the structure of the infinitely thin sticks and
substitution of them by the sticks with a finite aspect ratio of

FIG. 9. Example of a supporting lattice.

FIG. 10. Example of transformation of cells into sets of
conductors.

the order of k ≈ m/32. The system with infinitely thin sticks
corresponds to that with very large values of m/32 � 1.

The values of σx and σy increased with decreasing value of
h in the course of drying as this naturally reflects the changes
in stick density in the film. Moreover, the calculated data
pointed to the presence of significant anisotropy of electrical
conductivity in the drying films with σx > σy . Such anisotropy
clearly reflected the development of the preferential orientation
of the sticks along the horizontal direction, x, during the drying
[see the dashed lines in Fig. 8(a) and 8(b) for the dependency
of the order parameter, S(h)].

FIG. 11. Mean order parameter, S, versus the relative height of
the film, h, at fixed drying rate u = 10−3 and initial number density
ρi = 1.0. The corresponding densities, ρ, are also presented on the
upper horizontal axis.
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In some intervals of the h values the dependencies σx(h) and
σy(h) can be continuous or discontinuous with two branches
for the electrical conductivities. The upper and lower branches
correspond to the formation and decomposition of percolation
networks between the sticks. The effects of such a discontinuity
were even more pronounced for a higher drying rate [Fig. 8(a)]
as compared with the smaller one in Fig. 8(b). For example,
for sticks with the large aspect ratio k = 16 the discontinuities
were not observed for u = 104 and were observed for u =
10−3. Such behavior may reflect the impact of the drying rate
on the ordering of the sticks and the formation of the crust
layer near the vapor-liquid interface at the high evaporation
rate, u = 10−3 (i.e., at Pe � 1).

IV. CONCLUSION

The continuous 2D model of the vertical drying of a
suspension of infinitively thin sticks was studied by MC
simulation. The initial homogeneous and isotropic state before
drying was produced using the RSA model. As a result of
evaporation, the upper interface moved down and the sticks
underwent both translational and rotational Brownian motions.
The restriction of evaporation due to the densification of the
system near the upper interface was taken into account.
The data revealed the presence of evaporation-driven and
diffusion-driven self-assemblies and stratification of the sticks
in the vertical direction. The sticks tend to orient along the
horizontal direction in several layers close to both the upper
(liquid-vapor) and bottom (liquid-solid wall) contact lines. The
effects were dependent on the Péclet number and the initial
number density. For small Péclet numbers, homogeneous
density profiles inside the drying films were observed, whereas
for large Péclet numbers, peaks appeared near the upper
interfaces that evidently reflected the formation of crusts. The
results obtained were in qualitative correspondence with the
previously discussed impact of Péclet number on the spatial
gradient in density profiles [3]. At small initial density (ρi =
0.5), the densifications (crusts) were observed only near the
upper boundary, but significant nematic orderings were still
observed near both the upper and bottom boundaries. However,
for dense systems (ρi = 5), insignificant densifications were
observed near both the upper and bottom interfaces, and

practically ideal ordering with S ≈ 1 was observed inside the
film. Our data have demonstrated the presence of significant
anisotropy of electrical conductivity in the drying films with
σx > σy . Such anisotropy evidently reflects the development
of a preferential orientation of sticks in the horizontal direction,
x, during the drying. This anisotropy can be finely regulated by
changing the Péclet number and initial number density. These
results present an interesting possibility for prediction of the
electrical conductivity of dried films, obtained by the drying
of suspensions filled with highly anisotropic nanoparticles.
Surely the presented 2D model for hard-core and identical
sticks is oversimplified. Although, behavior of 3D systems is
supposed to be similar to the predictions of our 2D model,
consideration of such systems is extremely time-consuming.
In future investigations it is desirable to treat the more realistic
systems accounting for the interactions among the rodlike
particles and their polydispersity.
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APPENDIX A: SUPPORTING LATTICE

Each cell (a face of the lattice) is treated as conducting when
any part of a stick is located inside such the cell (Fig. 9).

To transform the lattice into a RRN, each cell is associated
with a set of conductors (Fig. 10).

All possible combinations of the conductivities are indi-
cated in Fig. 10.

APPENDIX B: SCALING ANALYSIS

Example of scaling analysis for the mean order parameter,
S, is presented in Fig. 11.

The computations were performed for three systems with
the same initial height Hi = 32ls but different widths (Lx =
16ls ,32ls ,64ls). The deviations of the results obtained for
different systems do not exceed the statistical errors.
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