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Collective spin correlations and entangled state dynamics in coupled quantum dots
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Here we demonstrate that the dynamics of few-electron states in a correlated quantum-dot system coupled to an
electronic reservoir is governed by the symmetry properties of the total system leading to the collective behavior
of all the electrons. Time evolution of two-electron states in a correlated double quantum dot after coupling
to the reservoir has been analyzed by means of kinetic equations for pseudoparticle occupation numbers with
constraint on possible physical states. It was revealed that the absolute value of the spin correlation function and
the degree of entanglement for two-electron states could considerably increase after coupling to the reservoir.
The obtained results demonstrate the possibility of a controllable tuning of both the spin correlation function and
the concurrence value in a coupled quantum-dot system by changing of the gate voltage applied to the barrier
separating the dots.
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I. INTRODUCTION

Entangled spin correlated states physics is a rapidly grow-
ing area of research in semiconductor nanostructure science
because it is of great importance for the development of
quantum information technologies [1]. Creation, manipula-
tion, and detection of entangled electrons is the central problem
which opens the possibility of integrating solid-state two-level
(qubit) systems in quantum circuits applicable for quantum
information and quantum computing processing [2,3]. Few-
electron quantum-dot (QD) systems are currently being ac-
tively investigated both theoretically and experimentally since
their single- and two-electron states can be well initialized,
investigated, and processed [4–12].

Entangled state properties are mostly analyzed in the
stationary case. But time evolution of spin and charge con-
figurations in correlated QDs after coupling to the reservoir
should be also investigated, as nonstationary characteristics
provide even more complete information about the properties
of ultra-small-size systems [13–20]. Preparation of different
initial states with several electrons in correlated systems
[21–24] from simple product states to complex entanglements
is one of the most interesting and vital problems in solid-
state physics. It was demonstrated that spatially separated
electrons can form entangled states with a particular spin
configuration in QDs [25,26]. For proper treatment of such
states, nonstationary currents flowing through QD systems
have to be analyzed. In double-correlated QDs, an entangled
state can appear as an eigenstate with a particular number of
electrons [7,27,28]. Moreover, entangled states in correlated
quantum dots can be controlled by changing the applied bias
and gate voltage [29,30] or by external laser pulses [31,32]. It
has been demonstrated that the preparation of the initial state
in QDs strongly affects the entanglement dynamics, which can
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be further enhanced during the time evolution of a two-qubit
system [33].

In the present paper we analyze the time evolution of the
spin correlation function and the degree of entanglement for
two-electron states initially prepared in a correlated double QD
after it has been coupled to the electronic reservoir. We consider
the kinetic equations for pseudoparticle occupation numbers
with a constraint on possible physical states. Typically it is
assumed that coupling to the reservoir destroys the correlations
in the subsystem with localized interacting electrons. However,
we demonstrate that the absolute value of the spin correlation
function and the degree of entanglement for two-electron states
can considerably increase after coupling to the reservoir due
to collective dynamics of localized and reservoir electrons
governed by the symmetry properties of the whole system.
The possibility of control by changing the gate voltage for
relative occupation between the singlet and triplet states has
been revealed. Our results demonstrate that spin correlations
and the degree of entanglement can be controllably tuned by
changing the gate voltage applied to the barrier separating the
quantum dots as well as by tuning the bias voltage applied to
the reservoir.

II. THEORETICAL MODEL

We consider a system of two coupled single-level quantum
dots with energy levels ε1 and ε2 connected to an electronic
reservoir. The Hamiltonian of the system,

Ĥ = Ĥdot + Ĥres + Ĥtun, (1)

is written as the sum of the Hamiltonian describing the quantum
dots

Ĥdot =
∑
lσ

εl ĉ
+
lσ ĉlσ + U1n̂

σ
11n̂

−σ
11 + U2n̂

σ
22n̂

−σ
22

+
∑

σ

T (ĉ+
1σ ĉ2σ + ĉ+

2σ ĉ1σ ), (2)
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the reservoir part

Ĥres =
∑
kσ

(εk − eV ) ĉ+
kσ ĉkσ , (3)

and the tunneling Hamiltonian

Ĥtun =
∑
lkσ

t(ĉ+
kσ ĉlσ + ĉ+

lσ ĉkσ ), (4)

where εl (l = 1,2) are the spin-degenerate single-electron
levels and Ul is the on-site Coulomb repulsion for double
occupation of quantum dots. The creation or annihilation of an
electron with spin σ = ±1 within a dot is denoted by operators
ĉ+
lσ and ĉlσ , and n̂σ

ll is the corresponding occupation number
operator. Operator ĉ+

kσ (ĉkσ ) creates (annihilates) an electron
with spin σ and momentum k in the reservoir. The coupling
between dots T and the tunneling transfer amplitude to the
reservoir t are considered to be independent of the momentum
and spin. eV is the value of the external bias voltage applied to
the reservoir. For simplicity in what follows we consider nearly
identical QDs (ε1 = ε2 = ε and U1 = U2 = U ) and assume
the symmetric coupling to the reservoir: electrons can transfer
from both quantum dots to the reservoir and back with the
same tunneling amplitude t . The degree of entanglement of a
two-qubit system in the transport regime strongly depends on
the way of coupling to the reservoir [34].

When the interaction between QDs exceeds the coupling
strength to the reservoir, it is reasonable to use the basis of
exact eigenfunctions and eigenvalues of coupled QDs without
interaction with the reservoir. In this case all energies of single-
and multielectron states are well known.

In case of one electron in the system, there exist two
single-electron states with energies εi = ε ± T (i = a,s) and
the wave function

�σ
i = μi |0↑〉|00〉 + νi |00〉|0↑〉, (5)

where |0↑〉|00〉 and |00〉|0↑〉 are the basis functions corre-
sponding to the presence of a single electron in each quantum
dot. Six two-electron states are present in the system: two states
with the same spin direction T + = |↑0〉|↑0〉, T − = |↓0〉|↓0〉,
which correspond to the existence of two electrons localized
in two different quantum dots and four states with the opposite
spins and the corresponding wave function

�σ−σ
j = αj |↑↓〉|00〉 + βj |↓0〉|0↑〉

+ γj |0↑〉|↓0〉 + δj |00〉|↑↓〉, (6)

where functions |↑↓〉|00〉, |00〉|↑↓〉 describe two electrons
localized in the same dot with the opposite directions of the
spin, and functions |↓0〉|0↑〉, |0↑〉|↓0〉 correspond to electrons
localized in different dots.

For identical quantum-dot states T ± with energies 2ε, there
also exist four two-electron states with opposite spins and

energies Eσσ
′

j : 2ε, 2ε + U , and 2ε + U
2 ±

√
U 2

4 + 4T 2. These

states are low-energy singlet S0 and triplet T 0 states and excited
singlet and triplet states S0∗ and T 0∗.

There also exist two three-electron states with the wave
function

�σσ−σ
m = pm|↑↓〉|↑0〉 + qm|↑0〉|↑↓〉,

m = ±1. (7)

Index m determines the relative sign of the coefficients pm

and qm. The basis functions |↑↓〉|↑0〉 and |↑0〉|↑↓〉 represent
one dot occupied by two opposite spin electrons and another
quantum dot with the single electron correspondingly. Finally,
a single four-electron state is present in the system, and its
wave function

�n = |↑↓〉|↑↓〉 (8)

describes the situation when both quantum dots are fully
occupied (two opposite spin electrons are present in each dot).

Correlated QD kinetics can be analyzed by means of the
pseudoparticle formalism [35,36]. In this theoretical approach,
pseudoparticles are introduced for each eigenstate of the sys-
tem in question. Consequently, the electron operator ĉ+

lσ (l =
1,2) should be written as a combination of pseudoparticle
operators:

ĉ+
lσ =

∑
i


σl
i f̂ +

iσ b̂ +
∑
jiσ

�σ−σ l
j i d̂+σ−σ

j f̂i−σ

+
∑
iσ

�σσl
i d̂+σσ f̂iσ +

∑
mjσ

�σσ−σ l
mj ψ̂+

m−σ d̂σ−σ
j

+
∑
mσ

�σ−σ−σ l
m ψ̂+

mσ d̂−σ−σ +
∑
mσ

�σ−σ−σ l
m ϕ̂+ψ̂mσ , (9)

with constraint on possible physical states

N̂b +
∑
iσ

N̂iσ +
∑
jσσ

′
N̂σσ

′

j +
∑
mσ

N̂ψmσ + N̂ϕ = 1, (10)

where f̂ +
σ (f̂σ ) and ψ̂+

σ (ψ̂σ ) are pseudofermion creation
(annihilation) operators for electronic states with one and
three electrons correspondingly. b̂+(b̂), d̂+σ (d̂σ ), and ϕ̂+(ϕ̂)
are slave boson operators, corresponding to states without
electrons, with two electrons or four electrons. Operators ψ̂+

m−σ

describe a system configuration with three electrons: two of
them are spin up electrons σ and one is a spin down electron
−σ in spatially symmetric and asymmetric states. 
σl

i , �σ−σ l
j i ,

�σσl
i , �σσ−σ l

mj , �σ−σ−σ l
m , and �σ−σ−σ l

m are matrix elements
of the creation operators ĉ+

lσ between the states with n and
n + 1 electrons [37]. They can be simply expressed through
eigenvectors defined by expressions (5)–(8).

In the presence of Coulomb interactions, the excited double-
occupied electron states as well as three- and four-particle
states are separated by a Coulomb gap from single- and low-
energy two-electron states. Consequently, all terms containing
operators ϕ̂+ and ψ̂+

m−σ in expressions (7)–(10) can be omitted.
The total electron occupation in coupled QDs can be

expressed in terms of the pseudoparticle occupation numbers:∑
l,σ

n̂σ
ll =

∑
i=a,s,σ

N̂σ
i + 2

∑
j

N̂σ−σ
j + 2

∑
jσ

N̂σσ
j . (11)

One can derive equations for the pseudoparticle occupation
numbers Nσ

i , Nσ−σ
j , Nσσ

j , and Nb by averaging equations
of motion for the operators and by decoupling the electron
occupation numbers in quantum dots from the reservoir oc-
cupation numbers. Such a decoupling procedure is reasonable
provided that Kondo correlations can be neglected [38,39]. So,
after taking into account the constraint on possible physical
states, the following nonstationary system of equations can be
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obtained for the pseudoparticle occupation numbers:

∂Nσ−σ
j

∂t
= −

∑
iσ

[
λσ−σ

ji

(
1 − N

ji

k−σ

)
Nσ−σ

j − λσ−σ
ji N

ji

k−σNσ
i

]
,

∂Nσ
i

∂t
=

∑
j

[
λσ−σ

ji

(
1 − N

ji

k−σ

)
Nσ−σ

j + λσσ
ji

(
1 − N

ji

kσ

)
Nσσ

j

]
−

∑
j

[
λσ−σ

ji N
ji

k−σNσ
i − λi

(
1 − Ni

kσ

)
Nσ

i

+ λiN
i
kσNb − λσσ

ji N
ji

kσNσ
i

]
,

∂Nb

∂t
=

∑
iσ

λi

[
Nσ

i

(
1 − Ni

kσ

) − Ni
kσNb

]
,

∂Nσσ
j

∂t
= −

∑
i

[
λσσ

ji

(
1 − N

ji

kσ

)
Nσσ

j − λσσ
ji N

ji

kσNσ
i

]
, (12)

where kinetic coefficients are

λi = λσσ
ji = 2γ |μi + νi |2,

λσ−σ
ji = 2γ |αjμi + βjνi + δj νi + γjμi |2. (13)

Index i = a,s and the relaxation rate γ = πν0t
2 (ν0 is the

electronic density of states in the reservoir). Functions N
ji

k−σ

and Ni
kσ depend on reservoir properties and have the form

N
ji

k−σ = 1

2π
i

∫
dεkf

σ
k (εk)

×
[

1

Eσσ
′

j −εi + iγji − εk

− 1

Eσσ
′

j −εi − iγji − εk

]
,

Ni
kσ = 1

2π
i

∫
dεkf

σ
k (εk)

×
[

1

εi + iγi − εk

− 1

εi − iγi − εk

]
, (14)

where

γi = λi/2,

γji = λσ−σ
ji /2, (15)

and f σ
k (εk) is the Fermi distribution function of the electrons

in the reservoir. Depending on the tunneling barrier width and
height, the typical tunneling coupling strength γ can vary from
10 μeV [40] to 1–5 meV [41].

Kinetic equations (12) conserve the total number of quasi-
particles; consequently, the constraint

Nb +
∑

σ,i=a,s

Nσ
i +

∑
j,σ,σ

′
N

σ,σ
′

j = 1 (16)

is satisfied at any time moment provided that it is satisfied at
t = 0. The system of kinetic equations has to be solved with the
initial conditions for each pseudoparticle occupation number.
In case of symmetric coupling to the reservoir, the system of
equations (12) can be solved as two independent systems of
equations. One of them contains only the equations for the
occupation numbers NT 0 and Na± and the other one describes

FIG. 1. NS0S
k−σ (U ) (black solid line) and λS0 (U ) (dashed red line)

vs the ratio U/T between the Coulomb interaction strength and that
of coupling between quantum dots. ε1/γ = ε2/γ = −5, T/γ = 15,
and γ = 1.

the dynamics of the occupation numbers NT ± , NS0 (0), NS± , and
Nb. So it is also reasonable to group the initial conditions for
each system and determine them as NI(0) and NII(0). Due to the
constraint on possible physical states one has NI(0) + NII(0) =
1. Consequently, the corresponding initial conditions are

NI(0) = NT 0 (0) + 2Na± (0),

NII(0) = 2NT ± (0) + NS0 (0) + 2NS± (0) + Nb(0). (17)

III. MAIN RESULTS

The reservoir occupation numbers depend on the Fermi
level position and thus they can be tuned by changing the
applied bias voltage. We consider the situation when the
Fermi level is localized between the single-electron states
with energies εS and εa (εS < εF and εa > εF ). Moreover,
we assume the regime of weak coupling to the reservoir
( |εS(a)−εF |

γ
� 1). It means that the functions NS

kσ and NT 0a
k−σ have

their values very close to unity, while the values of the functions
NT ±S

k−σ and Na
kσ asymptotically approach zero [see Eq. (14)]. In

this case, the stationary occupation numbers of the states T ±
and b become zero ( N st

T ± → 0, N st
b → 0), while the stationary

occupation of the states S0, T 0, a±, and S± are determined

as N st
S0 = NII(0)NS0S

k−σ

2−NS0S
k−σ

, N st
T 0 = NI(0)NT 0a

k−σ

2−NT 0a
k−σ

, N st
a± = NI(0)(1−NT 0a

k−σ )

2−NT 0a
k−σ

, and

N st
S± = NII(0)(1−NS0S

k−σ )

2−NS0S
k−σ

(see the Appendix for pseudoparticle

occupation numbers and their stationary values). So, the
pseudoparticle occupation numbers in the stationary state are
determined by the reservoir occupation functions NS0S

k−σ and

NT 0a
k , which depend on the energies ES0 − εS and ET 0 − εa

correspondingly. Moreover, the triplet state T 0 does not decay
for any value of the Coulomb interaction in the QD system,
because the decay process is determined by the time evolution
of the function NT 0a

k−σ , which becomes equal to unity in the

considered situation. The reservoir occupation function NS0S
k−σ

depends on the ratio between the Coulomb interaction strength
U and the strength of QD coupling T . The value of T and thus
the ratio U/T can be easily tuned by changing the gate voltage
applied to the barrier separating the quantum dots. Figure 1
shows the occupation function NS0S

k−σ plotted as a function of
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(a)

(b)

FIG. 2. Time evolution of partial pseudoparticle occupation num-
bers. Black curve - NT 0 (t); dashed red curve - NS0 (t); and dotted blue
curve - NT ± (t). (a) U/T = 3.5; (b) U/T = 6.5. Parameters ε1/γ =
ε2/γ = −5.0, T/γ = 15.0, and γ = 1 are the same for all the figures.
Initial conditions are NS0 (0) = 0.28; NT 0 (0) = NT ± (0) = 0.24.

the ratio U/T (see the black curve). Increasing this ratio leads
to decrease of the stationary occupation of the singlet state S0.

The time evolution of pseudoparticle occupation numbers
for different values of Coulomb interaction (U/T ) is demon-
strated in Fig. 2. In the case of identical QDs with the Fermi
level of the reservoir localized between single-electron states
(εS < εF and εF < εa), the triplet state T 0 does not decay
at all (see the black curve in Fig. 2). The occupation of the
singlet two-electron state S0 depends on both the applied bias
voltage and the ratio U/T (see the dashed red curve in Fig. 2).
A particular regime could be realized in our system, when
the occupation of the singlet state S0 increases during the
relaxation [see the dashed red curve in Fig. 2(a)]. For identical
quantum dots with λa = 0, one can distinguish different
inverse time scales, which determine the time evolution of the
initial two-electron states:

λT 0 = λS

(
1 − NT 0a

k−σ

2

)
(18)

determines the time evolution of occupation numbers in the
T 0 and a states. The kinetics of pseudoparticle occupation
numbers NS0 , NT ± , and NS is governed by the time scales
λS , 2λS [see expression (13)], and

λS0 = 2λS |α + β|2
(

1 − NS0S
k−σ

2

)
. (19)

The time evolution of the initial state depends on both
the value of the applied bias and the ratio between Coulomb

FIG. 3. Time evolution of the spin correlation function. Black and
blue curves correspond to the ratio U/T = 3, while red and magenta
curves to the ratio U/T = 6.5. The parameters ε1/γ = ε2/γ = −5.0,
T/γ = 15, and γ = 1 are the same for all figures. The initial
conditions for the solid curves are NS0 (0) = 0.4; NT 0 (0) = NT ± (0) =
0.2. The initial conditions for the dashed curves are NS0 (0) = 0.28;
NT 0 (0) = NT ± (0) = 0.24.

interaction and QD coupling strengths. The dependence of λS0

on the ratio U/T is shown in Fig. 1 as the dashed red curve.
We would like to mention that real systems are not perfect,

so they are not ideally symmetrical. An asymmetry of the
system gives rise to the appearance of one more typical
relaxation time scale, which can be several orders larger than
time scales of relaxation effects in the symmetric system. For
example, the presence of a detuning between the energy levels
in the quantum dots (detuning means that the quantum dots are
not identical) results in the appearance of a nonzero relaxation
rate λa = �ε2

T 2 λS , which leads to a very slow decay of the
triplet two-electron T0 state [42]. But for t < λ−1

a the presence
of an asymmetry does not influence the system behavior. So,
the growth of the entanglement can be observed in this time
interval.

For the two-electron mixed state one can determine the spin
autocorrelation function

F = 〈S1(t)S2(t)〉 = − 3
4NS0 + 1

4 (NT 0 + NT + + NT −).

(20)

The spin autocorrelation function time evolution is shown in
Fig. 3. The absolute value of the spin correlation function could
considerably increase after switching on of the interaction with
the reservoir. Such behavior is not evident, because typically
one expects that the interaction with the reservoir destroys cor-
relations between localized spins. In our case the dynamics of
the initial state is determined by the collective effects governed
by the symmetry of the whole system. The spin symmetry
properties of two-electron states are closely connected with the
spatial symmetry of the QD-reservoir system. Consequently,
more correlated spin state can appear after switching on of the
“symmetric” coupling with the reservoir. One more interesting
regime can be obtained when the initially single-electron state
with energy εa is excited

∑
σ Nσ

a (0) = 1. Experimentally such
a situation can be achieved by excitation of quantum dots via
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FIG. 4. Time evolution of partial pseudoparticle occupation num-
bers. The black curve - NT 0 (t); the dashed red curve - Na(t). The
parameters U/T = 6.5, ε1/γ = ε2/γ = −5.0, T/γ = 15, and γ = 1
are the same for all figures. The initial conditions are Na = 0.5,
NS0 (0) = NT 0 (0) = NT ± (0) = 0.0.

a resonant external field. After switching on of the symmetric
coupling to the reservoir, the system evolves to the correlated
two-electron triplet state T 0 (see Fig. 4). In this case, the
stationary state is an almost pure triplet state T 0.

One can follow the changes of concurrence (the degree of
entanglement) during the time evolution of the quantum-dot
system. A standard measure of entanglement is the concurrence
[33,34,43–47]. For each pure state of two qubits |ψ〉, the
entanglement can be written as

E(ψ) = F (C(ψ)) = −η log2 η − (1 − η) log2(1 − η),

(21)

where η = 1
2 [1 +

√
1 − C2(ψ)] and C(ψ) = |〈ψ |ψ̃〉| (|ψ̃〉 is

the “spin-flipped” pure state). In this case the entanglement
is equal to zero for C(ψ) = 0. For the mixed state, the
concurrence is denoted as C(ρ) = max{0,λ1 − ∑

i λi}, where
{λi} are the square roots of the matrix ρ̃ρ (ρ̃ are the eigen-
values of the spin-flipped matrix ρ) arranged in decreasing
order [33,34,43,47]. For the mixed state ρ of two qubits, the
entanglement is determined as

E(ρ) = F (C(ρ)) = −η log2 η − (1 − η) log2(1 − η),

(22)

where η = 1
2 [1 +

√
1 − C2(ρ)]. In both cases F (C) is a

monotonically increasing function as C goes from zero to
unity [F (0) = 0], so one can take concurrence as a measure
of entanglement in its own right. In the frame of the pseu-
doparticle approach, the two-electron density matrix λi can be
simply expressed through the pseudoparticle occupation num-
bers corresponding to two-electron states. The two-electron
mixed state concurrence can be also determined through the
spin autocorrelation function F . When only the two-electron
states are available, one has C = max{0, − 2F − 1

2 }. The
time evolution of concurrence for the initially mixed state
demonstrates the threshold behavior (see Fig. 5). The time at
which a nonzero concurrence first appears in the system can

Time, tTime,

(a) (c)

(b) (d)

t

C
on
cu
rr
en
ce

C
on
cu
rr
en
ce

E
nt
an
gl
em
en
t

E
nt
an
gl
em
en
t

γ γ

FIG. 5. Time evolution of concurrence and entanglement for
different values of the ratio between the Coulomb interaction and
quantum-dot coupling. Black curve - U/T = 3.5; dashed red curve -
U/T = 3; dotted blue curve - U/T = 6.5; long dashed maroon curve
U/T = 10 and dash-dotted green curve - U/T = 13. The parameters
ε1/γ = ε2/γ = −5.0, T/γ = 15.0, and γ = 1 are the same for
all figures. The initial conditions are (a) NS0 (0) = 0.4; NT 0 (0) =
NT ± (0) = 0.2; (b) NS0 (0) = 0.28; NT 0 (0) = NT ± (0) = 0.24.

be tuned by changing the gate voltage (the system parameter
U/T ). Moreover, the concurrence value increases during time
evolution and reaches its maximum value in the steady state.
The stationary value of the concurrence is determined as
Cst = max{0, − 2Fst − 1/2}. The steady-state value Fst can
be obtained from Eq. (20), where the stationary pseudoparticle
occupation numbers are involved (see the Appendix for expres-
sions determining the stationary pseudoparticle occupation
numbers). Figures 5(c) and 5(d) show time evolution of
entanglement in the system initially prepared in a mixed state
obtained from Eq. (22). Figures 5(a)–5(d) reveal a very similar
behavior for two different definitions of entanglement and,
consequently, prove that our criteria are correct.

We would like to mention that in bipartite composite
systems of distinguishable particles there exist several equiv-
alent criteria for revealing the entanglement, and there is no
consensus about how to quantify the entanglement of identical
particle systems. In the case of identical fermion particles, the
true entanglement should be carefully evaluated by eliminating
the natural nonseparability imposed by the Pauli principle. In
such systems, unavoidable correlations arising from the truly
indistinguishable nature of particles are sometimes confused
with the genuine entanglement due to the correlations. A
very important question is whether the fermionic system is
initially entangled due to the fermionic nature of electrons. In
our theoretical approach we applied the second quantization
formalism, so that the Pauli principle is explicitly included in
commutation relations for fermionic creation and annihilation
operators. Moreover, our results imply that only by choosing
the proper basis of eigenstates does one distinguish truly entan-
gled states from the false ones [33,34]. The wave function for
two-electron states with opposite spins is described by Eq. (7).
Without Coulomb correlations, basic two-electron states can be
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represented as a simple product of single-electron states. This
means that this state is not entangled. The presence of Coulomb
correlations allows the possibility of a real entanglement in the
system. In this case two-electron states cannot be represented
as a simple product of single-electron states. By using the
second quantization approach and choosing the correct basic
functions we exclude the possibility of a false entanglement of
a two-qubit fermionic system.

IV. CONCLUSIONS

We demonstrated that both spin correlations and the degree
of entanglement in the system of two correlated QDs increase
after it has been coupled to the reservoir. This effect appears
because the dynamics of several-electron states in the system
of correlated quantum dots is governed by the symmetry
properties of the whole system, giving rise to a collective
behavior of all electrons. The typical relaxation time scales and
the stationary electron distribution was calculated by means of
kinetic equations for the pseudoparticle occupation numbers
considering constraint on the possible physical states. It was
revealed that depending on the ratio between the strength of
Coulomb interactions and that of coupling between quantum
dots, not only the initial triplet state T 0 but also the singlet
state S0 can be approximately stable. Thus one can control the
relative occupation of singlet and triplet states by changing
the gate voltage. Our results demonstrate the possibility of
controllable concurrence tuning by changing the gate voltage
applied to the barrier separating the quantum dots and the bias
voltage applied to the reservoir.
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APPENDIX

In the case of identical QDs, the pseudoparticle occupation
numbers obtained from Eqs. (12) have the form

NT 0 (t) = N st
T 0 + [

NT 0 (0) − N st
T 0

]
e−λT 0 t ,

NS0 (t) = N st
S0 + [

NS0 (0) − N st
S0

]
e−λS0 t ,

Na± (t) = N st
a± + [

Na± (0) − N st
a±

]
e−λT 0 t ,

NS± (t) = N st
S± + [

NS± (0) − N st
S±

]
e−λS0 t ,

NT ±(t) = N st
T ± + [

NT ± (0) − N st
T ±

]
e−λS0 t ,

Nb(t) = N st
b + [

Nb(0) − N st
b

]
e−λS0 t . (A1)

The stationary values of partial pseudoparticles occupation
numbers are

N st
T ± = NII(0)NS

kσNT ±S
k−σ

(
1 − NS0S

k−σ

)
Z

,

N st
S0 = NII(0)NS

kσNS0S
k−σ

(
1 − NT ±S

k−σ

)
Z

,

N st
S± = NII(0)NS

kσ

(
1 − NS0S

k−σ

)(
1 − NT ±S

k−σ

)
Z

,

N st
b = NII(0)

(
1 − NS

kσ

)(
1 − NS0S

k−σ

)(
1 − NT ±S

k−σ

)
Z

,

N st
T 0 = NI(0)NT 0a

k−σ

2 − NT 0a
k−σ

,

N st
a± = NI(0)

(
1 − NT 0a

k−σ

)
2 − NT 0a

k−σ

, (A2)

and

Z = 2
(
1 − NS0S

k−σ

)(
1 − NT ±S

k−σ

)
NS

kσ + NS0S
k−σNS

kσ

(
1 − NT ±S

k−σ

)
+ 2NT ±S

k−σ NS
kσ

(
1 − NS0S

kσ

)
+ (

1 − NS
kσ

)(
1 − NT ±S

k−σ

)(
1 − NS0S

k−σ

)
. (A3)
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