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Orthogonality catastrophe and fractional exclusion statistics
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We show that the N -particle Sutherland model with inverse-square and harmonic interactions exhibits
orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N -body ground state wave
functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit.
When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap
shows an exponential suppression. This is qualitatively different from the usual power law suppression observed
in the Anderson’s orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps
for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the
ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis
indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than
just the fermionic type.
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I. INTRODUCTION

The phenomenon of orthogonality catastrophe (OC) as
discussed by Anderson [1] demonstrates that in the thermo-
dynamic limit, the perturbed ground state of certain fermionic
quantum systems is orthogonal to the ground state in the
absence of the perturbation. The overlap between the two
fermionic ground states is usually suppressed by a power law,
which goes to zero in the thermodynamic limit. OC has been
observed in Kondo systems [2,3] semiconductor quantum dots
[4–6], graphene [7], Luttinger liquids [8–12], and various other
physical systems. Recently a study of statistical OC [13] has led
to the possibility of an exponential decay of the wave function
overlap [14], in contrast to the usual power law suppression
[1]. A particular way to introduce perturbations in a system
is provided by a quench, in which the perturbation could be
turned on suddenly or over a small period of time. For a sudden
quench, the old ground state is no longer the ground state of the
perturbed system, but can be expanded in terms of the complete
set of eigenstates of the quenched Hamiltonian. The overlap
of the ground states before and after the quench can be used to
study the OC.

The OC has been studied primarily in fermionic systems
which obey the Fermi-Dirac statistics. It is therefore interesting
to ask if nonfermionic systems, such as those exhibiting
fractional exclusion statistics [15–17] can also demonstrate
OC. In certain fractional quantum Hall systems, where the
Laughlin quasiparticles satisfy more general statistics, indirect
effects of the OC have been observed mainly through the
suppression of the conductance peaks in the thermodynamic
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limit [18,19]. However, to our knowledge there has been no
direct demonstration of OC in terms of the suppression of the
wave function overlap for systems with fractional exclusion
statistics.

In this paper we want to investigate the existence of the OC
in one-dimensional quantum systems with fractional exclusion
statistics [15–17], which is considered as a generalization
of the fermionic case. The N -body Calogero type systems
[20–22] with inverse-square and harmonic interactions exhibit
fractional exclusion statistics [23–26]. The inverse-square
interaction is not merely a mathematical curiosity but actually
appears in a wide variety of physical situations, including con-
formal quantum mechanics [27–29], polar molecules [30,31],
quantum Hall effect [32], Tomonaga-Luttinger liquid [33], and
black holes [34–37] as well as in graphene with a Coulomb
charge [38–45]. Following the solutions originally obtained
by Calogero [20–22], systems with inverse-square interactions
have been analyzed with a variety of different techniques
[46–51], and the study of OC with such an interaction is of
potential interest for a wide class of physical systems.

Soon after the appearance of the Calogero model, Suther-
land [52,53] proposed a variation of that which also exhibits
fractional exclusion statistics [25,26] and is more convenient
for our purpose. In this paper, we shall use the Sutherland
model (SM) [52] as a prototype of a quantum system with the
inverse-square interaction and the harmonic term. The param-
eters defining the SM include the inverse-square interaction
strength μ, the harmonic confining strength ω, and the number
N of particles that are interacting with each other. We start
our analysis with a fixed value of N and quench the system
parameters from (μ,ω) to (μ′,ω′). The thermodynamic limit
will be taken at the end of the calculation. We shall show that
the overlap of the ground state of the SM before and after the
quench decays exponentially in the thermodynamic limit. The
wave functions of the SM exhibit fractional exclusion statistics
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[25,26]. Therefore the results obtained in this paper suggest that
the phenomenon of OC might extend to systems with statistics
more general than just the fermionic type.

Recent advances in ultra cold atoms and optical lattices have
made it possible to experimentally realize physical models in
lower dimensions. There has been a proposal to experimentally
realize the SM with the help of Bose-Einstein condensates
in the cold alkali atoms [54]. It is therefore plausible that
the effects discussed in this paper could be observed in the
laboratory in the future.

II. THE SUTHERLAND MODEL

The Hamiltonian of the N -particle SM [52] is given by

HN = 1

2

N∑
j=1

( − ∂2
xj

+ ω2x2
j

) +
N∑

j=2

j−1∑
k=1

[
μ

(xj − xk)2

]
,

(1)

where ω is a natural frequency common to all the N particles
and μ � 3/4 is the coupling constant for the inverse-square
interaction. The ground state wave function for this system
has the form

�λ,ω({x}N ) = N(λ,ω)z
λe− ω

4

∑N
j=1 x2

j , (2)

where λ ≡ (
√

μ + 1 + 1)/2 is associated with fractional statis-
tics [24] and z ≡ ∏N

j<k(xj − xk). The normalization constant
N(λ,ω) can be obtained by using the Selberg’s integral formula
[55]

∫ ∞

−∞
· · ·

∫ ∞

−∞
z2γ

N∏
j=1

e−ax2
j dxj

= (2π )N/2(2a)−γN(N−1)/2−N/2
N∏

j=1

�(1 + jγ )

�(1 + γ )
. (3)

Applying (3) to the ground state (2), we obtain

N(λ,ω) =
( ω

2π

)N/4
ωλ

N(N−1)
4

N∏
j=1

√
�(1 + λ)

�(1 + jλ)
. (4)

The dispersion relation of the Sutherland Hamiltonian (1) is
that of N interacting Harmonic oscillators

EN = ω

N∑
j=1

ni + ωλ
N (N − 1)

2
+ ω

N

2
, (5)

where nj = 0,1,2, . . . represents the energy level of the j -
particle and satisfying the bosonic occupation rule n1 � n2 �
· · · � nN . Observe that due to the introduction of the inverse-
square interaction, the total energy EN becomes superexten-
sive, i.e., it is quadratic in the number of particles N .

If we define ñj = nj + λ(j − 1), the energy (5) can be
rewritten as

EN = ω

N∑
i=1

ñj + ω
N

2
, (6)

which can be interpreted as the spectrum of N free quasiparti-
cles obeying the occupation rules:

ñj � ñj+1 − λ. (7)

They are a generalization of the Pauli exclusion principle,
which corresponds to the particular case λ = 1. This is consis-
tent with the fact that the Sutherland model exhibits fractional
exclusion statistics [24,26]. Note that the superextensive term
of EN in (5) determines the form of the generalized exclusion
rules (7).

III. SCALING OF THE OVERLAP BETWEEN
GROUND STATES

For a fixed value of the particle number N , the ground state
wave function (2) of the SM is characterized by the parameters
ω and λ. We would like to quench the parameters of this system
from (λ,ω) to (λ′,ω′). Our primary focus is on the strength of
the inverse-square interaction term, but we also consider the
quench in the harmonic interaction as well [56]. To this end,
we consider the overlap of the ground states of the SM with
different (λ,ω) and (λ′,ω′), which is given by

A(λ,ω),(λ′,ω′) ≡ [�(λ,ω)({x}N ),�(λ′,ω′)({x}N )]

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
�(λ,ω)({x}N )

×�(λ′,ω′)({x}N )
N∏

j=1

dxj . (8)

Using Eq. (2) in the above formula, we obtain

A(λ,ω),(λ′,ω′) = N(λ,ω)N(λ′,ω′)I (λ,ω; λ′,ω′), (9)

with

I (λ,ω; λ′,ω′) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
zλ+λ′

N∏
j=1

e− ω+ω′
4 x2

j dxj

= (2π )N/2

(
ω + ω′

2

)−(λ+λ′)N(N−1)/4−N/2

×
N∏

j=1

�
(

1 + j λ+λ′
2

)
�

(
1 + λ+λ′

2

) . (10)

For this evaluation we have used the Selberg’s integral formula
(3) to get

A(λ,ω),(λ′,ω′) =
[

4ωω′

(ω + ω′)2

]N/4

× 2(λ+λ′)N(N−1)/4

[
ωλω′λ′

(ω + ω′)λ+λ′

]N(N−1)/4

×
{

�(1 + λ)�(1 + λ′)
�[1 + (λ + λ′)/2]2

} N
2

×
N∏

j=1

√
�[1 + j (λ + λ′)/2]2

�(1 + jλ)�(1 + jλ′)
. (11)

Notice that the first line gives the overlap due to the harmonic
term (see Appendix A), the second line mixes both parameters,
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the natural frequency ω and the coupling λ, and the third
line refers only to the overlap due to the inverse-square
interaction strength λ. Also note that it is not allowed to
take the limit λ → 1 or equivalently μ → 0 as we have
restricted the inverse-square coupling strength to μ � 3/4.
Below this value the analysis requires modified boundary
conditions related to either self-adjoint extensions [49–51]
or renormalization of the inverse-square interaction strength
[57]. Such modified boundary conditions are not central to the
purpose of the present work, and that is why we have restricted
the analysis to μ � 3/4. Moreover, the case ω = 0 does not
apply in this analysis, where normally the states would be
non-normalizable.

For λ = λ′ the harmonic piece remains, while the terms
under the product become unity. The mixture piece becomes[

4ωω′

(ω + ω′)2

]λN(N−1)/4

, (12)

which can be then combined with the harmonic piece to give

A(λ,ω),(λ,ω′) =
[

4ωω′

(ω + ω′)2

]N/4+N(N−1)λ/4

. (13)

In this last case, it is easy to see that the base is positive and
smaller than one for all ω and ω′, and the exponent is always
positive. Therefore, when N → ∞ the whole expression goes
to zero in agreement with the OC. The dominant term decays
exponentially as exp(−N2) due to the Calogero coupling.
This should be compared with the case of the pure harmonic
oscillator (see Appendix A), which decays as exp(−N ).

We now come to the main result of this analysis, for which
we consider the case ω = ω′. The harmonic piece and the
mixed term in (11) become unity. We are now essentially
quenching the inverse-square interaction strength from λ to
λ′. Following Anderson [1], let us first consider the case where
λ′ = λ + δλ, where δλ → 0 is a small or even infinitesimal
perturbation of the inverse-square interaction strength. In this
case, the overlap between the ground states of the initial and
the perturbed systems is given by (see Appendix B for details)

Aλ,λ+δλ ∼ e− δλ2

λ

N(N+1)
16 . (14)

Therefore, we find that the overlap exponentially decays to
zero with N2, in contrast to the power law suppression as in
the Anderson’s original OC [1]. It may be noted that similar
exponential suppression has also been recently obtained in a
different context [14]. In Fig. 1 we compare the perturbative
approximation (14) with the exact expression (11).

We now consider two arbitrarily different values of λ and λ′,
within the allowed parameter region μ � 3/4, and analyze how
the overlap between the ground states scales with the number
of particles N in this case. For that, it is useful to apply the

Stirling formula for the Gamma function, �(z) ∼
√

2π
z

zze−z,

when N → ∞ with λ, λ′ keep fixed. We get

N∏
j=1

�
(
1 + j λ+λ′

2

)
√

�(1 + jλ)�(1 + jλ′)
∼

[
(λ/2 + λ′/2)λ+λ′

λλλ′λ′

] N(N+1)
4

×
(

λ + λ′

2
√

λλ′

)N/2

. (15)
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FIG. 1. Overlap between the ground state of a SM (1) with
arbitrary ω and μ = 3/4 and the ground state of another model
(1) obtained by a perturbation of the inverse-square coupling from
λ [recall λ = (

√
μ + 1 + 1)/2)] to λ + δλ for different δλ. The

harmonic term does not change in any case. The points were obtained
with the exact expression (11), and the solid lines correspond to the
perturbative approximation (14).

The final form of the overlap is obtained as

A(λ,ω),(λ′,ω) ∼
[

�(1 + λ)�(1 + λ′)
�[1 + (λ + λ′)/2]2

]N/2

×
{

[(λ + λ′)/2]λ+λ′

λλλ′λ′

}N(N+1)/4(
λ + λ′

2
√

λλ′

)N/2

.

(16)

In Fig. 2 we check the validity of this expansion comparing
it with the exact result (11) for several quenches from a given
λ to different λ′.

Observe that, as happens with the energy of the Hamiltonian
(5), the exponent of the previous overlaps is also superex-
tensive, being quadratic in the number of particles N . The
inverse-square interaction seems to be the responsible of this
behavior since the extensivity is recovered when we turn this
interaction off as it is shown in Appendix A.

The SM can be used to describe a one-dimensional Bose gas
in an harmonic potential where the particles interact with each
other through an inverse-square potential. Recent advances in
the field of ultracold atoms and optical lattices have opened up
the possibility of simulating such a system in the laboratory
[54,58–61]. In particular, it has been argued in Ref. [54] that
the dipole-dipole interactions between certain Bose-Einstein
condensates (BEC) in an optical lattice generates an inverse-
square potential whose strength is proportional to the number
of atoms within the BEC. Thus the coefficient of the inverse-
square interaction in the SM model can be changed by tuning
the number of atoms within the BEC. On the other hand, a
quench in the harmonic trap of the SM model also leads to
interesting effects [62], and it can be easily implemented in
the laboratory.
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FIG. 2. Overlap between the ground state of a SM (1) with
arbitrary ω and μ = 3/4 and the ground state of other SMs (1) with
the same harmonic coupling ω and different inverse-square strength
μ′. Observe that the results do not depend on the value of ω. The
points were computed employing the exact expression (11), and the
solid lines correspond to the asymptotic expansion (16) obtained by
applying the Stirling formula for the Gamma function when N → ∞.

IV. SUMMARY AND OUTLOOK

In our analysis we have considered the N -body Sutherland
model with the harmonic and inverse-square interactions as a
prototype for systems with fractional exclusion statistics. We
have obtained a general analytical expression for the overlap of
the ground state wave functions when the system parameters
are quenched from (λ,ω) to (λ′,ω′). This overlap tends to zero
in the thermodynamic limit as the number of particles N → ∞.
As a special case, we have considered the quench with the
harmonic interaction fixed while the inverse-square interaction
strength changes infinitesimally. Here we have shown that the
ground state overlap goes to zero in an exponential fashion
which is different from the usual power law overlap obtained
in the usual Anderson’s OC. In addition, the exponent is
quadratic in the number of particles. We think that this is
a sign of the superextensivity of the SM, whose dispersion
relation is actually quadratic in the number of particles. This
superextensivity is also related to the fractional exclusion
statistics that this model exhibits. The leading term of the
overlap or fidelity of two ground states of a many-body system
can be employed to detect and study quantum phase transitions
[63,64]. However, we are not aware of any quantum phase
transition in this model. It may be noted that the Calogero-
Sutherland system is gapped and there is no thermal phase
transition [53].

Another interesting quantity in this context is the time
dependence of the overlap of the wave functions before and
after the quench, which yields rich information about the
equilibrium properties of the quantum system. The Loschmidt
echo [65–67]

L(t) = |〈φg|eiHi t e−iHf t |φg〉|2, (17)

where φg is the initial state before the quench and Hi,Hf

denote the Hamiltonians before and after the quench, provides
a characterization of such a time dependence and its behavior in
the context of Anderson OC has attracted recent attention in the
literature [68–72]. There have also been various proposals to

empirically study the Loschmidt echo in setups with ultracold
atoms [14,71–75], and a Ramsey interferometric-type exper-
iment with dilute fermionic impurities has been performed
recently [76]. It is known that the OC is related to the power
law decay of the Loschmidt echo [72,77]. The calculation of
the Loschmidt echo in the SM and its analysis in the time and
frequency domains is presently under investigation.
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APPENDIX A: HARMONIC OSCILLATORS

In this Appendix, we recollect a simple example of orthog-
onality catastrophe. In one dimension, consider N noninter-
acting harmonic oscillators

H (ω) = 1

2

N∑
j=1

(
p2

j + ω2x2
j

)
, (A1)

with pj = −i∂xj
. The ground state of H� = E� is

�ω({x}N ) =
(ω

π

)N/4
e− ω

4

∑N
j x2

j . (A2)

Let us consider the overlap of two system with different
frequencies, ω and � ,

Aω�,N ≡ (�ω({x}N ),�� ({x}N ))

=
∫

dx1 · · · dxN�ω({x}N )�� ({x}N ). (A3)

Replacing (A2) in the above overlap and integrating the
Gaussians,

Aω�,N =
[

4ω�

(ω + � )2

]N/4

=
[

4η

(1 + η)2

]N/4

, η ≡ ω

�
.

(A4)

Now, notice that except when η = 1 (or ω = � ), the ratio
4η/(1 + η)2 is less than one. Therefore, in the limit N → ∞,

lim
N→∞

Aω�,N = 0, ω 
= �. (A5)

This is the orthogonality catastrophe. It is a remarkable fact
that the study of the scaling of this exponential suppression is
currently amenable to experiments in cold atoms.
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APPENDIX B: PERTURBATIVE ANALYSIS FOR THE OC
OF THE SUTHERLAND MODEL

For the case ω′ = ω, the overlap between two ground states
(2) with λ and λ′ as a function of the number of particles N

writes from (11) as

Aλ,λ′(N ) = R1(λ,λ′)
N
2

√√√√ N∏
j=1

1

Rj (λ,λ′)

= exp

⎡
⎣N

2
log R1(λ,λ′) − 1

2

N∑
j=1

log Rj (λ,λ′)

⎤
⎦,

(B1)

where

Rj (x,y) ≡ �(1 + jx)�(1 + jy)

�[1 + j (x + y)/2]2
. (B2)

We are interested in the asymptotics of the overlap function
Aλ,λ′(N ) as N → ∞. We will also consider a small perturba-
tion around λ, that is, λ′ = λ + δλ. The result below will be
valid for the scaling limit:

N → ∞, δλ → 0, Nδλ2 < 1. (B3)

The series expansion around x of Rj (x,x + δx) to smallest
order is

Rj (x,x + δx) = 1 + j 2ψ ′(1 + jx)
δx2

4
+ O(δx3), (B4)

where

ψ ′(z) =
∞∑

k=0

1

(k + z)2
, z 
= 0, − 1, − 2, . . . (B5)

is the derivative of the Polygamma function

ψ(z) = �′(z)

�(z)
. (B6)

Notice that the argument in ψ ′ for our case is always positive.
The asymptotics of ψ ′ as z → ∞ is of the form

ψ ′(z) ∼ 1

z
+ 1

2z2
+

∞∑
k=1

B2k

z2k
, (B7)

where Bn are the Bernoulli numbers.
Now we consider the case j → ∞, and since x is held fixed,

then we can take

ψ ′(1 + jx) ∼ 1

j
(
x + 1

j

) ∼ 1

jx
. (B8)

Replacing this result in (B4), we obtain

Rj (x,x + δx) ∼ 1 + j
δx2

4x
. (B9)

Using the scaling limit Nδx2 < 1, for large N and small
δx, we then Taylor expand the previous formula to first order
as

log Rj (x,x + δx) ∼ log

(
1 + j

δx2

4x

)
= j

δx2

4x
. (B10)

We can also consider that formulas (B9) and thus (B10) are
valid for j = 1.

We now replace this formula in the sum over j in (B1).
Although the above formula is valid for large j , we can start
the sum with j = 1, which brings nothing more than a small
error. Indeed, the smaller j terms are quite irrelevant w.r.t. the
large ones (in a linear approximation). Thus,

N∑
j=1

log Rj (x,x + δx) ∼ δx2

4x

N∑
j=1

j = δx2

4x

N (N + 1)

2
.

(B11)

Summing up all the above in the overlap expression (B1),
we obtain

Aλ,λ+δλ(N ) ∼ e− δλ2

λ

N(N+1)
16 . (B12)
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