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Heat leakage in overdamped harmonic systems
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We investigate the occurrence of heat leakages in overdamped nonequilibrium Brownian harmonic systems.
We exactly compute the underdamped and overdamped stochastic heats exchanged with the bath for a sudden
frequency or temperature switch. We show that the underdamped heat reduces to the corresponding overdamped
expression in the limit of large friction for the isothermal process. However, we establish that this is not the case
for the isochoric transformation. We microscopically derive the additionally generated heat leakage and relate its
origin to the initial relaxation of the velocity of the system. Our results highlight the limitations of the overdamped
approximation for the evaluation of the stochastic heat in systems with changing bath temperature.
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I. INTRODUCTION

Stochastic thermodynamics offers a general framework for
the study of the thermodynamic properties of small systems
whose dynamics is dominated by thermal fluctuations [1,2].
It successfully extends the concepts of macroscopic thermo-
dynamics, such as work, heat, energy, and entropy, to the
level of single random trajectories [3,4]. This framework has
been widely used in theoretical and experimental investigations
[1–6]. An important application of stochastic thermodynamics
is the analysis of Brownian heat engines that cyclically trans-
form heat into mechanical work. Two broad classes of stochas-
tic heat engines are usually distinguished: (i) motors with a
static periodic potential and a spatially varying temperature [7–
9], and (ii) motors with a time-dependent harmonic potential
and a temporally modulated temperature [10–12]. Examples
of the second type have recently been realized experimentally
using a colloidal particle trapped in a harmonic optical potential
[13,14]. While most investigations have primarily focused on
the overdamped regime corresponding to large friction, studies
in the underdamped limit of small friction have been performed
for the two different classes of stochastic engines [15,16].

The formalism of stochastic thermodynamics has been
developed both for underdamped and overdamped dynamics
[1,2]. The main difference between the two is the definition of
heat that includes a kinetic contribution in the underdamped
regime, while it depends only on the confining potential in
the overdamped limit. However, an asymptotic analysis of the
Klein-Kramers equation for the first class of Brownian heat
engines has shown that the kinetic contribution does not vanish
in the limit of large friction [17]. The heat flow that results
from the relaxation of the kinetic energy seriously limits the
efficiency of the heat engine [17–19]. A similar phenomenon
has been observed for the second type of stochastic heat
engines [10,20,21]. In these cases, although the dynamics are
overdamped, the energetics are not [22–24]. The heat flux
associated with the momentum degree of freedom is often
referred to as heat leakage to emphasize that it is not captured
by the overdamped approximation [10,21,22]. It corresponds
to an actual irreversible heat exchange with the environment

[17–19] and should not be confused with the heat leak in
an endoreversible heat engine, that is, the heat that directly
flows from the hot to the cold bath without being transformed
into work [25]. Heat leakages have been theoretically and
experimentally investigated for quasistatic processes using an
optically trapped Brownian microparticle [23,24].

Our aim in this paper is to investigate the appearance of
heat leakages in harmonic systems driven by nonequilibrium
transformations. We specifically consider isothermal (constant
temperature) and isochoric (constant frequency) processes that
constitute two essential steps of a harmonic Brownian heat
engine cycle. We exactly calculate the underdamped and the
overdamped heats for the two processes for the case of a sud-
den variation of frequency and temperature, respectively. We
find that the underdamped heat reduces to the corresponding
overdamped expression in the limit of large friction for the
isothermal process, as expected. However, we show that this is
not the case for the isochoric process and explicitly derive the
nonvanishing heat leakage.

II. HEAT FOR A HARMONIC PARTICLE

We consider a Brownian particle with position x, velocity
v, and mass m confined in the harmonic potential V (x) =
mω2x2/2 with frequency ω. Its underdamped evolution is
described by the Langevin equation [26],

v̇ = −γ v − ω2x +
√

2γ kT

m
F (t), ẋ = v, (1)

where F (t) is a centered Gaussian white noise obeying
〈F (t)F (t ′)〉 = δ(t − t ′), k the Boltzmann constant, T the tem-
perature of the bath, and γ the damping coefficient. Because
of the linearity of Eq. (1), the dynamics may be equivalently
described in terms of the position and velocity variances,
σx = 〈x2〉 and σv = 〈v2〉, leading to

σ̇v = −2γ σv − ω2σ̇x + 2γ kT

m
, (2)

σ̈x = 2σv − γ σ̇x − 2ω2σx. (3)
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FIG. 1. Underdamped spatial variance σx (a) and velocity variance σv (b) during the isothermal process (9) for increasing values of the
damping coefficient γ , Eqs. (10) and (11), respectively. Parameters are t0 = 2s, ω0 = 1s−1, and ω1 = 2s−1.

In the overdamped limit, σ̇v = 0, the above equations decouple
and the Langevin equation reduces to

σ̇x = −2
ω2

γ
σx + 2kT

γm
. (4)

The solutions of the above equations for constant frequency
and temperature are given in the Appendix.

The averaged stochastic heats along an individual trajectory
may be obtained from the first law. For small and large friction,
they are respectively given by [1,2]

Qu =
∫ t

0
dt ′〈[m∂t ′v(t ′) + ∂xV (x,t ′)]v(t ′)〉, (5)

Qo =
∫ t

0
dt ′〈∂xV (x,t ′)v(t ′)〉. (6)

The underdamped expression (5) contains a kinetic term that
accounts for the relaxation of the velocity degree of freedom.
In the limit of strong friction, this thermalization is almost
instantaneous and the velocity is assumed to always have its
stationary value. However, this does not necessarily imply that
there is no heat flow associated with the velocity relaxation
[17]. In the harmonic case, the stochastic heats (5) and (6)
can be directly expressed in terms of the position and velocity
variances σx and σv:

Qu = γ kT t − γm

∫ t

0
dt ′σv, (7)

Qo = m

2
ω2

∫ t

0
dt ′σ̇x . (8)

These two equations form the basis of our study of heat
leakages in stochastic harmonic systems.

III. ISOTHERMAL PROCESS

We begin by investigating isothermal processes during
which the frequency of the potential is varied at constant
temperature. We assume that the oscillator is initially at thermal

equilibrium at t = 0 with frequency ω0. The corresponding
initial conditions for the variances are σv0 = kT /m, σx0 =
kT /mω2

0, and σ̇x0 = 0 due to the equipartition theorem. We
drive the system by instantaneously changing its frequency to
ω1 at time t = t0,

ω(t) = ω0 + (ω1 − ω0)�(t − t0), (9)

where �(t) denotes the Heaviside function.
The corresponding underdamped position and velocity

variances can be obtained from Eq. (A1). Introducing ω′ =√
4ω2

1 − γ 2 and τ = t − t0, we find

σx =

⎧⎪⎪⎨
⎪⎪⎩

kT

mω2
0
, 0� t < t0

kT

mω2
1

[
1 + (ω2

1

ω2
0
− 1

)
e−γ τ

ω′2
(
2ω2

1 + (
2ω2

1 − γ 2
)

× cos(ω′τ ) + γω′ sin(ω′τ )
)]

, t0 � t

(10)

σv =

⎧⎪⎨
⎪⎩

kT
m

, 0 � t < t0

kT
m

[
1 + 2ω2

1
ω′2

(ω2
1

ω2
0
− 1

)
e−γ τ

×(1 − cos(ω′τ ))
]
. t0 � t.

(11)

The time dependence of the variances σx and σv is shown in
Fig. 1 for increasing values of the damping coefficient. We
observe a qualitatively different behavior in the underdamped
and overdamped regimes. For small friction, the position and
velocity variances settle to their respective equilibrium values,
σx1 = kT /mω2

1 andσv1 = kT /m, in a slow oscillatory fashion.
We note that these oscillations are out of phase, revealing
the continuous conversion of kinetic to potential energy and
vice versa. By contrast, for strong friction, the position variance
reaches its new equilibrium value exponentially fast, while the
velocity variance remains quasiconstant at its initial value. We
additionally emphasize that the relaxation time first decreases
with increasing γ , before it starts increasing for higher values
of the damping coefficient. This nonmonotonic behavior fol-
lows from the existence of two typical time scales in the system,
τx ≈ 1/γ and τv ≈ γ /ω2, and their different γ dependence
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FIG. 2. Underdamped heat Qu (solid) and overdamped heat Qo

(dotted) during the isothermal process (9) for increasing values of the
damping coefficient γ obtained from Eqs. (12) and (13), respectively.
Same parameters as in Fig. 1.

[26]. The relaxation time reaches its minimum in the aperiodic
limit ω′ = 0 which corresponds to the condition γ = 2ω1.

We next compute the underdamped heat (7) using the
variance (10) and the overdamped heat (8) using Eq. (A3).
We obtain

Qu =

⎧⎪⎨
⎪⎩

0, 0 � t < t0

kT
2

(ω2
1

ω2
0
− 1

)[
1

ω′2 e
−γ τ

(
4ω2

1

−γ 2 cos(ω′τ ) + γω′ sin(ω′τ )
) − 1

]
, t0 � t

(12)

Qo =
{

0, 0 � t < t0

kT
2

(ω2
1

ω2
0
− 1

)(
e
− 2ω2

1
γ

τ − 1
)
. t0 � t.

(13)

These two formulas for the heat are displayed as a function of
time for increasing values of the friction in Fig. 2. Three points
are noteworthy: first, the two heats are negative, indicating
that energy is given to the bath in order to compensate for
the work done on the system by the sudden frequency switch;
second, both expressions relax exponentially to the same value
in the limit of long times, Qu → Qo; finally, Eqs. (12) and (13)
become identical for large damping coefficients, γ � ω1, as
naively expected. The last point may be confirmed analytically
by Taylor expanding Qu using ω′ = iγ

√
1 − α 	 iγ (1 −

α/2) with α = 4ω2
1/γ

2 
 1. For an isothermal process, we
may thus take the large friction limit either before or after
evaluating the heat.

IV. ISOCHORIC PROCESS

Let us now turn to the isochoric process where the temper-
ature is modified at constant frequency. We assume that the
oscillator is initially at thermal equilibrium at temperature T0

and frequency ω. The corresponding initial conditions for the
variances are accordingly σv0 = kT0/m, σx0 = kT0/mω2, and
σ̇x0 = 0. We thermally drive the system by instantaneously
switching the temperature to the value T1 at t = t0,

T (t) = T0 + (T1 − T0)�(t − t0). (14)

The underdamped position and velocity variances may be
calculated as in the previous section. We obtain with ω′ =√

4ω2 − γ 2,

σx =

⎧⎪⎨
⎪⎩

kT0
mω2 , 0 � t < t0
kT1
m

[
1 + (

T0
T1

− 1
)

e−γ τ

ω′2 [4ω2

−γ 2 cos(ω′τ ) + γω′ sin(ω′τ )]
]
, t0 � t

(15)

σv =

⎧⎪⎨
⎪⎩

kT0
m

, 0 � t < t0
kT1
m

[
1 + (

T0
T1

− 1
)

e−γ τ

ω′2 [4ω2

−γ 2 cos(ω′τ ) − γω′ sin(ω′τ )]
]
. t0 � t.

(16)

Equations (15) and (16) are shown in Fig. 3 as a function of time
for increasing friction. The position variance σx reaches its new
equilibrium value, σx1 = kT1/mω2, exponentially with a decay
time that first decreases before it increases with larger γ . On
the other hand, the velocity variance σv exhibits two different
behaviors: for small friction, it slowly equilibrates to σv1 =
kT1/m, whereas it jumps almost instantaneously to that value
for high friction. The assumption that the velocity variance
is quasiconstant in the overdamped limit is therefore verified
for both isothermal and isochoric processes. However, in the
latter case, it displays an initial sudden jump induced by the
temperature variation, which is neglected in the overdamped
approximation. This initial jump may be physically understood
by noting that the system adjusts instantly to the heat bath in
the overdamped limit, while it adjusts immediately to changes
of the external potential in the opposite underdamped limit.

We may next compute the underdamped and overdamped
heats in analogy to the previous section and get

Qu =

⎧⎪⎨
⎪⎩

0, 0 � t < t0

k(T1 − T0)
[
1 − 1

ω′2 e
−γ τ

×(4ω2 − γ 2 cos(ω′τ ))
]
, t0 � t

(17)

Qo =
{

0, 0 � t < t0

k(T1−T0)
2

(
1 − e

− 2ω2

γ
τ
)
. t0 � t.

(18)

The two heat expressions are represented in Fig. 4 as a
function of time for increasing friction. We first notice that
the underdamped and overdamped heats differ by exactly a
factor of 2 in the long-time limit, Qu → 2Qo, although the
work done on the system is identically zero in both situations.
The equipartition theorem provides an explanation for this
discrepancy. In the overdamped regime, there is only one
relevant degree of freedom (the velocity being frozen). As
a result, the total energies of the oscillator before and after
the temperature switch are respectively kT0/2 and kT1/2.
Since no work is done on the system, the total energy change
is 
E = k(T1 − T0)/2 = Qo(t → ∞). The same argument
applies to the underdamped regime with now two relevant
degrees of freedom (position and velocity). Consequently,

E = k(T1 − T0) = Qu(t → ∞).

We additionally observe that in the limit of strong friction,
the underdamped heat (17) does not reduce to the overdamped
expression (18), as was the case for the isothermal process. It
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FIG. 3. Underdamped spatial variance σx (a) and velocity variance σv (b) during the isochoric process (14) for increasing values of the
damping coefficient γ , Eqs. (15) and (16), respectively. Parameters are t0 = 2s, ω = 2s−1, and T1/T0 = 2.

further exhibits an initial jump that is directly connected to the
sudden jump of the velocity variance seen in Fig. 3. This can
be seen explicitly by rewriting Eq. (5) in the form

Qu =
∫ t

0
dt ′

(m

2
σ̇v + m

2
ω2σ̇x

)
. (19)

The quick relaxation of σv immediately after t0 thus causes
a large heat flux during this short period of time, leading to
the sudden jump of Qu in Fig. 4. The ensuing heat flux is
mostly induced by the much slower relaxation of σx , when σv

is mostly constant. A lowest-order Taylor expansion of Eq. (17)
for γ � ω further yields

Qu 	 Qo + k(T1 − T0)

2
. (20)

The second term in Eq. (20) is the heat leakage associated with
the initial relaxation of the velocity. Its origin may be traced
to the inertial term mẍ in the Langevin equation (1). This term
is neglected in the overdamped approximation. However, the
heat leakage remains finite even for arbitrarily strong friction.

FIG. 4. Underdamped heat Qu (solid) and overdamped heat Qo

(dotted) during the isochoric process (14) for increasing values of
the damping coefficient γ , Eqs. (17) and (18), respectively. Same
parameters as in Fig. 3.

This again follows from the fact that the oscillator reacts
instantaneously to temperature changes in the overdamped
regime.

V. SUMMARY

We have investigated the occurrence of heat leakages in
harmonic systems which are known to reduce the efficiency
of Brownian heat engines as compared to ideal overdamped
engines [20,21]. Due to the conceptual simplicity of these
systems, we were able to analyze the physical origin of these
heat leakages in detail and to compute their exact expression
for a sudden temperature switch in an isochoric process. Our
results emphasize the fact that the overdamped limit can be
taken before or after calculating the stochastic heat for the case
of a constant temperature. However, this is no longer true when
the temperature changes in time, as the initial fast velocity re-
laxation will induce heat leakages which are not captured by the
overdamped approximation. These nonequilibrium findings
complement those obtained for a spatial temperature variation
in Refs. [17–19] and for equilibrium temporal temperature
modulations in Refs. [23,24]. In these situations, average heat
should be evaluated before taking the overdamped limit.

APPENDIX: SOLUTIONS FOR THE VARIANCES

We here provide for convenience the solutions of Eqs. (2)–
(4) for the position and velocity variances for constant fre-
quency and temperature. The underdamped equations (2) and
(3) may be solved with the help of the Laplace transformation
[27]. We obtain

σv = kT

m
+ D1 e−γ t + D2 e(−γ+ω∗)t + D3 e(−γ−ω∗)t ,

σx = kT

mω2
+ 1

ω2
e−γ t

[
D1 + (γ + ω∗)2

4ω2
D2 eω∗t

+ (γ − ω∗)2

4ω2
D3 e−ω∗t

]
, (A1)
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where we have defined the following quantities:

ω∗ =
√

γ 2 − 4ω2 = iω′,

D1 = ω2

ω∗2

(
4
kT

m
− 2σv0 − 2ω2σx0 − γ σ̇x0

)
,

D2 = − 1

2ω∗2

[
γ kT

m
(γ − ω∗) + (2ω2 − γ 2 + γω∗)σv0

− 2ω4σx0 + ω2(−γ + ω∗)σ̇x0

]
,

D3 = 1

2ω∗2

[
−γ kT

m
(γ + ω∗) + (−2ω2 + γ 2 + γω∗)σv0

+ 2ω4σx0 + ω2(γ + ω∗)σ̇x0

]
, (A2)

and the initial values σv0, σx0, and σ̇x0. On the other hand, the
solution of the overdamped equation (4) is given by

σx = kT

mω2
−

(
kT

mω2
− σx0

)
e
−2 ω2

γ
t
, (A3)

with the initial condition σx0.
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