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The positivity conditions of the relative entropy between two thermal equilibrium states ρ̂1 and ρ̂2 are used
to obtain upper and lower bounds for the subtraction of their entropies, the Helmholtz potential and the Gibbs
potential of the two systems. These limits are expressed in terms of the mean values of the Hamiltonians, number
operator, and temperature of the different systems. In particular, we discuss these limits for molecules that can be
represented in terms of the Franck–Condon coefficients. We emphasize the case where the Hamiltonians belong
to the same system at two different times t and t ′. Finally, these bounds are obtained for a general qubit system
and for the harmonic oscillator with a time-dependent frequency at two different times.
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I. INTRODUCTION

The states of quantum systems are described either by
vectors |ψ〉 in a Hilbert space H [1] (pure states) and the
corresponding wave functions ψ(x) = 〈x|ψ〉 [2] or by the
density operators ρ̂ acting in the Hilbert space [3,4] (mixed
states). These states are associated to Hamiltonian system
interactions with certain environments or external sources. The
systems can consist of a constant number of particles or, due
to the interactions, can have a varying number of particles.
In view of this, there are mixed states with density operators
in equilibrium, depending on such physical parameters as the
temperatures and chemical potentials.

In quantum mechanics, one can find various characteristics
of arbitrary pure and mixed states in terms of the von Neumann
[5], Tsallis [6], and Rényi entropies [7], as well as known
equalities and inequalities; see, for example, Refs. [8–10]. On
the other hand, the correlations of a system with an external
source can be of such a form that it preserves the purity of the
states but the system Hamiltonian depends on time; this means
that the system energy changes due to the interchange with
the external source, and this change is described by the time
dependence of the Hamiltonian parameters.

The variations of the parameters may be either very slow or
very fast with respect to the relaxation time of the system. In
the case of a very fast change in the Hamiltonian parameters
(instantaneous rate of change), the studied state, being either
pure or mixed, just after the perturbation continues to be the
same as it was before due to inertia. Thus, if the system was
in the pure state with a given energy level, the wave function
just after the perturbation does not change in spite of the fact
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that the Hamiltonian is modified. Similarly, if the system was
in a thermal equilibrium mixed state with the density operator
ρ̂, this operator is the same just after the instant Hamiltonian
parameter variation, though the Hamiltonian itself is different.

Our generic approach is to study the bounds for the state
characteristics making use of the relative entropy between
two thermal states, concentrating the applications of the in-
equalities to the thermal equilibrium states and their possible
changes. This is related to the developments of the studies
of states associated with quantum thermodynamics. In fact,
in recent years the analysis of the thermodynamic properties
of the information (quantum and classical) has been the
subject of several works [11–20]. In particular, the fundamental
thermodynamical aspects of information as the second law,
the Landauer principle and the Maxwell’s demon have been
studied [13,14,21]. In relation with the fundamental aspects
of statistical mechanics, we stress that in Ref. [22] a general
canonical principle has been proposed without using temporal
or ensemble averages, which, however, can be easily connected
to the standard statistical mechanics. How entanglement and
coherence can be used to generate work has been the subject
of Refs. [23–26]. The problem of how the thermodynamic
quantities as the internal energy, the entropy, and the Helmholtz
potential behave as a system approach equilibrium has been
of interest. These investigations have led to the definition of
different inequalities regarding these quantities [14,27,28].

In the previous works [27,28], we have analyzed the com-
parison between an arbitrary state with the density matrix ρ̂ and
a thermal equilibrium state σ̂ = e−Ĥ /T /Tr(e−Ĥ /T ), making
use of the Tsallis and von Neumann relative entropies. This
comparison was made in specific for a qubit system and a
Gaussian state resulting in an inequality that relates the entropy
of ρ̂, the mean value Tr(ρ̂Ĥ ), and the partition function of
the system Z(Ĥ ,T ) = Tr(e−Ĥ /T ). The bounds for physical
characteristics as the energy or entropy of quantum states
play an important role since they determine the specific states
that correspond on the extreme situation where the equality
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between the bound an the physical quantity of interest are
equal. In our work [27], it was shown that the distance, given
the relative entropy expression, between the arbitrary state
with density matrix ρ̂ and the canonical thermal equilibrium
state with Hamiltonian Ĥ provides the bound for the sum
of the energy and the entropy (in dimensionless variables).
Exactly on this bound the canonical Boltzmanian density
matrix is realized as it was point out also in Ref. [29]. The
observation that the physical state of thermal equilibrium is
related with the bound gives the motivation to study other
bounds in quantum thermodynamics. In this work we study,
using the relative entropy as a distance between the quantum
states, the bounds for differences of entropies and free energies
associated with states corresponding to different Hamiltonians
and temperatures. Such bounds give the possibility to study
the specific states that appear when the Hamiltonians depend
on time. Specifically, we are interested in how the system
behaves when a sudden change in these parameters is done.
Such situation takes place if the duration of the parameter
change is smaller than the relaxation time of the system, e.g.,
in molecular spectroscopy such regime is associated with the
Franck-Condon factors, which are used to describe the vibronic
structure of electronic lines in molecules if the transition takes
place between the pure energy level states. We point out that
the results from this research can be of importance in the field
of quantum information thermodynamics.

In this work, we obtain new upper and lower limits of the
difference of the entropy, the Helmholtz and Gibbs potentials
between two different thermal equilibrium density matrices ρ̂1

and ρ̂2. Although these two states can be not related, we make
special emphasis in the case where they describe the same
system at two different times t and t ′. As, in principle, the initial
and final states may not have the same purity, one can think
that the initial state with number operator N̂1 is in contact with
an external source at temperature T1, whose interaction yields
an effective Hamiltonian Ĥ1 over the system. At some point,
a change in the interaction Ĥ1 → Ĥ2, the number operator
N̂1 → N̂2, and the temperatures T1 → T2 is done by the energy
or particle transfer between the system and the external source,
changing the thermodynamic properties of the system. It is
important to stress that the expressions obtained can be applied
to any type of change done to the system, i.e., if these changes
are either quasistatic or not.

As examples, these bounds are studied for a general qubit
system and the harmonic oscillator with a time-dependent
frequency.

II. BOUNDS BETWEEN TWO SYSTEMS
INTERCHANGING ENERGY

First, we discuss the case where the system is represented
by the Hamiltonian Ĥ and the parameter T , and may interact
with an external source only through energy exchanges. As
it is known, the description of such a system can be done
using the canonical ensemble. In this representation, any state
given by the density operator σ̂ = e−Ĥ /T /Tr(e−Ĥ /T ) has the
von Neumann entropy S = −Tr(σ̂ ln σ̂ ). This entropy can also
be expressed as S = 〈Ĥ 〉/T + ln Z(Ĥ ,T ), where the quantity
Z(Ĥ ,T ) = Tr(e−Ĥ /T ) is called the partition function while the
parameter T is the temperature. In this case, the operator σ̂

describes a thermal equilibrium state (in a unit system where
h̄ = k = 1).

As we compare an arbitrary nonthermal equilibrium state ρ̂

with σ̂ using the nonnegative relative entropy [30] Tr[ρ̂(ln ρ̂ −
ln σ̂ )], one can notice that the entropy of the nonequilib-
rium system must satisfy the inequality S < Tr (ρ̂Ĥ )/T +
ln Z(Ĥ ,T ), which can be used to distinguish the equilibrium
state from the nonequilibrium one [27,28]. Also, we point out
that another inequality can be defined when the operator Ĥ and
the temperature T are replaced by an arbitrary observable Ô
and parameter λ, respectively, i.e., by doing the replacement
σ̂ → e−Ô/λ/Tr(e−Ô/λ). Later on this idea will be used to find
bounds for a grand canonical ensemble.

We consider two thermal equilibrium states described by
the Hamiltonians and temperatures (or arbitrary parameters)
(Ĥ1, T1) and (Ĥ2, T2), respectively,

ρ̂1 = e−β1Ĥ1

Tr (e−β1Ĥ1 )
, ρ̂2 = e−β2Ĥ2

Tr(e−β2Ĥ2 )
, (1)

with β1 = 1/T1 and β2 = 1/T2. The difference of their en-
tropies is given by the following expression:

S(Ĥ2,T2) − S(Ĥ1,T1) = 1

T2
Tr (ρ̂2Ĥ2) − 1

T1
Tr(ρ̂1Ĥ1)

+ ln

(
Z(Ĥ2,T2)

Z(Ĥ1,T1)

)
. (2)

This quantity can be evaluated if either the mean value of the
Hamiltonians and the temperatures or the partition functions of
both systems are known [as the mean value of the Hamiltonian
can be obtained by differentiating the logarithm of the partition
function Tr(ρ̂Ĥ ) = −∂ ln Z(Ĥ ,T )/∂β]. On the other hand, it
can be shown that, in view of the relative entropy, upper and
lower bounds for the difference of the entropies S(Ĥ2,T2) −
S(Ĥ1,T1) between the two thermal equilibrium states can
be obtained. To demonstrate this, the positivity conditions
Tr(ρ̂1 ln ρ̂1 − ρ̂1 ln ρ̂2) � 0 and Tr(ρ̂2 ln ρ̂2 − ρ̂2 ln ρ̂1) � 0 are
used. From these, the bounds for S(Ĥ2,T2) − S(Ĥ1,T1) can be
written as the following inequality:

1

T2

[
E(Ĥ2,T2) − Tr (e−β1Ĥ1Ĥ2)

Z(Ĥ1,T1)

]
� S(Ĥ2,T2) − S(Ĥ1,T1)

� 1

T1

[
Tr(e−β2Ĥ2Ĥ1)

Z(Ĥ2,T2)
− E(Ĥ1,T1)

]
, (3)

where E(Ĥ ,T ) = Tr (e−βĤ Ĥ )/Z(Ĥ ,T ) is the mean value
of the Hamiltonian. Adding and subtracting E(Ĥ1,T1) and
E(Ĥ2,T2) to the left- and right-hand sides of the previous
expression, respectively, we obtain the following result:

1

T2

[
�E − Tr (e−β1Ĥ1�Ĥ )

Z(Ĥ1,T1)

]

� �S � 1

T1

[
�E − Tr (e−β2Ĥ2�Ĥ )

Z(Ĥ2,T2)

]
, (4)

with �E = E(Ĥ2,T2) − E(Ĥ1,T1), �Ĥ = Ĥ2 − Ĥ1, and
�S = S(Ĥ2,T2) − S(Ĥ1,T1). It is worth mentioning that the
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limits for the difference of the entropies are related to the
mean values of the complementary Hamiltonians of each
system. When both density matrices ρ̂1 and ρ̂2 belong to
the same Hilbert space, i.e., when the Hamiltonians Ĥ1 and
Ĥ2 are related by a transform that may be not unitary. The
term Tr(e−β1Ĥ1Ĥ2)/Z(Ĥ1,T1) can be interpreted as the mean
value of the Hamiltonian after the change Ĥ1 → Ĥ2, when
the change is sudden and the system has no time to adapt.
In this case, the state of the system ρ̂1 remains unchanged,
e.g., when the relaxation time of the system is larger compared
with the time when the change of the Hamiltonian occurs.
This behavior is due to the fact that, after changing the
Hamiltonian, the state determined by Ĥ1 and T1 present an
inertia that prevents it from change very quickly as stated
by the adiabatic theorem of quantum mechanics. The other
mean value Tr(e−β2Ĥ2Ĥ1)/Z(Ĥ2,T2) is the mean value of the
Hamiltonian, when the system undergoes the change Ĥ2 → Ĥ1

and can be interpreted as a reversibility term. Also, as the
relative entropy between the two thermal states ρ̂1 and ρ̂2

measures the distance between the two states, it can be used to
compare the different Hamiltonians Ĥ1 and Ĥ2 which define
the two systems. It is also worth clarifying that the limits for
the difference �S are only valid if the initial and final states
are of thermal equilibrium, e.g., in the following situation:
initially the system is kept in thermal equilibrium at T1 with
Hamiltonian Ĥ1 for all times t < t1; at t = t1, a change in
the temperature and the interaction Hamiltonian is done until a
certain time t = t2. After this, the system is kept at temperature
T2, and interaction Hamiltonian Ĥ2 until it finally achieves
thermal equilibrium. When these conditions are satisfied, the
difference of the entropy (or free energy) between the two
equilibrium states can be approximated using only the mean
value of the Hamiltonian corresponding to the times just before
and after an abrupt change in the conditions of the system is
done. This implies that measuring the change on the mean
value of the Hamiltonian before and after the change one can
have a quick estimate of the difference of the thermodynamic
quantities even before the systems reach equilibrium.

When the Hamiltonians Ĥ1,2 are written in terms of
the kinetic and potential operators Ĥj = K̂j + V̂j (j =
1,2), the bounds for the difference of the entropy
can be expressed as: (〈K̂2〉2 + 〈V̂2〉2 − 〈K̂2〉1 − 〈V̂2〉1)/T2 �
�S � (〈K̂1〉2 + 〈V̂1〉2 − 〈K̂1〉1 − 〈V̂1〉1)/T1, with 〈Ôj 〉k =
Tr(ρ̂kÔj ). In a situation where the kinetic energy does not
change, the limits can be expressed as the difference of the
mean values of the potential operators: (〈V̂2〉2 − 〈V̂2〉1)/T2 �
�S � (〈V̂1〉2 − 〈V̂1〉1)/T1.

Furthermore, in view of Eqs. (2) and (3), we can obtain
bounds for the function ln[Z(Ĥ2,T2)/Z(Ĥ1,T1)] as follows:

Tr

[
ρ̂1

(
Ĥ1

T1
− Ĥ2

T2

)]
� ln

[
Z(Ĥ2,T2)

Z(Ĥ1,T1)

]

� Tr

[
ρ̂2

(
Ĥ1

T1
− Ĥ2

T2

)]
. (5)

As the logarithm of the partition function is related to the
Helmholtz potential F (Ĥ ,T ) = −T ln[Z(Ĥ ,T )], the previous
equation allow us to obtain limits for the difference of the

Helmholtz potential of both systems

Tr

[
ρ̂1

(
Ĥ1

T1
− Ĥ2

T2

)]
� F (Ĥ1,T1)

T1
− F (Ĥ2,T2)

T2

� Tr

[
ρ̂2

(
Ĥ1

T1
− Ĥ2

T2

)]
. (6)

These limits as well as the ones for the entropy depend only
on the mean values of the Hamiltonians and the parameters T1

and T2.
When the Hamiltonian operators are written in terms of their

eigenvalues and eigenvectors, i.e.,

Ĥ1 =
∑

j

εj |εj 〉〈εj | , Ĥ2 =
∑

l

εl|εl〉〈εl|,

the two density matrices ρ̂1 and ρ̂2 can be expressed
as ρ̂1 = ∑

j Pj (T1)|εj 〉〈εj | and ρ̂2 = ∑
l Pl(T2)|εl〉〈εl|,

where Pj (T1) = e−εj /T1/
∑

j ′ e
−εj ′ /T1 and Pl(T2) =

e−εl/T2/
∑

l′ e
−εl′ /T2 are the probabilities associated to the

states |εj 〉〈εj | and |εl〉〈εl|, respectively.
The mean values of Ĥ1 and Ĥ2 are equal to Tr (ρ̂1Ĥ1) =∑
j Pj (T1)εj and Tr(ρ̂2Ĥ2) = ∑

l Pl(T2)εl , while the mean
values of the Hamiltonian, using the complementary system
states, read

Tr(ρ̂1Ĥ2) =
∑
j,l

Pj (T1)εlkjl, Tr(ρ̂2Ĥ1) =
∑
j,l

Pj (T2)εlklj ,

(7)

where the matrix elements kjl = |〈εj |εl〉|2 are known as
the Franck–Condon factors when the states represent two
electronic states in a molecular system. These factors have
been calculated and simulated for several electronic transitions
in molecules, e.g., a compilation of these factors for the
hydrogen molecule H2 can be seen in Ref. [31], and methods
to obtain vibronic transition profiles in molecules have been
studied in Refs. [32,33]. Finally, the previous expressions for
the mean value of the Hamiltonians are used to obtain the
following bounds for the difference of the entropy:

1

T2

⎡
⎣∑

j

Pj (T2)εj −
∑
j l

Pj (T1)εlkjl

⎤
⎦ � �S

� 1

T1

⎡
⎣∑

j l

Pj (T2)εlklj −
∑

j

Pj (T1)εj

⎤
⎦. (8)

In addition, using the same arguments, the difference of the
Helmholtz potential is

∑
j

Pj εj /T1−
∑
j l

Pj (T1)εlkjl/T2 � F (Ĥ1,T1)

T1
−F (Ĥ2,T2)

T2

�
∑
j l

Pj (T2)εj kjl/T1 −
∑

j

Pj (T2)εj /T2. (9)

In the case where the two Hamiltonians have the same
spectrum (kij = δij ), �S will have as bounds the difference
of mean value of the energy corresponding to the two different
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temperatures:

1

T2

⎡
⎣∑

j

[Pj (T2) − Pj (T1)]εj

⎤
⎦ � �S

� 1

T1

⎡
⎣∑

j

[Pj (T2) − Pj (T1)]εj

⎤
⎦,

∑
j

Pj (T1)(εj /T1 − εj /T2) � F (Ĥ1,T1)

T1
− F (Ĥ2,T2)

T2

�
∑

j

Pj (T2)(εj /T1 − εj /T2). (10)

The inequalities given in Eqs. (4), (6), and (9) allow us to
study the behavior of a system that experience a sudden change,
even if the period of time for this is very small compared with
the relaxation time of the system. In those cases, the bounds of
�S or the Helmholtz potential must be larger compared with
a small change over time. Also, these boundaries can be used
as an approximation for �S or F (Ĥ1,T1)/T1 − F (Ĥ2,T2)/T2

and have the convenience to only depend on the mean values
of the Hamiltonians opposed to the analytic expressions whose
also depend on the partition function.

III. BOUNDS BETWEEN TWO SYSTEMS
INTERCHANGING ENERGY AND PARTICLES

It is possible to obtain an analogous expression for the
bounds of the entropy on a system that interacts interchanging
energy and particles with an external source. To describe this
kind of system, it is necessary to use the grand canonical
ensemble in which a thermal equilibrium state is given by the
following density matrix:

σ̂ = eβ(μN̂−Ĥ )

Tr [eβ(μN̂−Ĥ )]
,

where μ is the chemical potential and N̂ is the number operator
of the different energy levels of the system. When using the
positivity condition of the relative entropy between an arbitrary
state given by the density matrix ρ̂ and the equilibrium matrix
σ̂ , the following new inequality for the von Neumann entropy
S = −Tr(ρ̂ ln ρ̂) is obtained

S � ln[Z (Ĥ ,N̂,T ,μ)] − 1

T
Tr [ρ̂(μN̂ − Ĥ )], (11)

where Z (Ĥ ,N̂,T ,μ) = Tr [eβ(μN̂−Ĥ )] is the grand partition
function. As in the canonical ensemble, the equality of the
previous expression only occurs when the system is in thermal
equilibrium. Therefore, this new inequality can be used to
distinguish between equilibrium and nonequilibrium states in
a general system.

As in the canonical case, the comparison between two
different equilibrium states

ρ̂1 = eβ1(μ1N̂1−Ĥ1)

Tr [eβ1(μ1N̂1−Ĥ1)]
, ρ̂2 = eβ2(μ2N̂2−Ĥ2)

Tr [eβ2(μ2N̂2−Ĥ2)]
,

can be performed. The von Neummann relative entropy
conditions Tr (ρ̂1 ln ρ̂1 − ρ̂1 ln ρ̂2) � 0 and Tr (ρ̂2 ln ρ̂2 −

ρ̂2 ln ρ̂1) � 0 give rise to the following limits for the difference
of the entropies S(Ĥ2,T2) and S(Ĥ1,T1):

1

T2

{
Tr [eβ1(μ1N̂1−Ĥ1)(μ2N̂2 − Ĥ2)]

Z (Ĥ1,N̂1,T1,μ1)

−G(Ĥ2,N̂2,T2,μ2) + Tr (ρ̂2Ĥ2)

}

� �S � 1

T1

{
G(Ĥ1,N̂1,T1,μ1) − Tr(ρ̂1Ĥ1)

−Tr [eβ2(μ2N̂2−Ĥ2)(μ1N̂1 − Ĥ1)]

Z (Ĥ2,N̂2,T2,μ2)

}
,

where G(Ĥ ,N̂,T ,μ) = Tr (ρ̂Ĥ ) + T {ln[Z (Ĥ ,N̂,T ,μ)] −
S(Ĥ ,N̂,T ,μ)} is the Gibbs potential. The term Tr (ρ̂1N̂2) is
interpreted as the new mean value of the number operator
when the system undergoes the sudden changes N̂1 → N̂2

and Ĥ1 → Ĥ2. These sudden changes are thought to be faster
than the relaxation time of the system, hence the state does
not change. We notice that these limits can be used to estimate
the entropy change of a system, having the convenience of
depending on mean values of observable quantities; also it
can be used to detect changes in the Hamiltonian, the number
of particles or the temperature of the system even in the
occurrence of a very fast transform. The previous inequality
can also be used to obtain bounds for the logarithm of the ratio
of the grand partition functions

1

T1
[Tr (ρ̂1Ĥ1)−G(Ĥ1,N̂1,T1,μ1)] + 1

T2
Tr [ρ̂1(μ2N̂2−Ĥ2)]

� ln

[
Z (Ĥ2,N̂2,T2,μ2)

Z (Ĥ1,N̂1,T1,μ1)

]
� 1

T2
[G(Ĥ2,N̂2,T2,μ2)

−Tr (ρ̂2Ĥ2)]− 1

T1
Tr[ρ̂2(μ1N̂1−Ĥ1)].

To see some applications of these inequalities, we present
briefly the case of a general qubit system.

IV. QUBIT SYSTEM

In recent years, the study of qudit systems has been of
great importance due to its use in quantum information, in
particular, the study of the qubit system and its interaction with
different environments. In this section, we present the entropic
inequalities between two different qubit systems.

The study discussed in the previous section is used to present
the entropy bounds between two different qubit systems gen-
erated by the Hamiltonians Ĥ1 and Ĥ2 and described by the
density matrices ρ̂1 and ρ̂2 of Eq. (1), which are expressed in
terms of the Bloch vectors for the corresponding systems, i.e.,

Ĥ1 = 1

2

(
h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

)
,

(12)

Ĥ2 = 1

2

(
h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

)
,
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FIG. 1. Upper (blue) and lower (red) bounds for the difference of entropies �S (a) as a function of the angle between the Bloch vectors θ

given two thermal equilibrium states with temperature T1 = 10 and (b) as a function of temperature T1 with fixed θ = π/4. In both cases, we
assume T2 = 15, |h| = √

61, and |h| = √
17. The gray curves correspond to the analytic result.

where h = (h1,h2,h3) and h = (h1,h2,h3) are the Bloch vec-
tors of Ĥ1 and Ĥ2, respectively, while h0 and h0 are the traces of
the Hamiltonians. Here we have use the Bloch representation
of the states although some other representations can be used
as the ones presented in Refs. [34,35].

The entropy for each system is a function of the norm of the
Bloch vector of the Hamiltonian and the temperature; it reads

S(|h|,T1) = 1

2

{
ln 2 + ln

[
1 + cosh

( |h|
T1

)]

− |h|
T1

tanh

( |h|
2T1

)}
.

The corresponding expression for S(|h|,T2) can be obtained
making the substitution h → h and T1 → T2. The mean value
of the Hamiltonian is

E(Ĥ1,T1) = 1

2

[
h0 − |h| tanh

( |h|
2T1

)]
, (13)

while the mean value of the Hamiltonian Ĥ2 seen in the
complementary system ρ̂1 is

Tr (ρ̂1Ĥ2) = 1

2|h|
[
|h|h0 − h · h tanh

( |h|
2T1

)]
.

Using these expressions, one can write the upper and lower
bounds for the difference of the entropy as

|h|
2T2

[
cos θ tanh

( |h|
2T1

)
− tanh

( |h|
2T2

)]
� S(|h|,T2) − S(|h|,T1)

� |h|
2T1

[
tanh

( |h|
2T1

)
− cos θ tanh

( |h|
2T2

)]
, (14)

where θ is the angle between the two Bloch vectors h and h.
By differentiating the upper and lower bounds with respect

to θ , we see that the lower bound has a minimum value when
θ = π and a maximum when θ = 0, while the upper bound
has a minimum at θ = 0 and a maximum at θ = π . From
these extreme values it is possible to see that the limits are
closer to the exact value of �S when the upper bound has a
minimum, and the lower bound has a maximum (θ = 0), and
present the largest difference comparing with the exact value
when the upper bound has a maximum and the lower bound has

a minimum (θ = π ). Then one can conclude that the Hamil-
tonians Ĥ1 and Ĥ2, which give rise to thermal equilibrium
states (at the same temperature T ), with the same von Neumann
entropy (�S = 0), are the ones that have parallel Bloch vectors
and the ones, which give rise to a maximum difference of the
entropy between them, have antiparallel Bloch vectors.

In Fig. 1(a), the upper and lower bounds of �S are shown for
a qubit system as a function of the angle θ between the Bloch
vectors h and h. One can see that these limits have a minimum
value when the Bloch vectors are parallel and a maximum when
they are antiparallel as previously discussed. In Fig. 1(b), the
plot of �S is shown as a function of temperature T1 with fixed
T2. Here, one can see that the difference between the bounds
and the analytic curve in gray goes down as the temperature
increases. This is due to the fact that as the temperature
increases the density matrices ρ̂1 and ρ̂2 become more and
more similar to the most mixed state I/2 (e.g., a spin system
where the probability of being up and down is the same),
independently of the Hamiltonians Ĥ1 and Ĥ2.

V. HARMONIC OSCILLATOR WITH A
TIME-DEPENDENT FREQUENCY

The time-dependent harmonic oscillator [36] has been a
paradigmatic model in quantum mechanics [37]. This kind
of oscillator may have exact solutions and can be used to
obtain statistical properties of the electromagnetic field as
antibunching and squeezing [38]. Additionally, a scheme to
calculate the Franck–Condon factors for two one-dimensional
harmonic oscillators have been studied in Ref. [39].

In this section, the study of the bounds for the harmonic
oscillator with a time-dependent frequency is presented mak-
ing use of the time-dependent invariant operators of the
Hamiltonian, although other different methods can be used,
e.g., using the Heisenberg operators at two different times. The
Hamiltonians are given at two different times, i.e., Ĥ1 = Ĥ (t)
and Ĥ2 = H (t ′). The Hamiltonian of the system is

Ĥ (t) = 1
2 [p̂2 + ω2(t)q̂2], (15)

which has a the time-dependent invariant operator Â(t) =
i[ε(t)p̂ − ε̇(t)q̂]/

√
2, with ε(t) being a solution of the clas-

sical equation ε̈(t) + ω2(t)ε(t) = 0 with the initial condi-
tions ε(0) = 1, ε̇(0) = i. This operator satisfies the bosonic
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commutation relation [Â(t),Â†(t)] = 1 implying the property
ε̇(t)ε∗(t) − ε(t)ε̇∗(t) = 2i.

From this it is possible to define the integral of motion
operator Â†(t)Â(t), which has the eigenfunctions

φn(x,t) =
[

ε∗(t)

2 ε(t)

]n/2
e
i

ε̇(t)
2 ε(t) x

2√
n! ε(t)π1/2

Hn

[
x

|ε(t)|
]
. (16)

These eigenfunctions form a complete orthonormal set at
any time, i.e.,

∫
dx φ∗

m(x,t)φn(x,t) = δnm, and satisfy also the
closure condition

∑
n φ∗

n(x,t)φn(x ′,t) = δ(x − x ′). To obtain
the upper and lower bounds of �S, one needs to calculate
the mean values of the Hamiltonian at any time and the
value Tr[e−βĤ (t ′)Ĥ (t)]. To perform these calculations, it is
convenient to write the Hamiltonian at a time t ′ in terms of
the operators at time t , i.e.,

Ĥ (t ′) = α(t,t ′)K̂−(t) + α∗(t,t ′)K̂+(t) + γ (t,t ′)K̂0(t),

(17)

where we have defined the functions

α(t,t ′) = 1
2 [ε̇∗2(t) + ω2(t ′)ε∗2(t)],

γ (t,t ′) = |ε̇(t)|2 + ω2(t ′)|ε(t)|2,
which satisfy the relation 4ω2(t ′) = γ 2(t,t ′) − 4|α(t,t ′)|2,
and the operators K̂−(t) = Â2(t)/2, K̂+(t) = Â†2(t)/2, and
K̂0(t) = [Â(t)Â†(t) + Â†(t)Â(t)]/4 are the generators of the
SU(1,1) group. Thus, the mean value of Ĥ at time t in the t ′
state is

1

Z[Ĥ (t ′),T ]
Tr[e−βĤ (t ′)Ĥ (t)]

= 1

Z[Ĥ (t ′),T ]

∞∑
n=0

〈n,t |e−βĤ (t ′)Ĥ (t)|n,t〉,

which gives the result (see the Appendix)

1

Z(Ĥ (t ′),T )
Tr[e−βĤ (t ′)Ĥ (t)] = ω2(t) + ω2(t ′)

4ω(t ′)
coth

[
ω(t ′)
2T

]
.

(18)

This expression only depends on the frequencies at the different
times and the temperature and not in the classical solutions

ε(t) and ε(t ′) which greatly simplify their calculation. One
can notice that the mean value at time t of the Hamiltonian
Tr[e−βĤ (t)Ĥ (t)]/Z[Ĥ (t),T ] can be obtained from the previous
expression making t ′ = t , that provides the result

1

Z[Ĥ (t),T ]
Tr[e−βĤ (t)Ĥ (t)] = ω(t)

2
coth

[
ω(t)

2T

]
, (19)

Finally, from Eq. (18) the following bounds for the differ-
ence of the entropy are obtained

1

2T2

{
ω(t ′) coth

[
ω(t ′)
2T2

]
− ω2(t ′) + ω2(t)

2ω(t)
coth

[
ω(t)

2T1

]}

� �S � 1

2T1

{
ω2(t ′) + ω2(t)

2ω(t ′)
coth

[
ω(t ′)
2T2

]

− ω(t) coth

[
ω(t)

2T1

]}
. (20)

To exemplify the use of the previous results, we analyze
two different cases for ω(t). The case ω(t) = ω0

√
1 + η t has

been studied in Ref. [40], where the authors demonstrate
the presence of nonclassical effects of light as squeezing
and antibunching. The other example corresponds to the
case where ω(t) = ω0

√
1 + η cos(�t), which can describe

the electromagnetic field inside a Paul trap and was first
studied in Ref. [41]. Additionally to these examples, we
discuss the case where the harmonic oscillator Hamiltonian
is constructed using the time-dependent invariant operators
Ĥ = ω(t)[Â†(t)Â(t) + 1/2], since the eigenfunctions of this
operator are known.

In the case of ω(t) = ω0
√

1 + η t , the solutions to the
equation ε̈(t) + ω2(t)ε(t) = 0 are the Airy functions and their
derivatives. In Fig. 2(a), the time dependence of the bounds
for �S are shown for a system where ω(t) = √

t for fixed
temperatures T1 = T2 = 10. In this plot, the gray function
corresponds to the analytic solution of S2(T2,t

′) − S1(T1,t). In
Fig. 2(b), one can see that there is a region (t < t ′ = 1) where
both the analytical and the limits for �S are negative and some
other region (t > t ′ = 1) where these quantities are positive.

When the frequency has an oscillatory dependence
on time, as the one observed in the Paul traps with
ω(t) = ω0

√
1 + η cos(�t), the solution to the equation

ε̈(t) + ω2(t)ε(t) = 0 is given by the Mathieu functions

(a) (b)

FIG. 2. (a) Upper (blue), lower (red) bounds and analytical expression (gray) for the difference of entropies S2(T2,t
′) − S1(T1,t) for a

harmonic oscillator with time-dependent frequency ω(t) = √
t , with equal temperatures T1 = T2 = 10. (b) a 2D cut of the previous plot for

t ′ = 1.
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FIG. 3. Upper (blue) and lower (red) bounds for the difference of the entropies �S(t,t ′) as a function of t ′ for a time-dependent frequency
harmonic oscillator [ω(t) = √

1 + cos(2t)/2] between two thermal equilibrium states with temperatures (a) T1 = T2 = 10 at the fixed time
t = 0.1 and (b) T1 = 15, T2 = 10 at the fixed time t = 3. The dashed curve corresponds to the plot of the frequency.

and their derivatives. In Fig. 3, the dependence of �S

in terms of time t ′ is shown for two cases T1 = T2 and
T1 > T2 for fixed time t = 0.1 and the explicit frequency
ω(t) = √

1 + cos(2t)/2. In both cases, the minimum values
of the difference of the entropy occurs when the frequency
(dashed curve) has a maximum and a maximum value
corresponds to the case where the frequency has a minimum.
Also it is worth noticing that the minimal difference between
the limits and the analytic solution occurs when �S is minimal
and has a maximum when �S also has a maximum.

When the Hamiltonian of the system is given by the time-
dependent invariants,

Ĥ (t) = 1
2 [P̂ 2(t) + ω2(t)Q̂2(t)], (21)

with the operators Q̂(t) = (Â + Â†)/
√

2ω(t) and P̂ (t) =
i
√

ω(t)/2(Â† − Â) expressed in terms of the integrals of
motion. This Hamiltonian can be interpreted as a degen-
erated parametric amplifier in the standard bosonic opera-
tors with time-dependent frequency, i.e., Ĥ (t) = ν(t)(â†â +
1/2) − [g∗(t)â†2 + g(t)â2].

Using the eigenfunctions of the operators Â†(t)Â(t) and
Â†(t ′)Â(t ′), one has

Tr[e−βĤ (t ′)Ĥ (t)] = ω(t)
∞∑

n,m=0

e−β ω(t ′)(m+ 1
2 )

(
n + 1

2

)∫
dx dx ′

×φn(x,t)φ∗
m(x,t ′)φ∗

n(x ′,t)φm(x ′,t ′), (22)

where both sums over n and m can be done separately before
the integration using the Mehler formula,

∞∑
j=0

(η̃/2)j

j !
Hj (y)Hj (y ′)

= 1

(1 − η̃2)1/2
exp

[
2η̃yy ′ − (y2 + y ′2)η̃2

1 − η̃2

]
. (23)

The sum over m gives

∞∑
m=0

e−βω(t ′)(m+1/2)φ∗
m(x,t ′)φm(x ′,t ′)

= e−βω(t ′)/2

π1/2|b(t ′)|[1 − e−2βω(t ′)]1/2

× exp

{
2e−βω(t ′)qq ′ − (q2 + q ′2)e−2βω(t ′)

1 − e−2βω(t ′)

}

× exp

{
−i

ε̇∗(t ′)
2 ε∗(t ′)

x2

}
exp

{
i

ε̇(t ′)
2 ε(t ′)

x ′2
}
, (24)

with q = x/|ε(t ′)| and q ′ = x ′/|ε(t ′)|. While the sum over n

is equal to

ω(t)
∞∑

n=0

(
n + 1

2

)
φ∗

n(x ′,t)φn(x,t)

= ω(t)ei
ε̇(t)

2ε(t) x
2
[

1

2
+ x

∂

∂x
− |ε(t)|2

2

∂2

∂x2

]

× e
−i

ε̇(t)
2ε(t) x

2

δ(x − x ′); (25)

to obtain this expression, the derivative of the Hermite poly-
nomials dHn+1(x)

dx
= 2(n + 1)Hn(x) together with the recursion

relation Hn+1(x) = 2xHn(x) − dHn(x)
dx

were used. Substituting
Eqs. (24) and (25) into Eq. (22), one arrives at the following
expression:

Tr[e−βĤ (t ′)Ĥ (t)]

= ω(t)e−βω(t ′)/2

4[1 − e−2βω(t ′)]1/2{tanh [βω(t ′)/2]}3/2 f (t,t ′),

with the definition

f (t,t ′) = |ε(t)|2|ε̇(t ′)|2 + |ε̇(t)|2|ε(t ′)|2
−2 Re [ε(t)ε̇∗(t)] Re [ε(t ′)ε̇∗(t ′)].

Notice that the function f (t,t ′) is symmetrical under the
interchange of t and t ′, so the same expression can be used
to obtain Tr[e−βĤ (t)Ĥ (t ′)].

The previous expression yields to the result

1

Z[T ,Ĥ (t ′)]
Tr[e−βĤ (t ′)Ĥ (t)] = ω(t)

4
coth

[
ω(t ′)
2T

]
f (t,t ′),

(26)

while the mean value of the energy is

E(T ,t) = [ω(t)/2] coth [ω(t)/2T ]. (27)
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FIG. 4. Upper (blue) and lower (red) bounds for the difference of entropies S(T2,t
′) − S(T1,t) (gray) for a harmonic oscillator with time-

dependent frequency ω(t) = √
t . Here, (a) T1 = T2 = 10 and (b) t = 5 and t ′ = 10.

From these expressions, one can see that the difference of the
entropies S(T2,t

′) − S(T1,t) in the system at times t and t ′ has
the following bounds:

ω(t ′)
2T2

{
coth

[
β2ω(t ′)

2

]
− 1

2
coth

[
β1ω(t)

2

]
f (t,t ′)

}

� S(T2,t
′) − S(T1,t) �

ω(t)

2T1

{
1

2
coth

[
β2ω(t ′)

2

]
f (t,t ′)

− coth

[
β1ω(t)

2

]}
. (28)

While the exact expression of the entropies can be obtained
from the expression

S(T ,t) = n̄(T ,t) ln{[1 + n̄(T ,t)]/n̄(T ,t)} + ln[n̄(T ,t) + 1],

n̄(T ,t) = [eω(t)/T − 1]−1. (29)

In Fig. 4(a), the upper and lower bounds are plotted in terms
of times t and t ′, and in Fig. 4(b) the dependence of these
bounds in terms of T1 and T2 is shown. One can see a small
variation in the time dependence and a very steady behavior in
terms of temperatures.

VI. SUMMARY AND CONCLUDING REMARKS

When a thermal equilibrium system interacts with an ex-
ternal source, either by interchanging particles or only energy,
its thermodynamic quantities as the entropy, internal energy,
and Helmholtz and Gibbs potentials present a change that
can be sudden or not depending on the type of interaction
with the environment. The main results of our work are the
following: we demonstrated that the change in these quantities
has upper and lower bounds when the system achieves thermal
equilibrium after the interaction. Using the relative entropy
between two thermal equilibrium states, the upper and lower
bounds of the difference of entropies �S and the Helmholtz
and Gibbs potentials were obtained. In the case where the
thermal equilibrium states are expressed in terms of the
Hamiltonian eigenvectors, these bounds can be written as a sum

of the Franck–Condon factors of the two systems. From this,
our results can be of interest in the measurement of the vibronic
structure of electronic lines in molecules. The possibility of
use this bounds to approximate the analytic values is also
discussed as the limits can be obtained through the calculation
of mean values of the Hamiltonians and the number operator
before and after a sudden interaction between the system and
an environment.

As examples of applications of the general theory, the
bounds for the difference of the entropy are studied for an
arbitrary qubit system. In this case, we showed that the bounds
have a minimal difference when the Bloch vectors of the
Hamiltonians from the initial and final equilibrium states are
parallel and have a maximal difference when the Bloch vectors
are antiparallel. Also, it is noticed that as both states tend
to the most mixed density matrix (I/2) as the temperature
increases, then this difference decreases independently of the
Hamiltonians.

Also, the limits for �S were obtained for a harmonic
oscillator with time-dependent frequency. The bounds were
calculated using the eigenvalues and eigenvectors of the
constants of motion of the system for two particular cases:
ω(t) = ω0

√
t , which has been used to show nonclassical

properties, and ω(t) = ω0
√

1 + η cos(�t), which describes an
electromagnetic field in a Paul trap. These limits were also
calculated for a harmonic oscillator Hamiltonian written in
terms of the operators Â(t) and Â†(t). The results obtained for
these systems can be applied to the different potentials that can
be approximated by a harmonic oscillator.
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APPENDIX: HARMONIC OSCILLATOR

To calculate the mean value of the Hamiltonian at time t with respect of the density matrix at time t ′, we use the SU(1,1)
algebra decomposition of the Hamiltonian given in Eq. (17). The SU(1,1) generators are K̂+(t) = Â†(t)/2, K̂−(t) = Â2(t)/2,
and K̂0(t) = (Â†(t)Â(t) + 1/2)/2. This decomposition allows us to write the exponential operator e−βĤ (t ′)as the product of the
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elements of the algebra e−βĤ (t ′) = eA+(t ′,t,T )K̂+eln[A0(t ′,t,T )]K̂0eA−(t ′,t,T )K̂− , where A+(t ′,t,T ) and A0(t ′,t,T ) are

A0(t ′,t,T ) = 4ω2(t ′)
{2ω(t ′) cosh[ω(t ′)/T ]+γ (t,t ′) sinh[ω(t ′)/T ]}2

,

(A1)
A+(t ′,t,T ) = − 2α∗(t,t ′) sinh(ω(t ′)/T )

2ω(t ′) cosh[ω(t ′)/T ]+γ (t,t ′) sinh[ω(t ′)/T ]
,

and A−(t ′,t,T ) = A∗
+(t ′,t,T ). With this, the partition function of the system can be evaluated using the eigenstates of the operator

Â†(t)Â(t) as follows:

Tr[e−βĤ (t ′)] =
∞∑

l,m,n=0

cl,m〈n,t |Â†2meln A0(t ′,t,T )[Â†(t)Â(t)+1/2]/2Â2l|n,t〉,

where a Taylor expansion of the exponential for Â2(t) and Â†2(t) was performed, and the coefficients cl,m are given by

cl,m =
[
A+(t ′,t,T )

2

]m[
A∗

+(t ′,t,T )

2

]l 1

m! l!
.

This sum can be rewritten as

Tr[e−βĤ (t ′)] = A
1/4
0 (t ′,t,T )

∞∑
n,m=0

A
n/2
0 (t ′,t,T )n!

(m!)2(n − 2m)!

[ |A+(t ′,t,T )|2
4A0(t ′,t,T )

]m

,

this infinite sum can be truncated for values where the factorial (n − 2m)! < 0 (m > n/2). So the previous equation can be
expressed in terms of the Legendre polynomials Pn(z),

Tr[e−βĤ (t ′)] = A
1/4
0 (t ′,t,T )

∑
n=0

A
n/2
0 (1 − x)n/2Pn

(
1√

1 − x

)
,

with x = |A+(t ′,t,T )|2
A0(t ′,t,T ) . Finally, using the generating function of the Legendre polynomials the following result is obtained:

Z(Ĥ (t ′),T ) = A
1/4
0 (t ′,t,T )

[1 − 2A
1/2
0 (t ′,t,T ) + A0(t ′,t,T ) − |A+(t ′,t,T )|2]1/2

, (A2)

using the properties of the classical solutions ε̇(t)ε∗(t) − ε(t)ε̇∗(t) = 2i, it can be seen that the partition function gives the standard
result

Z[Ĥ (t ′),T ] = 1

2 sinh
[

ω(t ′)
2T

] . (A3)

The mean values of the operators K̂0(t) and K̂±(t) can be calculated by differentiating Eq. (A2) with respect to the functions
ln[A0(t ′,t,T )], A+(t ′,t,T ), and A∗(t ′,t,T ), respectively. This procedure gives the following expressions:

1

Z[Ĥ (t ′),T ]
Tr[e−βĤ (t ′)K̂0(t)] = 1 − A0(t ′,t,T ) + |A+(t ′,t,T )|2

4[1 − 2A
1/2
0 (t ′,t,T ) + A0(t ′,t,T ) − |A+(t ′,t,T )|2]

, (A4)

and

1

Z[Ĥ (t ′),T ]
Tr[e−βĤ (t ′)K̂+(t)] = A∗

+(t ′,t,T )

2[1 − 2A
1/2
0 (t ′,t,T ) + A0(t ′,t,T ) − |A+(t ′,t,T )|2]

,

1

Z[Ĥ (t ′),T ]
Tr[e−βĤ (t ′)K̂−(t)] = A+(t ′,t,T )

2[1 − 2A
1/2
0 (t ′,t,T ) + A0(t ′,t,T ) − |A+(t ′,t,T )|2]

,

(A5)

then substituting Eqs. (A4) and (A5) into Eq. (17) and using the property ε̇(t)ε∗(t) − ε(t)ε̇∗(t) = 2i, we obtain the mean value
of Ĥ (t) in the state e−βĤ (t ′)/Z[Ĥ (t ′),T ] given in Eq. (18).
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