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This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster
sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By
considering the growth histories of all possible clusters, an exact expression is derived for the probability of a
coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse
initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the
number of clusters of a given size, the average number of such clusters, and that average’s standard deviation.
The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for
systems with the constant kernel. In addition, the results obtained are compared with the results arising from the
solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with
a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue
of arbitrary initial conditions.
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I. INTRODUCTION AND THE STATE OF THE ART

The simplest example of the coagulation process is the
evolution of a closed system of clusters that join irreversibly
during binary collisions (so-called coagulation acts), according
to the following scheme:

(g) + (l)
K(g,l)−→ (g + l), (1)

where (g) stands for a cluster of mass g and K(g,l) is the
coagulation kernel representing the rate of the process. Over
time, the number of clusters in the system decreases and
eventually all clusters merge into a single cluster.

Coagulation, which is also called aggregation, coalescence,
gelation, etc., is ubiquitous in nature. It underlies many phe-
nomena we know in everyday life, including milk curdling,
blood coagulating, clouds and smog forming, and even traffic
jamming. The phenomena mentioned above and similar ones
are the basis for certain technological applications in food
processing, water treatment, clinical diagnostics, and road
monitoring systems, and aggregation is also of great interest
in pure sciences, including physics [1–3], chemistry [4–6],
biology [7], and mathematics [8–10], because it “beautifully
illustrates some paradigmatic features of [nonequilibrium]
phenomena, such as scaling, phase transitions, and [nontrivial]
steady states” (see [1], p. 133).

There are many approaches to modeling coagulation. The
best-known approach relies on the famous Smoluchowski
coagulation equation [11], which constitutes an infinite system
of coupled nonlinear differential equations and provides mean-
field time evolution of the cluster size distribution. Explicit ana-
lytical solutions for Smoluchowski’s equation are known only
for some particular kernels (e.g., constant [K(g,l) = const],
additive [K(g,l) = g + l], and multiplicative [K(g,l) = gl])
and for selected initial conditions (e.g., monodisperse ini-
tial conditions, under which all clusters are the same size).
However, considerable literature exists on the existence and

uniqueness of solutions to some general classes of discrete and
continuous kernels (herein, the terms discrete and continuous
refer to the possible values taken by cluster sizes) (see, for
example, [12–18]). For instance, it has been shown that for
homogeneous kernels, which satisfy K(αg,αl) = αγ K(g,l),
the long-time behavior of solutions for Smoluchowski’s equa-
tion falls into different universality classes [19], known as
self-similar dynamical scaling solutions, which depend on the
characteristic exponent γ and on the initial conditions.

Despite the great importance of Smoluchowski’s equation,
it has three serious weaknesses. First, it does not cope well
with so-called gelling kernels, an example of which is the
multiplicative kernel, in which case, an attempt to interpret
the exact solution leads to a surprising conclusion that the
total mass concentration in the coagulating system ceases to
conserve after a finite time tc. This occurs simultaneously
with the divergence of the second moment of the cluster
size distribution. Today, it is well understood that the mass
deficiency is a sign of the sol-gel transition, which is attributed
to the emergence of an infinite cluster (a gel). Nevertheless, it is
remarkable that the sol-gel transition does not directly follow
from Smoluchowski’s equation. It is, in a sense, analyzed
collaterally and appears only to restore the mass conservation.
The second weakness is that this equation is scholastically
incomplete, describing only the average behavior of coalescing
clusters and ignoring deviations from it. Finally, the equation
provides a kind of infinite-volume solution for the coagulation
process, due to the fact that solutions to the equation are
normalized with respect to the initial condition and therefore
they expire when the system moves away from the initial state.

With respect to these shortcomings, many questions arise.
For example, how big must a system be so that Smoluchowski’s
equation correctly describes its behavior, especially in the
limit of large times? This question has been posed by pre-
vious research [20–23], which proposed the basis of a new
stochastic approach to finite coagulating systems, as opposed
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to deterministic, mean-field, and infinite-volume approach that
dates to Smoluchowski [11]. Today, one could add many more
questions. For example, can a gel phase be observed in a system
with a constant kernel and initial conditions, which, according
to the dynamical scaling solutions of Smoluchowski’s equation
[19], lead to a mass deficiency? What about other kernels that
are considered nongelling, e.g., the additive kernel? It seems
that Smoluchowski’s equation is not well suited to studying
these problems. Therefore, a better perspective is provided
by the above-mentioned stochastic approach, which has been
considerably developed by Lushnikov over the last dozen or
so years (see, for example, the review paper [24]).

Lushnikov’s contribution was related to the not-at-all-
obvious observation that the master equation governing the
time evolution of the probability distribution over possible
states of the coagulating system, when reduced to an equation
for the generating functional of this distribution, acquires a
similarity to Schrödinger’s equation for interacting quantum
Bose fields. This observation enabled Lushnikov to analyze
the coagulating systems with constant [25] and multiplicative
[26–29] kernels, both of which began their evolution from
monodisperse initial conditions.

This paper addresses finite coagulating systems, just as did
Lushnikov et al. [20–27]. However, in the approach described
herein, unlike in the work of our predecessors, time is discrete;
therefore, we begin not with the master equation, but by
assuming that a single coagulation act occurs in each time
step. For successive steps, we define the space of available
states and then, by studying the growth histories of all clusters,
we determine the probability distribution over that space.

The paper is organized as follows. Section II provides a
thorough introduction to our method, which uses certain com-
binatorial structures, the so-called Bell polynomials, which are
discussed in detail. This section derives the exact expression
for the probability distribution that a coagulating system with
an arbitrary kernel will be found in a given cluster configuration
when monodisperse initial conditions are applied. In Sec. III,
the obtained distribution is used to calculate various cluster
statistics, including the average number of clusters of a given
size, its standard deviation, and the probability distribution for
the number of clusters of a given size. The above-mentioned
general calculations are tested for the constant kernel, provid-
ing a number of exact results. Section IV contains concluding
remarks and briefly discusses the problem of arbitrary initial
conditions, as well as the issue of the continuous time, which
enables direct comparison of our results with those of other
approaches.

II. PROBABILITY DISTRIBUTION OVER
THE STATE SPACE

We begin this section by making some simple observations
about the system under investigation. First, beginning with
monodisperse initial conditions, if a single coagulation act
occurs in each time step, at time t we have exactly

k = N − t (2)

clusters or particles (monomers, dimers, trimers, etc.), where
N is the number of monomeric units in the system. Second,

the state of the system can be described as

� = {n1,n2, . . . ,ng, . . . ,nN }, (3)

where ng � 0 is the number of clusters of mass g, with g being
the number of monomeric units. Of course, in (3), the sequence
{ng} is not arbitrary, but due to the evolution of the system, it
satisfies the equations

N∑
g=1

ng = k,

N∑
g=1

gng = N. (4)

Third, the total number of states � to which the coagulation
process leads depends on time and it is easy to deduce that it
is given by the Stirling number of the second kind

�(t) = S(N,k), (5)

which describes the number of ways to partition a set of N

objects into k subsets.
For further derivations, it is important to intro-

duce the so-called partial (or incomplete) exponential
Bell polynomials [30] (hereafter called Bell polynomials)
BN,k(x1,x2, . . . ,xN−k+1) = BN,k({xg}), which have a few fea-
tures that make them very useful for analyzing aggregation
phenomena. The polynomials are defined as

BN,k({xg}) = N !
∑
{ng}

N−k+1∏
g=1

1

ng!

(
xg

g!

)ng

, (6)

where the summation is taken over all non-negative integers
{ng} that satisfy Eqs. (4). It takes a moment to see that the
polynomials encode very detailed information related to the
ways in which an arbitrary set can be partitioned. Suppose that
N distinguishable objects are partitioned into k nonempty and
disjoint subsets of ci > 0 elements each, where

∑k
i=1 ci = N .

There are exactly
(

N

c1,c2, . . . ,ck

)
= N !

k∏
i=1

1

ci!
= N !

N−k+1∏
g=1

(
1

g!

)ng

(7)

such partitions, where ng � 0 stands for the number of subsets
of size g, with the largest subset size being equal to N − k + 1.
Further suppose that in such a composition, each of ng subsets
of size g can be in any of xg � 0 internal states and that the
order of clusters does not matter. Then the number of partitions
becomes

N !
N−k+1∏

g=1

1

ng!

(
xg

g!

)ng

. (8)

Summing Eq. (8) over all integers {ng} specified by Eq. (4), one
obtains the partial Bell polynomialBN,k({xg}), which is defined
by Eq. (6). From the above explanation, it is easy to realize
that the Stirling partition number S(N,k) [Eq. (5)] is simply
the value of the Bell polynomial BN,k({xi}) on the sequence of
ones: S(N,k) = BN,k(1,1, . . . ,1).

For example, if we consider a set of N = 3 monomers
(a)(b)(c), the set can be partitioned into k = 2 clusters
in three ways: (a)(bc), (b)(ac), and (c)(ab). This parti-
tioning is described by the corresponding Bell polynomial
as follows: B3,2(x1,x2) = 3x1x2. Similarly, in the case of

022126-2



EXACT COMBINATORIAL APPROACH TO FINITE … PHYSICAL REVIEW E 97, 022126 (2018)

(a) (b) (cd)

(a) (c) (bd)

(a) (d) (bc)

(b) (c) (ad)

(b) (d) (ac)

(c) (d) (ab)

(a) (b) (c) (d) (abcd)

(a) (bcd)

(b) (acd)

(c) (abd)

(d) (abc)

(ab) (cd)

(ac) (bd)

(ad) (bc)

(abcd)

(a)

(b)

(a) (d) (bc)

(a) (bcd)

(a)          (d)           (b)            (c)
(a) (b) (c) (d)

FIG. 1. (a) Diagram illustrating all possible growth histories of
particles in the case of the constant kernel. The resulting particle
(abcd) consists of four g = 4 tagged monomeric units: (a)(b)(c)(d).
Its growth requires g − 1 = 3 coagulation acts, which are illustrated
by arrows. After the first coagulation act, the future cluster consists of
two monomers and one dimer. After the second time step, it consists
of two parts: either one monomer and one trimer, or two dimers.
In the third step, the particle is formed. The number of different
growth histories xg is equal to the number of different paths drawn
by arrows and leading through different states of the diagram. For
g = 4, the number is equal to x4 = 18 [cf. Eq. (9)]. (b) Sample tree
corresponding to the bold path in the diagram. Every particles’ growth
history can be illustrated as a rooted tree, with leaf nodes standing for
monomeric units, internal nodes representing the history-dependent
transition states of the cluster, and the root node being the last step in
the cluster’s growth process.

N = 6 monomeric units and k = 3 particles one would ob-
tain B6,3(x1,x2,x3,x4) = 15x2

1x4 + 60x1x2x3 + 15x3
2 , because

there are 15 ways to partition a set of 6 as 1 + 1 + 4, 60 ways
to partition such a set as 1 + 2 + 3, and 15 ways to partition
it as 2 + 2 + 2. Accordingly, in the two examples above, one
obtains S(3,2) = 3 and S(6,3) = 90.

Now, after introducing the general concept of aggregation
and acquainting readers with the necessary definitions, our
aim is to derive the probability P (�) of a coagulating sys-
tem being found in a given state � [Eq. (3)]. Due to the
nonequilibrium characteristic of the process investigated, at
time t , the allowed states of the system are not equiprobable,
that is, P (�) �= �(t)−1. To find the probability distribution
function P (�) over the time-dependent state space {�}, one
must determine the thermodynamic probabilities W (�), which
stand for the number of ways in which the corresponding
state � can be obtained as a result of the time evolution of
the system. Knowing thermodynamic probabilities, one would
immediately have P (�) = W (�)Z−1, where Z = ∑

� W (�).
Fortunately, both W (�) and Z can be found easily with the

help of methodology that is covered by the Bell polynomials.

1       2       3       4        5       6       7       8       9       10

t
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FIG. 2. Pictorial representation of the time evolution of a
coalescing system with a constant kernel. (a) One of the many
possible microscopic realizations of the system of N = 7 monomeric
units at time t = 5. The system consists of k = 2 [cf. Eq. (2)] particles
of sizes 3 and 4. The microstate shown, (acg)(bdef ), contributes to
the state � = {0,0,1,1,0,0,0} [cf. Eq. (3)], in which n3 = n4 = 1 and
all other numbers ng are equal to zero. Nodes in trees corresponding to
different clusters are marked with different symbols (closed and open
circles, respectively) to emphasize that a given microstate in which
particles have the same history of coagulation acts (i.e., the same
structure of the corresponding trees) can be created in many ways.
This is so because the coagulation acts corresponding to different
clusters may alternate with each other. In particular, the microstate
shown in (a) corresponds to the second of a total of ten sequences
shown in (b). The sequence can be written as (a)(b)(c)(d)(e)(f )(g) →
(b)(d)(e)(f )(g)(ac) → (b)(f )(g)(ac)(de) → (b)(f )(de)(acg) →
(f )(acg)(bde) → (acg)(bdef ). For yet another example, one
can consider the last sequence in (b) which corresponds to the
following arrangement of coagulation acts: (a)(b)(c)(d)(e)(f )(g) →
(a)(b)(c)(f )(g)(de) → (a)(c)(f )(g)(bde) → (a)(c)(g)(bdef ) →
→ (g)(ac)(bdef ) → (acg)(bdef ). For an arbitrary state �, the total
number of such sequences is given by Eq. (12).

The starting point for our reasoning is Eq. (8), which describes
the number of ways in which N monomers can be partitioned
into k clusters. However, there are adjustments that must be
made. First, the number xg , which characterizes the internal
states of a single cluster of size g, should be equal to the
number of ways in which the cluster can be created from
tagged monomeric units. Obviously, xg must depend on the
number of monomers g and on the method of combining them
into the particle, that is, on the kernel used (for an illustrative
example of the constant kernel, see Fig. 1). Second, when
applied directly, Eq. (8) tacitly assumes that all clusters arise
at once, in other words, at the same time step. Of course, this
is not true. A single cluster of size g arises as a result of
g − 1 coagulation acts. Furthermore, the acts corresponding
to different clusters may alternate with each other. The above
gives rise to a multiplication effect in the number of ways a
given microstate can be created (see Fig. 2). In the following,
we discuss these two issues quantitatively.
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Let us start with xg , which is the number of ways in which
a cluster of size g can be created from a given subset of tagged
monomeric units. In the case of the constant kernel, it can be
written as

xg =
(

g

2

)(
g − 1

2

)(
g − 2

2

)
· · ·

(
2

2

)
= g!(g − 1)!

2g−1
. (9)

The above expression simply states the following. In the
first time step, one chooses and coalesces two clusters (i.e.,
monomers) from the g available. In the second time step,
one has g − 1 clusters (i.e., g − 2 monomers and one dimer,
correspondingly) two of which are chosen and merged. In the
third step, one selects the next two clusters available out of
g − 2, and so on.

Now, having the sequence {xg} [Eq. (9)], one can use
Eq. (8) to calculate the number of different partitions of tagged
monomers into a given set of clusters {ng}, in which every
cluster’s evolution is considered. This number is not yet equal
to W (�), due to the fact that, although the individual evolution
of every cluster is covered by the sequence {xg}, the global
intercluster time evolution is not yet taken into account. To be
precise, a given state can be obtained as a result of different
sequences of intermixed coagulation acts corresponding to
different clusters. As already mentioned, each particle of size
g requires g − 1 coagulation acts in order to be created. Thus,
since the total number of coagulation acts is equal to

N−k+1∑
g=1

(g − 1)ng = N − k = t, (10)

it is easy to deduce that the overall number of such sequences
corresponding to each microscopic realization (8) of the system
is equal to

[(
t

1

)(
t − 1

1

)
· · ·

(
t − n2 + 1

1

)][(
t − n2

2

)(
t − n2 − 2

2

)

· · ·
(

t − n2 − 2(n3 − 1)

2

)]
· · ·

= t!

(1!)n2 (2!)n3 · · · [(g − 1)!]ng · · · (11)

= t!
N−k+1∏

g=2

1

[(g − 1)!]ng
. (12)

In this expression, the consecutive square brackets refer to
dimers, trimers, etc. In the brackets, the product of binomial
coefficients states the number of ways in which the g − 1
coagulation acts corresponding to successive g-mers can be
deployed in the timeline. To further clarify, let us note that
the number of coagulating acts corresponding to monomers is
ng(g − 1) = 0, where g = 1. Therefore, in Eqs. (11) and (12),
one begins with dimers, each of which requires one connection
act. Then we have trimers, with two coagulation acts each, and
so on.

Finally, by multiplying (8) and (12), one gets the exact
formula for the thermodynamic probability W (�), which is

the number of ways in which the state � can be obtained

W (�) =
⎡
⎣t!

N−k+1∏
g=1

1

[(g − 1)!]ng

⎤
⎦

⎡
⎣N !

N−k+1∏
g=1

1

ng!

(
xg

g!

)ng

⎤
⎦

= t! N !
N−k+1∏

g=1

1

ng!

(
xg

(g − 1)!g!

)ng

. (13)

Accordingly, with the help of the Bell polynomials, the sum of
W (�) over all the systems’ states can be calculated

Z =
∑
�

W (�) = t!

⎡
⎣N !

∑
{ng}

N−k+1∏
g=1

1

ng!

(
xg

(g − 1)!g!

)ng

⎤
⎦

Eq. (6)= t!BN,k

({
xg

(g − 1)!

})

Eq. (15)= t!BN,k({yg}), (14)

where, in order to simplify the calculations below, a new
parameter is introduced:

yg = xg

(g − 1)!
. (15)

Now we would like to comment on Eqs. (13) and (14),
which are the most important results of this paper. They exactly
specify the probability distribution

P (�) = W (�)

Z
= N !

BN,k({yg})
N−k+1∏

g=1

1

ng!

(
yg

g!

)ng

(16)

for a coagulating system being found in a given state �

when monodisperse initial conditions are applied. The only
place where the kernel information is encoded is the sequence
{xg}. Strictly speaking, Eq. (16) provides the most detailed
information about the finite-size coalescing system. The dis-
tribution obtained over the time-dependent state space is the
equivalent of the Boltzmann distribution, which is inapplicable
to nonequilibrium systems (like those we study) due to its
insensitivity to the direction of time.

Correspondingly, in the case of the constant kernel, the
obtained expressions can be rewritten as

W (�)
Eq. (9)= t!N !

N−k+1∏
g=1

1

ng!

1

2(g−1)ng
(17)

and

Z
Eq. (20)= t!

2k

2N
BN,k({g!}) (18)

Eq. (21)= 1

2t

N !

(N − t)!

(N − 1)!

(N − 1 − t)!
, (19)

where the identity k = N − t (2) and some basic properties of
the Bell polynomials [30] have been used:

BN,k({abgxg}) = akbNBN,k({xg}), (20)

BN,k({g!}) =
(

N − 1

k − 1

)
N !

k!
. (21)
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Finally, for the constant kernel, the probability distribution (16)
becomes

P (�) = 2t (N − t)!(
N−1−t

t

)
N−k+1∏

g=1

1

ng!

1

2(g−1)ng
. (22)

In the following section, we use Eqs. (16) and (22) to derive
time-dependent cluster statistics in finite coagulating systems.

III. CLUSTER STATISTICS

A. Average number of clusters of a given size
and the standard deviation of the average

Once the probability distribution over the state space of
the coagulating system (16) is determined, one can proceed to
calculate the average number of clusters of a given size and the
standard deviation of the average. For these calculations we use
the expression for the derivative of the Bell polynomials [31]

∂BN,k({xg})
∂xs

=
(

N

s

)
BN−s,k−1({xg}) for s ∈ A (23)

and

∂BN,k({xg})
∂xs

= 0 for s ∈ S\A, (24)

where

A = {1, . . . ,N − k + 1}, S = {1,2, . . . ,N}. (25)

Thus, in the system with N monomeric units and k clusters,
the expression for the average number of clusters of size s can
be calculated as follows:

〈ns〉 =
∑
�

ns(�)P (�) (26)

= N !

BN,k({yg})
∑
{ng}

ns

∏
g

1

ng!

(
yg

g!

)ng

(27)

= N !

BN,k({yg})
∑
{ng}

(
ys

∂

∂ys

)∏
g

1

ng!

(
yg

g!

)ng

(28)

= 1

BN,k({yg})
(

ys

∂

∂ys

)
BN,k({yg}) (29)

Eq. (23)=
(

N

s

)
ys

BN−s,k−1({yg})
BN,k({yg}) for s ∈ A (30)

and

〈ns〉 = 0 for s ∈ S\A. (31)

Correspondingly, the standard deviation of this average is given
by

σs =
√〈

n2
s

〉 − 〈ns〉2 (32)

=
√

〈ns(ns − 1)〉 + 〈ns〉 − 〈ns〉2, (33)

where

〈ns(ns − 1)〉 =
(

N

s,s

)
y2

s

BN−2s,k−2({yg})
BN,k({yg}) for s ∈ B (34)

and

〈ns(ns − 1)〉 = 0 for s ∈ S\B, (35)

with

B = {1, . . . ,(N − k)/2 + 1}. (36)

In the case of the constant kernel, when

yg = g!

2g−1
, (37)

[cf. Eqs. (9) and (15)], the above expressions for the expected
value and the standard deviation of the number of clusters of
a given size simplify to

〈ns〉 = k

(
N−1−s

k−2

)
(
N−1
k−1

) for s ∈ A, (38)

〈ns〉 = 0 for s ∈ S\A (39)

and

〈ns(ns − 1)〉 = k(k − 1)

(
N−1−2s

k−3

)
(
N−1
k−1

) for s ∈ B, (40)

〈ns(ns − 1)〉 = 0 for s ∈ S\B. (41)

Figures 3 and 4 show excellent agreement between our
theoretical predictions and the results of the numerical sim-
ulations performed for coalescing systems with a constant
kernel and arising from monodisperse initial conditions. As
the numerical simulations show, the agreement is independent
of the parameters of the model. Even for small values of
the system size, such as N = 100 [Fig. 3(a)], our theoretical
predictions perfectly reproduce not only the mean number of
clusters of a given size and its standard deviation, but also the
nonmonotonic relation between the variance and the mean.

Figure 4 also shows that the exact solution of the discrete
version of Smoluchowski’s equation (see Table 2 in [10])

ns(t) = 4

t(t + 2)

(
t

t + 2

)s

(42)

agrees with the numerical simulations only in the limit of small
times t � N , that is, when the total number of clusters is
comparable to the initial number of monomers k � N , which
is assumed to be very large, N � 1. This limitation does not
apply to our theoretical predictions, which are in compliance
with the numerical simulations also for larger value of t . The
substantial defects of the Smoluchowski equation as a limit of
a master equation were, for example, explored in [32].

B. Probability distribution for the number
of clusters of a given size

Using Eq. (16), one can also derive the time-dependent
probability distribution for the number of clusters of a given
size. The first two moments of this distribution have already
been calculated [see Eqs. (30) and (31) and Eqs. (34) and (35)].
To perform this derivation concisely, we must introduce some
new definitions. We also use some additional properties of
the Bell polynomials. These definitions and properties will be
introduced at the appropriate time, as needed.
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FIG. 3. Cluster statistics in coagulating systems with a constant
kernel arising from monodisperse initial conditions with N = 100
monomeric units and (a) k = 4 or (b) k = 40 clusters. The mean
number of clusters of a given size and its standard deviation are shown.
Solid lines correspond to theoretical predictions: black lines for 〈ns〉
[Eqs. (38) and (39)] and gray lines for 〈ns〉 ± σs [Eqs. (40) and (41)].
The scattered points represent the results of numerical simulations
averaged over 105 independent realizations of the model. The insets
show the variance divided by the mean.

In what follows, we will focus on clusters of size s. The goal
is to find P (ns), which is the probability that there are exactly
ns clusters of size s in the system consisting of N monomers
in which there are k clusters in total. This probability is simply
the sum

P (ns) =
∑
�∗

P (�∗), (43)

where the summation runs over all states �∗ of the system, in
which ns is fixed. Such states can be defined as [cf. Eqs. (3)
and (4)]

�∗ =
⎧⎨
⎩ng : ns = const ∧

∑
g �=s

ng = k∗ ∧
∑
g �=s

gng = N∗

⎫⎬
⎭,

(44)

0 10 20 30
10-6

10-3

100

103

〈ns〉

s

FIG. 4. Comparison of our approach with the results obtained
from Smoluchowski’s equation. Solid lines represent our combina-
torial expressions (38) and (39). Dashed lines represent the exact
solution of the discrete version of Smoluchowski’s equation (42).
Scattered points represent the results of the numerical simulations of
coagulating systems of size N = 104 and k = 4000 (gray squares) or
k = 9980 (black circles), averaged over 106 independent realizations
of the model.

where

k∗ = k − ns, N∗ = N − sns. (45)

After inserting Eq. (16) into (43), one obtains the general
expression for the probability distribution of the number ns

of clusters of size s,

P (ns) = N !

BN,k({yg})
1

ns!

(ys

s!

)ns ∑
�∗

∏
g �=s

1

ng!

(
yg

g!

)ng

(46)

Eq. (6)= 1

ns!

(ys

s!

)ns N !

N∗!

BN∗,k∗ ({(1 − δgs)yg})
BN,k({yg}) , (47)

where δgs is the Kronecker delta and the correspond-

ing sequence of parameters {yg(1 − δgs)} stands for
{y1, . . . ,ys−1,0,ys+1, . . . ,yN }.

For the constant kernel, Eq. (47) can be further simplified.
However, before doing this, we would like to point out that
the result obtained fits nicely into the longstanding research on
coagulation systems. Namely, there has been a great deal of
discussion of whether or not P (ns) obeys Poisson statistics
(see, for example, [21]). Given numerical arguments, one
conjectured that as time increases the distribution approaches
a Poisson distribution. Equation (47) confirms this behavior.
From this expression one immediately sees that the Poisson-
like behavior is recovered when N∗ → N and k∗ → k, which
does not necessarily (although it may) agree with the phrase
above in italics.

To simplify Eq. (47) for the constant kernel, we deal
separately with the Bell polynomials in the numerator and
the denominator of this equation. Thus, using the previously
introduced properties of these polynomials, the polynomial in
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the denominator can be represented as

BN,k({yg}) Eq. (37)= BN,k

({
g!

2g−1

})
(48)

Eq. (20)= 2k−NBN,k({g!}) (49)

Eq. (21)= 2k−N N !

k!

(
N − 1

k − 1

)
. (50)

Accordingly, the polynomial in the numerator can be trans-
formed as

BN∗,k∗ ({(1 − δgs)yg})
Eq. (56)=

∑
ν�N∗

∑
κ�k∗

(
N∗

ν

)
Bν,κ ({−δgsyg})BN∗−ν,k∗−κ ({yg})

(51)

Eq. (58)=
κmax∑
κ=0

(
N∗

sκ

)[
(sκ)!

κ!(s!)κ
(−ys)

κ

]
BN∗−sκ,k∗−κ ({yg}) (52)

Eq. (37)= 2k∗−N∗ N∗!

k∗!

κmax∑
κ=0

(
k∗

κ

)(
N∗ − sκ − 1

k∗ − κ − 1

)
(−1)κ , (53)

where

κmax = min

{
k∗,

N∗ − k∗

s − 1

}
(54)

Eq. (45)= min

{
k − ns,

N − k

s − 1
− ns

}
(55)

(the second value of κmax simply results from the condition
N∗ − ν � k∗ − κ [Eq. (51)], where ν = sκ [Eq. (52)]) and
where the below properties of the Bell polynomials [30] have
been used:

BN,k({xg + yg})

=
∑
ν�N

∑
κ�k

(
N

ν

)
Bν,κ ({xg})BN−ν,k−κ ({yg}), (56)

BN,k({δgsxg}) = 0 for N �= sk, (57)

BN,k({δgsxg}) = (N )!

k!(s!)k
xk

s for N = sk. (58)

Finally, after inserting Eqs. (50) and (53) into Eq. (47),
one obtains the following exact expression for the probability
distribution of the number of clusters ns of size s in the
coagulating system with constant kernel:

P (ns) =
(

k

ns

)
(
N−1
k−1

)
κmax∑
κ=0

(
k − ns

κ

)(
N − sns − sκ − 1

k − ns − κ − 1

)
(−1)κ .

(59)

It is easy to show that, in this expression, in the limit of
large N � 1 and kN−1 � 1, the fraction of successive sum
components behaves as N−1. This enables one to simplify
Eq. (59) by neglecting all terms in the sum except the first one
for κ = 0. This way, one obtains a very simple, approximate
expression for the distribution P (ns) in the coagulating systems
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FIG. 5. Probability distributions for the number of clusters of a
given size. The following graphs show (a) N = 100, k = 80, and
s = 2 (dimers) and (b) N = 105, k = 600, and s = 5 (clusters of
size 5). In both graphs, bars represent the results of the numerical
simulations averaged over 104 independent realizations of the model.
Closed black circles plotted on a black curve express P (ns) obtained
from Eq. (59). Open squares plotted on a gray curve represent the
approximated formula (60).

with a constant kernel, which turns out to be the hypergeomet-
ric distribution

P (ns) �
(

k

ns

)(
N−k

k−ns

)
(
N

k

) , (60)

whose expected value 〈ns〉 = k2N−1, for sns � N , coincides
with Eq. (38):

〈ns〉 � k

(
N

k−2

)
(

N

k−1

) � k2

N
. (61)

Figure 5 shows that the obtained expression (59) perfectly
agrees with numerical simulations of the coagulating system
with a constant kernel, even for systems that are quite small.
In addition, Fig. 5(b) shows that for sns � N the difference
between the exact and the approximate formula for P (ns) is
almost nonexistent.
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IV. CONCLUSION

Unlike in most previous approaches, in our approach, time
is discrete. We assume that a single coagulation act occurs
in each time step, which causes a direct relationship between
the total number of clusters k and the time t . In other words,
the probability that at time t there are exactly k clusters
in the system is given by P (k,t) = δk,N−t . This assumption
does not diminish the generality of our approach, because the
appropriate results for the continuous-time coagulation process
can easily be obtained from the discrete-time results, provided
the distribution P (k,t) is known. In such a case, instead of
using Eq. (16) for the probability P (�) that the system can be
found in a state �, one would have the product P (�)P (k,t).
In addition, let us note that the distribution P (k,t) is usually
not difficult to calculate [see, for example, Eq. (16) in Sec. 4
in [21], where P (k,t) for the constant kernel is given].

The results presented here can be developed further.
Throughout the paper, to illustrate our approach, we have
used only the coagulation process with a constant kernel and
monodisperse initial conditions. However, it should be noted
that the results obtained can be used to describe systems with
a constant kernel and arbitrary initial cluster size distribution
P (s0). From an algorithmic point of view, it is easy to imagine
how such a coagulating system could be obtained. It could be
done, for example, by replacing monomers in the originally
monodisperse cluster configuration with initial clusters of
size s0 with probability P (s0). From the point of view of
mathematical description, the resulting composite clusters
could be analyzed within the random sum formalism [33,34],
which is suited to describing such composite structures (i.e.,

clusters built from other clusters) [35]. The mentioned analysis
would be of great importance, because it could be used to
verify the mean-field scaling solutions corresponding to the
constant kernel with arbitrary initial conditions, which not
long ago were obtained by mathematicians as the solutions to
Smoluchowski’s equation [19] but which often are unknown
to physicists and chemists [1,3].

Finally, although in this paper we show only that our ap-
proach works in the case of the fixed kernel, we must emphasize
that the approach can be used to describe systems with arbitrary
kernels and at least monodisperse initial conditions. The only
adjustment needed to make this possible is to calculate the
sequence {xg} in which every variable xg gives the number of
ways in which a cluster of size g can be created.

The results can be used elsewhere. We note that one impor-
tant field of research is related to percolation phenomena in ran-
dom networks. Although mutual relationships have long been
known to exist among the time evolution of classical random
graphs, percolation phenomena, and coagulating systems (see,
for example, [36] or Chap. 14.3 in [1]), recently, interesting
problems related to discontinuous and hybrid (mixed-order)
percolation transitions in a wild family of cluster merging
processes [37,38] were launched and are awaiting theoretical
description.
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