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We investigate the phase transitions and tricritical behaviors of the frustrated Ising antiferromagnet with first-
(J1 < 0) and second- (J2 < 0) nearest-neighbor interactions in a transverse field � on the square lattice using an
effective-field theory with correlations based on a single-spin approximation. We have proposed a functional for
the free energy to obtain the phase diagram in the T − R (R = J2/|J1|) or T − � planes. It is shown that due
to the transverse field the phase transition between ordered and disordered phases changes in the tricritical point
(TCP) from the second order to the first order. The longitudinal and transverse magnetizations are also studied
for selected values of R and �. In particular, the variation of TCP at the ground state in the three-dimensional
space is constructed. For some special cases, values of the critical temperature and the critical transverse field
have been determined analytically.
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I. INTRODUCTION

The Ising model in a transverse field, introduced by de
Gennes in the context of ferroelectric systems [1], is defined
by the Hamiltonian

H = −
∑
〈i,j〉

JijSizSjz − �
∑

i

Six, (1)

where Six and Siz are Pauli matrices at site i, � is the transverse
field, and Jij are Ising coupling constants which only depend
on the distance between i and j sites. The classical Ising model
is recovered in the case � = 0. Thus starting from the classical
Ising model, one can obtain its quantum version by including
a transverse-field term.

This model Hamiltonian represents one of the simplest spin
models in which a phase transition occurs for a finite value
of the external field. Namely, in an infinite model system
described by Eq. (1) at all temperatures there is an order
with 〈Six〉 �= 0. At high temperatures Siz components of a
spin operator at site i are disordered, but below a transition
temperature they order so that 〈Siz〉 �= 0. As � increases from
zero, the transition temperature falls from its value in the Ising
model and reaches zero at a critical value �c. For � > �c no
transition occurs.

Thermodynamic properties of the model Hamiltonian (1)
have been obtained exactly only for the one-dimensional
lattice [2–5] and in order to study higher-dimensional lattices
some sort of approximation has to be used, such as a simple
molecular-field approach or various perturbation methods (see,
e.g., Ref. [6]).

On the other hand, in recent years interest in frustrated
magnetic systems is constantly growing due to the permanent
appearance of new materials belonging to this class (see
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Ref. [7] for a recent review). The frustration arises in physical
systems due to the lattice geometry or the presence of compet-
ing interactions and prevents the simultaneous minimization of
all microscopic interactions. The best known example of a frus-
trated magnetic system is the antiferromagnetic Ising model on
a triangular lattice [8,9]. On the square lattice, which is a bi-
partite one, the frustration can be achieved either if the number
of antiferromagnetic couplings limited to nearest neighbors
(nn) around any elementary plaquette is odd [10] (so-called
“odd model”) or including at least the next-nearest-neighbor
(nnn) couplings in addition to the nn interactions. In the latter
case the frustration effect may arise due to the competition
between the antiferromagnetic nn and the nnn interactions J1

and J2, respectively. In particular, it has been found (see, e.g.,
Refs. [11,12]) that for the value of the frustration parameter
R ≡ J2/|J1| > −0.5 the ground state is the Néel antiferromag-
net (AF) and in the case of R < −0.5 the system orders in alter-
nate ferromagnetic rows (columns) of opposite oriented spins
(superantiferromagnet-SAF) [13] (see the schemes in Fig. 1).
The critical point separating these two phases lies at R = −0.5,
where the transition temperature is suppressed to zero.

It is generally accepted that the transition line between
the SAF and paramagnetic (P) phases exhibits a tricritical point
(TCP) at which the phase transition changes from second order
to first order. Such behavior has been confirmed not only by
approximate methods [14–17], but also by Monte Carlo studies
[12,18–20]. As pointed out only recently [17] the TCP exhibits
also the effective-field phase diagram between AF and P phases
(see also Ref. [20]).

The aim of the present work is within the effective-field
theory (EFT) to discuss the phase diagram of the frustrated
spin- 1

2 transverse Ising AF with nnn interactions on a square
lattice. The theory to be adopted is based on the approximate
Ising spin identity introduced in Ref. [21] for the single-
spin cluster in a transverse field. In this approach all the
single-site kinematic relations are correctly accounted for and
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FIG. 1. Ground-state configurations of the J1 − J2 Ising model
on the square lattice showing (a) antiferromagnetic and (b) superan-
tiferromagnetic states for the single-spin cluster approximation. Two
sublattices are marked by black and white circles.

only multispin correlation functions between various spins are
decoupled. Hence, it will be interesting to consider the effect
of the transverse field on the phase diagram of the frustrated
quantum model. However, to provide any insight into the nature
of possible first-order transition lines, we need to know the
functional form of the free energy. For this reason we have
proposed a free energy functional to analyze the first-order
phase transition line between the ordered (AF or SAF) and
disordered (P) phases. As far as we know such an investigation
has not been made yet even in approximate theories.

In particular, we have found that the frustrated model
with � = 0 exhibits the TCP on the transition line between
SAF and P phases, in agreement with previous approximate
as well as Monte Carlo studies. In this case the TCP appears
at kBTt/|J1| = 3.2207 and Rt = −1.3276, and the first-order
phase transition line shows a reentrant behavior at low tem-
peratures (see the inset in Fig. 2). However, in contrast to

FIG. 2. Phase diagram in the coupling-temperature plane for the
J1 − J2 Ising model on the square lattice based on the single-spin clus-
ter, when values of the transverse field �/|J1| are changed. Solid and
dashed lines indicate second- and first-order transitions, respectively,
while the black circles denote the position of a tricritical point. AF and
P are the antiferromagnetic and paramagnetic phases, respectively.
The inset shows phase diagram between the superantiferromagnetic
(SAF) and P phases in the case of �/|J1| = 0 (see text).

the transition line between the AF and P phases, the first-
order transition between the SAF and P phases terminates for
T → 0 at R = −1.0, which is inconsistent with the ground-
state behavior of the model. This behavior is due to a lower
symmetry of the SAF phase in comparison to the AF phase.
Therefore, in this EFT, based on the single-spin cluster in a
transverse field, we restrict ourselves to the AF phase which
exists for R > −0.5. We believe that such a study can also
contribute to the development of statistical mechanics and
solid-state physics.

II. THEORY

Generally, the Hamiltonian of the spin- 1
2 Ising model with

competing AF interactions between nn (J1 < 0) and nnn (J2 <

0) spins in the presence of a transverse field strength � is
given by

H = −J1

∑
〈i,i1〉

SizSi1z − J2

∑
〈i,i2〉

SizSi2z − �
∑

i

Six, (2)

where the first summation is carried out only over nn pairs of
spins, the second sum runs over nnn pairs of spins, and the last
sum is taken over all sites.

The effective-field theory to be adopted is based on the
approximate identity introduced in [21] for thermal average
〈Siα〉 (α = z or x) of a single spin

〈Siα〉 =
〈

Tr{i}[Siα exp(−βHi)]

Tr{i}[exp(−βHi)]

〉
, (3)

where β = 1/kBT and the partial trace Tr{i} is to be taken
over the lattice site i. Here, Hi is that part of the Hamiltonian
containing spin i, namely,

Hi = −Ez
i Siz − �Six, (4)

where the expression Ez
i for the model with first- and second-

neighbor interactions reads

Ez
i = J1

z1∑
i1=1

Si1z + J2

z2∑
i2=1

Si2z, (5)

where z1 and z2 denote the numbers of nearest and next-nearest
neighbors, respectively. In the limit of� = 0, Eq. (3) reduces to
the more widely known exact Callen-Suzuki relation [22,23]
for the pure Ising model. However, for the transverse Ising
model Eq. (3) is no longer exact and, as pointed out in
Ref. [21], this equation is a reasonable approximation to the
exact relation.

In order to diagonalize the form of Eq. (4) we use a rotation
transformation,

Siz = cos �iSiz′ − sin �iSix ′ ,
(6)

Six = sin �iSiz′ + cos �iSix ′ ,

where cos �i = Ez
i /Ei, sin �i = �/Ei , and Ei = [(Ez

i )2 +
�2]1/2. The diagonalization of this form leads to the following
results for the longitudinal mz and transverse mx site magne-
tizations:

mz ≡ 〈Siz〉 =
〈
Ez

i

Ei

tanh(βEi)

〉
, (7)

mx ≡ 〈Six〉 =
〈

�

Ei

tanh(βEi)

〉
. (8)
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To recast these equations in a more convenient form, the
differential operator technique [24] and the Van der Waerden
idenity for spin- 1

2 operators may be employed to give

mα =
〈

z1∏
i1=1

[cosh(J1∇y) + Si1z sinh(J1∇y)]

×
z2∏

i2=1

[cosh(J2∇y) + Si2z sinh(J2∇y)]

〉
fα(y)|y=0,

(9)

where ∇y = ∂/∂y is the differential operator and functions
fα(y), (α = z,x), are defined by

fz(y) = y

[y2 + �2]1/2
tanh[β(y2 + �2)1/2], (10)

fx(y) = �

[y2 + �2]1/2
tanh[β(y2 + �2)1/2]. (11)

To proceed further, one now has to approximate the thermal
multiple correlation functions occurring on the right-hand side
of Eq. (9). The simplest approximation and the one most
frequently adopted, is to decouple them according to〈

Si1Sk1 · · · Si2

〉 ≈ 〈
Si1

〉〈
Sk1

〉 · · · 〈Si2

〉
, (12)

where i1 �= k1 �= · · · �= i2. It should be noted here that the
present approximation neglects correlations between different
spins but takes single-site kinematic relations, such as S2n

i1
= 1

and S2n+1
i1

= Si1 (n = 1,2, . . .), exactly into account through
the Van der Waerden identity for spin- 1

2 operators. Based on

this approximation, Eq. (9), for the spin- 1
2 Ising AF on a square

lattice with z1 = 4 and z2 = 4 [see Fig. 1(a)], reduces to

mαA = [cosh(J1∇y) + mzB sinh(J1∇y)]4[cosh(J2∇y)

+mzA sinh(J2∇y)]4fα(y)|y=0, (13)

where the sublattice magnetizations per site mαν (ν = A,B)
are defined by

mαA ≡ 〈
SA

iα

〉
, mαB ≡ 〈

SB
iα

〉
. (14)

Then, using the fact that at zero longitudinal magnetic field
we have mz ≡ mzA = −mzB and mx ≡ mxA, one obtains the
following equations for the magnetizations, mα:

mz =
3∑

n=0

K2n+1m
2n+1
z , (15)

mx =
4∑

n=0

K2nm
2n
z , (16)

where the coefficients Kr (r = 0,1, . . . ,8), which depend on
T and R, and �, are defined in the Appendix. We note that
in obtaining Eqs. (15) and (16) we have made use of the
fact that fz(y) = −fz(−y) and fx(y) = fx(−y) and therefore
only odd or even differential operator functions give nonzero
contributions, respectively. The expression (15) will be the
starting point used here to calculate phase diagrams of the
frustrated spin- 1

2 Ising AF on a square lattice in a transverse
field.

III. PHASE DIAGRAM

Now we determine the phase diagram (transition tempera-
ture and TCP) between the AF and P phases of the system as
follows. In the neighborhood of a second-order transition line
where mz is small, Eq. (15) can be written as

mz = K1mz + K3m
3
z + · · · . (17)

The second-order phase transition line is then determined by

K1 = 1, K3 < 0. (18)

One can note that it is not possible to calculate first-order
transition lines on the basis of the equation of state (15) alone
because in this case one has mz �= 0 at the transition point.
To solve this problem one needs to compute the free energies
for the AF and P phases. First-order transitions correspond
then to the locus on the phase diagram where the free energies
are equal. Although the EFT does not furnish a way to get
such a function, we can resort to a different procedure based
on the well-known Landau expansion. In this case we shall
extrapolate the free energy based on the relation for the
equilibrium magnetization (15) in the following form (see, e.g.,
Refs. [17,25]):

F (T ,R,�,mza)

= F0(T ,R,�) + 1

2

(
1 −

3∑
n=0

K2n+1

n + 1
m2n

za

)
m2

za, (19)

where F0(T ,R,�) is the free energy of the P phase and
mza is the order parameter which takes the value mz at a
thermodynamic equilibrium. Indeed, using the equilibrium
condition

∂F (T ,R,�,mza)

∂mza

∣∣∣∣
mza=mz

= 0, (20)

we recover Eq. (15) for the equilibrium magnetization mz. In
this way, the second-order phase transition line and a tricritical
point, at which the phase transition changes from second order
to first order, are determined by the following conditions: (i)
the second-order transition line when 1 − K1 = 0 and K3 < 0,
and (ii) the tricritical point (TCP) when 1 − K1 = 0,K3 =
0, if K5 < 0. However, the first-order phase transition line
is evaluated by solving simultaneously two transcendental
equations, the equilibrium condition (20) and the equation
F (T ,R,�,mza) = F0(T ,R,�), namely,

3∑
n=0

K2n+1

n + 1
m2n

za = 1, (21)

which corresponds to the point of intersection of the free
energies for the AF and P phases. It is worth noticing that for
a second-order transition where mza = 0 equation the above is
the same as Eq. (18), which justifies our procedure. We also
note that a similar methodology of obtaining the free energy of
the model within the effective-field theory has been proposed
in Ref. [26] and used recently to investigate phase diagram of
the frustrated Ising [16] and Heisenberg models [27].
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FIG. 3. The transition temperature for the J1 − J2 Ising model
on the square lattice based on the single-spin cluster is plotted as a
function of transverse field �/|J1|, for selected values of frustration
parameter R. Solid and dashed lines indicate second- and first-order
transitions, respectively, while the black circles denote the position of
a tricritical point.

IV. NUMERICAL RESULTS AND DISCUSSION

Now, by using the formulation given in the previous section,
let us examine the phase diagrams of the frustrated spin- 1

2 Ising
AF on a square lattice in a transverse field. In all the presented
phase diagrams, the solid and dashed lines indicate the second-
and first-order phase transitions, respectively, while the black
circles denote the positions of TCPs at which phase transitions
change from second to first order.

In Fig. 2, the phase diagram kBT /|J1| versus R is shown
for selected values of �/|J1|. The most important feature in
Fig. 2 is that, for �/|J1| = 0, the first-order transition line
between the AF and P phases approaches zero when R = −0.5,
in agreement with the ground-state result. Note that in this
case the coordinates of the TCP (kBTt/|J1|; Rt ) are (1.7002;
−0.2383). For the nonfrustrated model (R = 0) and �/|J1| =
0, the critical (or Néel) temperature can be determined from the
conditions (18) analytically. In this case, the equation KAF

1 = 1
reduces to

e12 βN |J1| − 3e8 βN |J1| − e4 βN |J1| − 5 = 0 (22)

with the solution

kBTN

|J1| = 4

ln
[
1 + (

2
3

)2/3
(

3
√

9 + √
69 + 3

√
9 − √

69)
] , (23)

i.e., kBTN/|J1| ≈ 3.0898, which can be compared with the
exact value of kBTN/|J1| = 2.2692 [28]. Further, it can be
seen from Fig. 2 that if the value of the transverse field �/|J1|
increases, the TCPs shift towards lower temperatures and for
�/|J1| = 1.5203 the TCP vanishes at R = −0.2024. It means
that for �/|J1| > 1.5203 there is only a second-order transition
line between the AF and P phases.

As already mentioned, when � increases from zero, the
transition temperature falls from its value in the Ising model
and reaches zero at a critical value �c (see Fig. 3). The second-

FIG. 4. The dependence of the critical transverse field �c/|J1| on
the frustration parameter R in the case of T = 0. Solid and dashed
lines indicate second- and first-order transitions, respectively, while
the black circle denotes the position of a tricritical point.

order transition is determined from Eq. (18) which for R = 0
yields �c/|J1| ≈ 2.7510 and its exact analytical form is given
by the expression

�c

|J1| =
⎡
⎣2

⎛
⎝−3 +

√
7 + 3

√
207 − 48

√
3 + 3

√
207 + 48

√
3

+
⎛
⎝14 − 3

√
207 − 48

√
3 − 3

√
207 + 48

√
3

+ 16√
7 + 3

√
207 − 48

√
3 + 3

√
207 + 48

√
3

⎞
⎠

1/2⎞
⎠

⎤
⎦

1/2

.

(24)

As has been discussed in a series of works [28–33], the present
EFT based on the approximate relation (3) is expected to give
fairly good results for the values of �/|J1| less than �c/|J1|.
From detailed numerical investigations we have found that for
−0.2024 < R � 0 all the critical lines are of second-order
phase transitions, while the TCPs appear when −0.2383 �
R � −0.2024. Thus, in the region −0.5 � R < −0.2383 all
the transition lines are of first order. This behavior is also
clearly seen from Fig. 4 where �c/|J1| versus R is shown at
the ground state, i.e., at T = 0 (see also curves labeled 1.5203
and −0.2024 in Figs. 2 and 3, respectively).

Alternatively, one can study the variation of the TCP (or
tricritical temperature Tt ) with Rt and �t/|J1| in the three-
dimensional (3D) space. The results are shown in Fig. 5 by the
black curve. The projections of this curve on the Tt − Rt, Tt −
�t , and �t − Rt planes (red curves) are also presented.

In order to confirm the prediction of the first- and
second-order phase transitions, let us investigate the thermal
variations of the longitudinal and transverse magnetizations by
solving Eqs. (15) and (16) numerically. The results are depicted
in Fig. 6 for the system with R = −0.22, when the values of

022124-4



FRUSTRATED SPIN- 1
2 ISING ANTIFERROMAGNET … PHYSICAL REVIEW E 97, 022124 (2018)

FIG. 5. The dependence of the tricritical temperature Tt on the Rt

and �t/|J1| in the 3D space (black curve) for the J1 − J2 Ising model
on the square lattice. The red curves indicate its projections on the
Tt − Rt, Tt − �t , and �t − Rt planes.

�/|J1| are changed. As shown in Fig. 6(a), when �/|J1| = 1.0,
the longitudinal magnetization mz shows normal thermal-
variation behavior and vanishes at the second-order transition
point. Similarly, the mz also reduced to zero continuously at
the TCP (see curve labeled 1.3213). On the other hand, below
the TCP, the stable solution of mz becomes discontinuous
at the first-order phase transition and this discontinuity
increases from zero to the value of 0.4573 with �/|J1| going
to the �c/|J1| = 1.3872. The curves for �/|J1| = 1.36 and
�/|J1| = 1.38 are examples of such behavior, where the
first-order transition is indicated by a vertical dotted line.
Further, it is generally seen from Fig. 6(a), that the greater is the
transverse field the smaller is the longitudinal magnetization at
zero temperature. Thus, the transverse field essentially inhibits
the ordering of the Sz component. In contrast, the transverse

FIG. 7. The dependences of the longitudinal magnetization mz

and transverse magnetization mx on the transverse field �/|J1| for the
J1 − J2 Ising model on the square lattice in the case of R = −0.22
and T = 0. The dotted lines indicate the first-order transitions.

magnetization [Fig. 6(b)] increases with the transverse field
at T = 0 and only a weakly depends on temperature in the
low-temperature region. Then, after rising rapidly, it passes
through a cusp at the second-order transition temperature
of mz before falling off. However, below the TCP, the mx

curves also exhibit discontinuity at the first-order transition
temperature of mz. This discontinuity has a maximum value
�mx = 0.0591 at �c/|J1| = 1.3872 for T = 0. As seen from
Fig. 7, the discontinuity of mz is much larger than that of mx .

V. CONCLUSIONS

In conclusion, the role of the transverse field in the phase
transitions of the frustrated J1 − J2 model on the square lattice
is investigated using an EFT. The method is here used in its

(a) (b)

FIG. 6. Temperature dependences of the magnetizations of mz in (a) and mx in (b) for the J1 − J2 Ising model on the square lattice for
R = −0.22, when values of the transverse field �/|J1| are changed. The dotted lines indicate the first-order transitions.
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simplest approximation version, in which correlations between
different spins are neglected. Within this framework we have
shown that the transverse field can drastically change the phase
diagram of the frustrated J1 − J2 model on the square lattice.
Indeed, we have found that the existence of the TCP in the phase
diagram, at which phase transition changes from second to first
order, strongly depends on the value of the transverse field �.
In particular, to analyze the first-order transition between the
AF and P phases we proposed the free energy expression. To
the best of our knowledge this is the first time that the free
energy is developed for the Ising model in a transverse field
within the frame of the present EFT. Of course, the reliability
on this result could be further increased by using other methods
that provide a treatment beyond the effective-field framework.
This is, however, a difficult task since frustrated systems are
less amenable to numerical and analytical treatments. Even
the present relatively simple model in zero field has been
approached using various techniques over several decades
but its critical behavior remained ambiguous until recently
[12,18–20].

Finally, we note that in this paper we focused on the AF
phase for R > −1/2. However, to investigate effects of the
transverse field on the SAF phase, which exists for R < −1/2,
one needs to consider larger clusters than the single-spin one.
In the particular case of the square lattice, the smallest cluster
that contains the information on the lattice topology is at least
a square cluster (see, e.g., Ref. [17]). This is beyond the scope
of the present work and it is an interesting direction for the
future research.
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APPENDIX

The coefficients Kr (r = 0,1, . . . ,8) in Eqs. (15) and (16)
are defined as follows:

K0 = A4
1A

4
2fx(y)|y=0, (A1)

K1 = 4A3
1A

3
2(A1B2 − A2B1)fz(y)|y=0, (A2)

K2 = A2
1A

2
2[6(A1B2 − A2B1)2 − 4A1A2B1B2]fx(y)|y=0,

(A3)

K3 = 4A1A2(A1B2 − A2B1)[(A1B2 − A2B1)2

− 3A1A2B1B2]fz(y)|y=0, (A4)

K4 = [
6A2

1A
2
2B

2
1B2

2 − 12A1A2B1B2(A1B2 − A2B1)2

+ (A1B2 − A2B1)4
]
fx(y)

∣∣
y=0, (A5)

K5 = −4B1B2(A1B2 − A2B1)[(A1B2 − A2B1)2

− 3A1A2B1B2]fz(y)|y=0, (A6)

K6 = B2
1B2

2 [6(A1B2 − A2B1)2 − 4A1A2B1B2]fx(y)|y=0,

(A7)

K7 = −4B3
1B3

2 (A1B2 − A2B1)fz(y)|y=0, (A8)

K8 = B4
1B4

2fx(y)|y=0, (A9)

where Aμ = cosh(Jμ∇y), Bμ = sinh(Jμ∇y) (μ = 1,2), and
functions fα(y) (α = z,x) are defined by Eqs. (10) and (11).
The coefficients (A1)–(A9) can easily be calculated within
the symbolic programming by using the mathematical relation
exp(λ∇y)fα(y) = fα(y + λ), where ∇y = ∂/∂y is a differen-
tial operator.
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