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Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium
systems with heat flux
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Some analogies between different nonequilibrium heat conduction models, particularly random walk, the
discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation,
have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these
models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term.
Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated
that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers
moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic
temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends
to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at
a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium
situations. Analogies and differences between the proposed effective temperature and some other definitions of
a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric
field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective
temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave
have been analyzed.
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I. INTRODUCTION

Understanding how heat is carried, distributed, stored, and
converted in various systems has occupied the minds of many
scholars for quite a long time [1–14]. This is not due only
to purely academic reasons: its practical importance in the
fabrication and characterization of nanoscale systems has been
recognized as one of the most critical programs in process
industries [15–26]. The presence of the heat flux implies that
the system is far from equilibrium. Building a general frame-
work describing the far-from-equilibrium systems has led to a
considerable amount of work towards this aim (Refs. [1–47]
and references therein). In spite of recent advances, our
current understanding of the fundamentals of nonequilibrium
heat conduction still remains incomplete, and a complete
understanding is undoubtedly far beyond what we know for
equilibrium systems. Strictly speaking, a local temperature has
a well-established meaning only in global equilibrium when
the heat flux is zero. In particular, the question of what precisely
is a “local temperature” in a nonequilibrium system, a concept
that has a well-established meaning only in global equilib-
rium, is open to discussion [5,6,9,14–18,21–24,28–33,40–49].
Classical irreversible thermodynamics (CIT) is based on the
local equilibrium assumption, which uses a local temperature
defined as in global equilibrium even for the nonequilibrium
situation with nonzero heat flux. The local equilibrium assump-
tion is valid only for a relatively weak deviation from local
equilibrium when the characteristic time scale of the process t
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significantly exceeds the relaxation time to local equilibrium
τ , i.e., t � τ . CIT leads to the well-known Fourier law (FL) for
the heat flux and parabolic heat conduction equation (PHCE)
for the local equilibrium temperature. However, there are
two main motivations to go beyond the local equilibrium
assumption. One of them, of a theoretical nature, refers to
the so-called paradox of propagation of thermal signals with
infinite speed, which is predicted by the PHCE [1,2,4,5,6].
The second, more closely related to experimental observations,
deals with the propagation of second sound, ballistic phonon
propagation, and phonon hydrodynamics in solids at low
temperatures, where heat transport departs dramatically from
the usual parabolic description [5–7,9–11,14–26]. The most
simple and well-known modification of the Fourier law (MFL)
for the one-dimensional (1D) case is given by [1,2,5–15]

q + τ
∂q

∂t
= −λ

∂T

∂x
(1)

where q is the heat flux, T is the temperature, and λ is the
thermal conductivity. Equation (1) introduces a relaxation of
the heat flux q with the characteristic time τ . The MFL, Eq. (1),
together with the energy conservation law gives the hyperbolic
heat conduction equation (HHCE) [1,2,5–15]:

∂T

∂t
+ τ

∂2T

∂t2
= a

∂2T

∂x2
(2)

where a = λ/c is the thermal diffusivity, and c is the specific
heat. As a consequence of the introduction of the term τ∂q/∂t

in Eq. (1) or the corresponding term τ∂2T/∂t2 in Eq. (2),
one obtains a finite velocity of propagation v = √

a/τ . The
hyperbolic nature of the transfer equation (2) plays the most
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significant role at short times t ∼ τ . From the physical point of
view, this corresponds to an initial condition where all particles
move mutually in the same direction. After the characteristic
time τ , the effect of the randomization of the particle motion
becomes and Eq. (2) reduces to the standard PHCE, whereas
Eq. (1) reduces to the FL.

Although Eqs. (1) and (2) overcome the paradox of an
infinite velocity of heat propagation and have been used to
describe heat transport in out-of-equilibrium systems for quite
a long time, they still raise an important question: how is
the local nonequilibrium temperature T defined? Can classical
thermodynamic temperature, being a global equilibrium con-
cept, still be invoked in the nonequilibrium process described
by Eqs. (1) and (2)? The question “what is temperature?”
has become a subject of intense theoretical and experimental
interest in a more broad context of physics, chemistry, and life
sciences [5,6,16–18,20–24,27–33,37–47,49]. Several effective
nonequilibrium temperatures may be defined, all of which
reduce to a common value in equilibrium states, but which yield
different results in nonequilibrium situations. For example,
in molecular dynamic (MD) simulations, which are often
used to study heat flow under far-from-equilibrium conditions,
the most important conceptual problem is how to define the
temperature at different planes in the simulation cells. Usually
the MD simulations define the temperature T on the basis of
an average kinetic energy as [3,5,6,16–18,37–39]

3

2
kBTi =

〈
mv2

i

2

〉
(3)

where m is the mass of an atom, and vi is the velocity of
an atom at site i. The temperature defined on the basis of
the kinetic energy of the particles is sometimes referred to as
the kinetic temperature. The continuous approaches [28,42]
also use an analogous definition of local nonequilibrium
temperature based on the internal energy—the temperature
of the local nonequilibrium state is the temperature of the
equilibrium state with the same energy density as in the
nonequilibrium state. These approaches assume that the energy
density is related to temperature by e = ∫ T

0 cdξ , where c is
the heat capacity, and the temperature increase is calculated
by �T = �e/c provided that �T is moderate so that there
is no phase change and the specific heat can be regarded as
a constant [42]. In a more general case the relation between
phonon energy and lattice temperature is obtained by the
Debye model [16,27,38]. For glassy systems, the definition
of the equilibrium temperature has been extended to the
nonequilibrium regime, showing up as an effective quantity in a
modified version of the fluctuation-dissipation theorem (FDT)
[3,6,17,40]. Glasses are out-of-equilibrium systems in which
thermal equilibrium is reached by work exchanged through
thermal fluctuations and viscous dissipation exchange that
happens at widely different time scales simultaneously. The
“active” systems, from phase transformations [12,19,25] to
biosystems [31,32,40,47], move actively by consuming energy
from internal or external energy sources and their behavior is
thus intrinsically out of equilibrium. The effective temperature
of the active systems is usually defined on the basis of the
FDT. Extended irreversible thermodynamics (EIT) [5,6,9,21]
goes beyond the local equilibrium assumption and obtains

generalized heat conduction models by introducing additional
state variables, such as heat flux, into the expression of entropy.
As a result the nonequilibrium temperature is introduced as
θEIT = (∂S/∂e)−1, where S is the local nonequilibrium entropy
and e is the local energy density. The thermomass model
(TMM) [41] indicates that the thermal energy is equivalent
to a small amount of mass, called thermomass, according
to Einstein’s mass-energy equivalence relation and modifies
the definition of entropy and temperature for nonequilibrium
situations. The TMM [41] corresponds in many aspects to fluid
hydrodynamics [4] and EIT [5,6,9,21].

In this paper we consider a 1D heat conduction when the de-
viation from local equilibrium is caused by the presence of heat
flux. In Sec. II we briefly review and discuss some theoretical
approaches, which take into account a finite value of the heat-
mass carrier velocity, as an attempt to deepen the understanding
of heat conduction under far-from-equilibrium conditions. In
Sec. III the effective temperature and entropy for the far-from-
equilibrium state are introduced and analyzed. Comparisons
among different definitions of an effective temperature are car-
ried out. In Sec. IV we use the results of Sec. III to illustrate the
behavior of the effective temperature in some nonequilibrium
situations. Concluding remarks are given in Sec. V.

II. MODELING

A. Random walk approach

The ordinary random walk (RW) or Brownian motion is
completely characterized by the diffusion coefficient D ∝
h2/τ , where h is the mean free path of the heat (mass) carriers
and τ is the relaxation time. In the limit h → 0 and τ → 0,
the value of the diffusion coefficient is kept nonzero, which,
in accordance with the parabolic type of the classical diffusion
equation, implies an infinite velocity of diffusion particles
v = h/τ → ∞. For local equilibrium processes with t � τ

this physically unpleasant property does not play an important
role. However, for relatively fast processes with t ∼ τ , a finite
value of the particle velocity, which is a more reasonable
concept from a physical point of view, should be taken into
account. In one dimension a well-defined finite velocity of the
diffusion particles v means that the system consists of two
groups of particles—one group moves on the left and another
moves on the right. This two group (TG) approach yields the
evolution equations for the particle density as follows [1,2,12]:

∂u1

∂t
+ v

∂u1

∂x
= u2 − u1

τ
, (4)

∂u2

∂t
− v

∂u2

∂x
= u1 − u2

τ
(5)

where u1(x,t) is the density of particles going to the right,
u2(x,t) is the density of particles going to the left, v is the
velocity of particles, and τ is the mean free time. For the
following considerations it is convenient to rearrange Eqs. (4)
and (5) as follows:

∂u1

∂t
+ v

∂u1

∂x
= −u1 − u0

τ0
, (6)

∂u2

∂t
− v

∂u2

∂x
= −u2 − u0

τ0
(7)
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where u0 = u/2 with u = u1 + u2 being the total density of
the particles, τ0 = τ/2. After some algebra Eqs. (4) and (5)
give

∂u

∂t
+ ∂J

∂x
= 0, (8)

J + τ

2

∂J

∂t
= −τ

2
v2 ∂u

∂x
(9)

where J is the particle flux given by

J = v(u1 − u2). (10)

Equation (10) allows us to represent u1 and u2 in terms of
u and J as follows:

u1 = (u + J/v)/2, (11)

u2 = (u − J/v)/2. (12)

Introducing Eq. (9) into Eq. (8), which expresses conserva-
tion law in one dimension, we obtain

∂u

∂t
+ τ

2

∂2u

∂t2
= τ

2
v2 ∂2u

∂x2
. (13)

Taking into account that τ0 = τ/2 and D = v2τ/2 = v2τ0,
with D being the diffusion coefficient, Eqs. (9) and (13) take
the form analogous to Eqs. (1) and (2), respectively. Thus, the
assumption of a finite value of the diffusing particle leads to
the MFL and the HHCE [1,2,12,13,34].

B. Boltzmann transport equation

The Boltzmann transport equation (BTE) with the single
relaxation time (or Bhatnagar-Gross-Krook) approximation is
given by [6,10,18,24,37,38,42]

∂f

∂t
+ �v · �∇f = −f − f 0

τ0
(14)

where f is the phonon distribution function, �v is the phonon
group velocity, and f 0 is the equilibrium distribution function.
The BTE, Eq. (14), can be cast into an equation for the phonon
energy density e by integrating it over the frequency spectrum
as e(T ) = ∑

p

∫
f h̄ωpDp(ω)dω, where p is the polarization

of phonons (acoustic and optical) and Dp(ω) is the phonon
density of states per unit volume [37,38,42]. For simplicity,
the effects of temperature on the dispersion relations and the
phonon density of states are neglected. Then, the BTE in a
phonon energy density (e) formulation for one dimension is
given by [37,38,42]

∂e

∂t
+ vx

∂e

∂x
= −e − e0

τ0
(15)

where e0 is the equilibrium phonon energy density, and vx

is the component of velocity along the x axis. Since in one
dimension the phonons can travel in the positive or negative
direction along the x axis, Eq. (15) gives two equations:

∂e1

∂t
+ v

∂e1

∂x
= −e1 − e0

1

τ0
, (16)

∂e2

∂t
− v

∂e2

∂x
= −e2 − e0

2

τ0
. (17)

Taking into account that e0
i = e/2, it is evident that Eqs. (16)

and (17) have analogous form as Eqs. (6) and (7), respectively.

Moreover, after some algebra, as above, we obtain equations
for the energy flux j and energy density e:

j + τ0
∂j

∂t
= −D

∂e

∂x
, (18)

∂e

∂t
+ τ0

∂2e

∂t2
= D

∂2e

∂x2
(19)

where the total phonon energy density is defined as the sum
e = e1 + e2, while the energy flux is given as j = v(e1 − e2).

Thus, the BTE with the single relaxation time approxima-
tion leads to the constitutive equation for the energy flux j ,
Eq. (18), and the evolution equation for the energy density
e, Eq. (19), analogous to the MFL, Eq. (1), and the HHCE,
Eq. (2).

Note that the transfer equation due to the BTE with the
single relaxation time approximation, Eq. (19), is a partial
differential equation of hyperbolic type. It contains both “relax-
ation” (or “wave”) term τ ∂2/∂t2 and classical “diffusive” term
∂2/∂x2, so the artificial inclusion of “an additional diffusive
term” into the BTE model by Pisipati et al. [38] seems to be
excessive.

C. Lattice Boltzmann method

Extensive computational effort is required to solve the BTE,
since it involves seven independent variables descriptive for
space, time, and momentum or velocity domain. This has led
to the development of the lattice Boltzmann method (LBM)
that, in essence, is a numerical scheme for solving the BTE,
maintaining its accuracy while reducing the computational
effort necessary to solve it [37,38,42]. One of the most popular
schemes of LBM widely applied in classical phonon hydro-
dynamics is based on the BTE with the single relaxation time
approximation, which, as it has been discussed above, results
in the MFL and the HHCE for energy density (temperature).
The HHCE describes the space-time evolution of the kinetic
temperature under the local nonequilibrium conditions when
the characteristic time of the process t∼ τ , but the characteristic
space scale of the process L � h. This corresponds to the work
of Majumdar [24] that obtained the HHCE from semiclassical
Boltzmann transport theory only in the acoustically thick limit
when the characteristic space scale is much larger than the
phonon mean free path. Since the LBM is a consequence of
the BTE with the single relaxation time approximation and
has the same accuracy, it is applicable, strictly speaking, to the
local nonequilibrium case with t ∼ τ , but is not applicable to
the space nonlocal situations when L ∼ h. This implies that
application of the LBM to heat conduction in nanofilms with
L ∼ h needs additional justification.

D. Discrete variable model

Although the HHCE overcomes the dilemma of infinite
thermal propagation speed of the classical parabolic heat-mass
transfer equation, it, as we discussed above, cannot be applied
to length scales comparable to the mean free path of energy car-
riers because of the breakdown of continuum approaches under
severe nonequilibrium conditions. Therefore, it is desirable
to adopt a method directly based on the microscopic view of
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transport to deal with problems involving both small temporal
and spatial scales. This method should also take into account
another important issue of nanoscale heat conduction—the size
of the region over which temperature is defined. The classical
definition is entirely local, and one can define a temperature
for each space point, whereas for the quantum definition the
length scale is defined by the mean free path of the phonon
[16]. The idea of the minimum space region to which the
local temperature T(x,t) can still be assigned corresponds to the
conclusion of Majumdar [24] that “since temperature at a point
can be defined only under local thermodynamic equilibrium, a
meaningful temperature can be defined only at points separated
on an average by the phonon mean free path.” It is also
consistent with the concept of a minimum heat affected region
suggested by Chen [22], which assumes that during phonon
transport from a nanoscale heat source the minimum size of
the heat affected region is of the order of the phonon mean free
path.

Cahill et al. [16] pointed out that in the nanoscale thermal
transport the question “what is temperature?” is really a ques-
tion about the size of the regions over which a local temperature
can be defined. In molecular dynamics simulations of heat
flow through grain boundaries the most important conceptual
problem is how to define the temperature at different planes in
the simulation cell. The MD simulations by different groups do
show an abrupt change in the kinetic energy and, consequently,
in the kinetic temperature of a plane of atoms at the twin
boundary; regardless of which temperature scale is adopted, a
graph of temperature versus distance shows an abrupt change
[16]. Moreover, in agreement with Majumdar [24], Cahill et al.
[16] also stated that for the quantum definition of temperature
the length scale is defined by the mean free path h of the
phonon and, consequently, a local region with a designated
temperature must be larger than the phonon scattering dis-
tance. This phonon viewpoint of temperature implies that
temperature cannot vary within a grain, or within a superlattice
layer, on a scale smaller than h. If the layer thickness of
the superlattice is less than h, then one cannot define T(x)
within this layer—the whole layer is probably at the same
temperature [16].

The most simple approach to take into account the space
and time nonlocality of the nonequilibrium thermal transport
at micro- and nanoscales is the discrete variable model (DVM)
[1,12,13,26,34–36,49], which discretizes the transport process
in space and time by defining the minimum lattice size h to
which the local temperature T can still be assigned and the
minimum time τ (of the order of the mean free time of heat
carriers) between the successive events of energy exchange.
The DVM temperature cannot vary within a discrete layer
on a scale h, i.e., one cannot define T(x,t) within this layer
because the whole layer is at the same temperature. This point is
emphasized, since all theories of heat transport in superlattices
have assumed that one could define a local temperature T(x,t)
within each layer [16,18]. One might argue that the DVM is
analogous to the LBM because both models use discrete vari-
ables. However, as we discussed above, the LBM accuracy is of
the order of the accuracy of the BTE with the single relaxation
time approximation, which is local in space, whereas the DVM
is inherently nonlocal and captures well the behavior of heat
transport on short space (L ∼ h) and time (t ∼ τ ) scales [26].

The DVM gives the 1D energy transfer equation as follows
[1,12,13,26,34–36]:

U (n + 1,k) = 1
2 [U (n,k + 1) + U (n,k − 1)] (20)

where U (n,k) is the internal energy of a discrete layer k at
a discrete time moment n. Continuum variables t and x are
related with the corresponding discrete variables as follows:
t = nτ and x = kh. Within a layer k = x/h, which in the
continuum variables ranges from (x − h/2) to (x + h/2), the
internal energy U and the corresponding temperature T do not
change. In the continuum variables t and x, Eq. (20) is given
by

U (t + τ,x) = 1
2 [U (t,x + h) + U (t,x − h)]. (21)

The discrete formalism implies that the energy exchange
between the layers occurs on the border between the neighbor-
ing layers k and k + 1 at an average time moment (n + 1/2),
which gives the following equation for the energy flux j

[12,13,26,34–36]:

j

(
n + 1

2
,k,k + 1

)
= v

2
[U (n,k) − U (n,k + 1)]. (22)

Making for convenience a coordinate shift for continuum
coordinate x → x + h/2, we can present the heat flux q in
terms of the continuum variables as follows:

j (t + τ/2,x) = v

2
[U (t,x − h/2) − U (t,x + h/2)] (23)

where x is a coordinate of the border between the neighboring
layers, the centers of which are at coordinates x − h/2 and
x + h/2. Thus, the DVM is inherently nonlocal—it directly
includes into the governing equations for the energy density,
Eqs. (20) and (21), and for the heat flux, Eqs. (22) and (23),
both time τ and space h scales of energy carriers.

Continuum limits

Equations (21) and (23) can be represented in an operator
form as follows [13,26]:

[exp(τ∂t ) − cosh(h∂x)]e = 0, (24)

exp

(
τ

2
∂t

)
q = −v

2
sinh

(
h

2
∂x

)
e (25)

where e and q substitute for U and j, respectively, in the con-
tinuum representation. Taylor expansions of these equations
in the continuum limit h → 0 and τ → 0 contain an infinite
number of terms with two small parameters h and τ . To obtain
the corresponding equations with a finite number of terms one
should first specify an invariant of the continuum limit, which
conserves a desirable property of the continuum model.

a. Diffusive continuum limit D = h2/2τ = const > 0. In
the continuum limit h → 0 and τ → 0, Eq. (24) gives up to
the first order in τ

τ
∂e

∂t
= τD

∂2e

∂x2
+ o(τ ).

This equation corresponds to the classical heat conduction
equation of parabolic type. The requirement that the heat
diffusivity h2/2τ has a finite value in the continuum limit
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h → 0 and τ → 0 implies that the velocity of the heat carriers
v = h/τ → ∞. Indeed, representingv asv = 2a/h, we obtain
that v → ∞ at h → 0 when a is nonzero. This is the so-called
paradox of propagation of energy disturbances with infinite
speed discussed above.

b. Wave continuum limit v = h/τ = const < ∞. An alter-
native type of the continuum limit, which guarantees a finite
value of the heat-carrier velocity v, requires that v = h/τ =
const < ∞ at h → 0 and τ → 0 [12,13,34–36]. In this case
Eq. (24) gives up to the first order in τ

∂e

∂t
+ τ

2

∂2e

∂t2
= τ

2
v2 ∂2e

∂x2
+ o(τ ). (26)

Equation (26) is of hyperbolic type and is analogous to
Eq. (13) obtained from the RW approach and to Eq. (19)
obtained from the BTE with the single relaxation time ap-
proximation. The corresponding continuum limit of Eq. (25)
gives

j + τ

2

∂q

∂t
= −τ

2
v2 ∂e

∂x
+ o(τ ) (27)

which also corresponds to the result of the RW, Eq. (9), and the
BTE with the single relaxation time approximation, Eq. (18).

c. Temperature representation. Assuming the constant spe-
cific heat c and using the kinetic definition of the temperature
T ∝ e/c, one obtains that Eqs. (27) and (28) reduce exactly
to the HHCE, Eq. (2), and the MFL, Eq. (1), respectively. In
terms of the TG picture discussed in the previous sections, the
DVM provides the following expressions for the heat flux q

[see Eq. (23)] and the kinetic temperature T [see Eq. (21)]:

q = vc(T1 − T2)/2, (28)

T = (T1 + T2)/2 (29)

where T1 and T2 are the kinetic temperatures of the two
groups of the heat carriers moving in opposite directions.
Equations (28) and (29) can be presented in a slightly different
form as

T1 = T + q/vc, (30)

T2 = T − q/vc. (31)

Kroneberg et al. [28] also assume the TG model and arrive
at Eqs. (30) and (31), as well as at the HHCE, Eq. (2), using the
energy equations for T1 and T2 analogous to Eqs. (4) and (5).
Thus, the DVM with the “wave” law of the continuum limit
leads to the HHCE, Eq. (2), and the MFL, Eq. (1).

To conclude this section, it should be noted that the
RW [1,2,12,13], the TG representation of Kroneberg et al.
[28], the BTE with the single relaxation time approximation
[28,37,38,42], and the DVM at the wave law of the continuum
limit [12,13,34–36] lead to the HHCE, Eq. (2), and the MFL,
Eq. (1), due to the assumption of the finite value of the heat
carrier velocity.

III. RESULTS AND DISCUSSION

A. Effective temperature θ

The kinetic temperature T, the space-time evolution of
which is governed by the HHCE, Eq. (2), characterizes the
local energy density of the nonequilibrium state—it is equal to
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Nondimensional heat flux

FIG. 1. Nondimensional effective temperature θ/T as a function
of the nondimensional heat flux q̂: solid line, the effective temperature
from the present model, Eq. (34); dashed line, the effective tempera-
ture from EIT [5,6].

the equilibrium temperature of the same system with the same
internal energy in equilibrium. In terms of the TG approach it
implies that if a local volume element of the nonequilibrium
system consisting of the two groups of the heat carriers with the
temperatures T1 and T2 is suddenly isolated, i.e., bounded by
adiabatic and rigid walls, and allowed to relax to equilibrium,
after equilibration the equilibrium temperature of the local
element will be Teq = (T1 + T2)/2. However, if the two groups
of the heat carriers with T1 and T2 equilibrate reversibly, i.e.,
while producing work, their common equilibrium temperature
T̄eq will be [3,9,33]

T̄eq = (T1T2)1/2. (32)

Indeed, before equilibration the total equilibrium entropy
of the two groups is equal to Seq = kB ln T1 + kB ln T2 =
kB ln T1T2, whereas after equilibration S̄eq = 2kB ln T̄eq. The
entropy change during the equilibration is �S = Sneq − Seq =
kB ln T1T2/T̄

2
eq. When the system equilibrates reversibly, the

entropy does not change, i.e., �S = 0, and the last expression
gives Eq. (32) [33,49].

Multiplying Eq. (30) by Eq. (31), we obtain the following
nonlinear expression for the effective temperature θ of the
nonequilibrium state as [9]

θ2 = T 2 − (q/cv)2. (33)

Introducing the nondimensional heat flux q̂ as q̂ = q/vcT ,
one can represent Eq. (33) in the form

θ/T = (1 − q̂2)1/2. (34)

Note that q̂ = 1 corresponds to the maximum possible value
of the heat flux qmax = vcT , which is reached when all the heat
carriers move in the same direction [6,8,27]. Figure 1 shows
the nondimensional effective temperature θ/T as a function
of the nondimensional heat flux q̂ (solid line). In equilibrium
q̂ = 0 and, as expected, Eq. (34) gives θ = T . When the heat
flux increases, the effective temperature θ/T decreases. When
q̂ → 1, Eq. (34) predicts θ → 0 (see solid line in Fig. 1), which
implies that the real positive values of the effective temperature
θ correspond to a physically reasonable upper bound on the
heat flux |q| � qmax. The limit also givesT1 → 2T andT2 → 0
[see Eqs. (30) and (31)].
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Introducing the drift velocity of the heat carriers V as V =
q/cpT , Eq. (34) can be rewritten as

θ

T
=

(
1 − V 2

v2

)1/2

. (35)

Note that V characterizes collective motion of the heat
carriers under nonequilibrium conditions, which leads to the
nonzero heat flux. Taking into account that v = h/τ and
D = h2/2τ , Eq. (35) can be presented in terms of the Peclet
number Pe = V h/D as

θ

T
=

(
1 − 1

4
Pe2

)1/2

. (36)

Note that the factor ϕ = (1 − V 2/v2)1/2 in Eq. (35) appears
also as a scaling factor in the effective (thermal) diffusion
length heff = ϕh ahead of a fast moving heat source [12] or
a phase transformation zone [19,25] due to using the HHCE in
a moving reference frame x → x ′ − V t [12,19,25]. The factor
ϕ also arises in the different relativistic transformation laws
of temperature [5], where the reference velocity v is the speed
of light, whereas in the present model v is of the order of the
speed of sound.

The effective heat capacity under the far-from-equilibrium
condition is defined as cneq = (∂e/∂θ )q [5,6,27]. The reason
for this is that, according to the EIT [5,6], in a nonequilibrium
steady state it is θ rather than T that is directly measured by a
thermometer. Using Eq. (34), we obtain

cneq/c = (1 − q̂2)1/2. (37)

Equation (37) can be rewritten as cneq/c = θ/T . When
|q̂| → 1, Eqs. (34) and (37) give θ → 0 and cneq → 0, respec-
tively.

1. Low heat flux limit |q̂| � 1

For relatively low heat flux |q̂| � 1, one can expand
Eqs. (34)–(37) in Taylor series, which gives

θ

T
= 1 − 1

2
q̂2, (38)

θ

T
= 1 − 1

2

V 2

v2
, (39)

θ

T
= 1 − 1

8
Pe2, (40)

cneq

c
= 1 − 1

2
q̂2. (41)

Note that the low heat flux limit |q̂| ∝ |q|/T � 1, which
can be reached either at low q or at high T, corresponds to
the classical case [6,27]. According to a maximum entropy
formalism of Camacho [27], the classical limit condition for
the far-from-equilibrium state becomes a mere generalization
of the equilibrium condition where the generalized temperature
substitutes the equilibrium temperature, i.e., θ � TD , where
TD is the Debye temperature.

a. Interpretation of the effective temperature θ . Under the
nonequilibrium conditions when |q̂| > 0, a part of the kinetic
energy used to compute the temperature T is not thermalized.

It implies that Eq. (3) for the kinetic temperature T in one
dimension can be presented as [39]

1

2
kBT =

〈
m(wi + V )2

2

〉
(42)

where vi = V + wi , with V being the local mean (drift)
velocity, and wi being the thermal randomized velocity of
particle i, which corresponds to the thermalized kinetic energy.
After some algebra Eq. (42) reduces to

1

2
kBT =

〈
mw2

i

2

〉
+ 1

2
mV 2. (43)

Taking into account that q̂ = V/v, Eq. (43) can be repre-
sented as 〈

1
2mw2

i

〉/(
1
2kBT

) = 1 − 1
2αq̂2 (44)

where α = 2v2m/T kB . Comparison of Eq. (44) with Eq. (38)
allows us to treat the effective temperature θ as the thermal
temperature, which characterizes the thermalized (disordered)
fraction of the local energy density, namely, 1

2kBθ = 〈 1
2mw2

i 〉
(see also discussion in Refs. [5,6]). The energy of the “ordered”
motion of the heat carriers is represented by the difference
between the total energy density 1

2kBT and the thermal fraction
1
2kBθ , i.e., is given as 1

2kB(T − θ ) ∝ q2 > 0. During equili-
bration the energy of the ordered motion converts into the ther-
mal energy of the disordered motion and, consequently, θ → T

at q → 0 (see Fig. 1). Note that although θ is proportional to
the thermal (equilibrated) fraction of the local energy density, it
characterizes the nonequilibrium state and serves as a measure
of how far from equilibrium the system is.

b. Comparison with gas hydrodynamics. Bernoulli’s equa-
tion describing the adiabatic flow of ideal gas is given by [4]

TV

T0
= 1 − (γ − 1)

2

V 2

v2
0

(45)

where TV is temperature of the flowing gas, V is gas velocity,
T0 is gas temperature at V = 0, and v0 is sound velocity at T0.
Equation (45) is similar to Eq. (39) if one identifies TV , T0,
V, and v0 in Ref. [4] with θ , T, V, and v in the present model.
The analogy between Eqs. (45) and (39) is a manifestation
of the energy conservation law for adiabatic systems, which
allows the energy to transform from the kinetic form of the
ordered motion into the thermal energy of the disordered
motion. However, it should be noted that the analogy is not so
straightforward because T in the present model characterizes
both disordered (thermal) and ordered local energy, whereas
T0 in gas hydrodynamics is the classical thermodynamic
temperature.

c. Comparison with the EIT. The EIT [5,6] goes beyond
the local equilibrium assumption and obtains generalized heat
conduction theory by introducing additional state variables,
such as heat flux, into the expression of nonequilibrium
entropy. As a result the nonequilibrium temperature θEIT is
introduced by the EIT as follows [5,6]:

1

θEIT
= 1

T
+ q̂2

2T
. (46)

The EIT effective temperature θEIT, Eq. (46), is shown
in Fig. 1 as a function of the nondimensional heat flux q̂
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(dashed line). Figure 1 clearly demonstrates that the effective
temperatures from the present model θ , Eq. (34), and from the
EIT θEIT, Eq. (47), agree well at a relatively small deviation
from equilibrium when |q̂| � 1, while at a high deviation
from equilibrium when |q̂| → 1 the two temperatures differ
substantially (compare solid and dashed curves in Fig. 1). The
difference is due to the fact that θEIT is obtained neglecting
terms of order higher than q2 [6]. Indeed, we can represent
Eq. (38), which is an approximation of Eq. (34) with allowance
for terms of order of q2, as follows:

1

θ
= 1

T
+ q̂2

2θ
. (47)

Taking into account that for the small deviation from
equilibrium |q̂| � 1 the difference between the last terms
on the right hand side of Eqs. (46) and (47) is small, these
equations demonstrate very good agreement.

d. Comparison with the TMM. The TMM [41] indicates
that the thermal energy is equivalent to a small amount
of mass, called thermomass, according to Einstein’s mass-
energy equivalence relation. In dielectric bulk materials, the
thermomass is represented by the phonon gas and the heat
transport is thus regarded as the motion of phonon gas with
a drift velocity. The momentum balance equation of phonon
gas based on gas hydrodynamics [4] gives a generalized heat
transport model, which agrees in many aspects with EIT
[5,6]. Using Bernoulli’s equation for phonon gas, Dong et al.
[41] obtain the relation between the static temperature, Tst

(effective temperature θ in the present model), and the total
temperature, Tt (kinetic temperature in the present model),
which corresponds to Eq. (39). For further comparison, we
represent the equation for the static temperature Tst [Eq. (23)
in Ref. [41]] as follows:

1

Tst
= 1

Tt

+ q̂2

T 2
st/Tt

. (48)

By comparison of Eqs. (46)–(48), it is inferred that at small
deviation from equilibrium when the denominators in the last
terms on the right hand side of these equations do not differ
much, the results of the EIT, the TMM, and the present model
agree quite well. However, for high deviation from equilibrium
when q̂ → 1, the results differ substantially (compare solid and
dashed curves in Fig. 1).

e. Nonequilibrium temperature of active systems. The
collective behavior of “active fluids,” from swimming cells
and bacteria colonies to flocks of birds or fishes, has raised
considerable interest over the recent years in the context
of nonequilibrium statistical physics [31,32,40]. The active
systems consume energy from the environment or from internal
fuel tanks and dissipate it by carrying out internal movements,
which imply that their behavior is more ordered and thus
intrinsically out of equilibrium. The energy input in active
systems is located on internal units (e.g., motors) and therefore
homogeneously distributed in the sample.

For the active systems, the definition of the effective temper-
ature has come from the extensions of the FDT, that has been
first introduced to study glasses [17]. The well-known Einstein
relation D = kBT μ, where kB is the Boltzmann constant, μ

is the mobility, and D is the diffusion coefficient, expresses
the relation between fluctuation (D) and response (μ). When

manifested in a more general manner, this relation is called
the fluctuation-dissipation theorem. The FDT states a general
relationship between the response of a given system to an
external disturbance and the internal fluctuations of the system
in equilibrium. This relationship contains the temperature and
is central in thermodynamics. However, when a system is out
of equilibrium, the theorem breaks down and an extension of
the theorem must be made. There is growing evidence that
a modified form of the FDT with corresponding effective
temperature holds out of equilibrium in a wide range of
conditions, for example, in glassy systems in the ageing regime,
jammed granular media, and nonequilibrium steady states in
models of driven and active matter [32,40,47–49].

Palacci et al. [31] investigated experimentally the nonequi-
librium steady state of an active colloidal suspension under
gravity field. This paper yields a direct measurement of the
effective temperature of the active system as a function of
the particle activity, on the basis of the fluctuation-dissipation
relationship. The effective temperature of the active colloids
Teff increases strongly with colloidal activity, which is char-
acterized by the Peclet number PeS = rVS/D0, where VS is
the swimming velocity, r is the colloid radius, and D0 is the
equilibrium diffusion coefficient, and is given by [32]

Teff

T0
= 1 + 2

9
Pe2

S (49)

where T0 is a bath temperature. The active colloids consume
energy from the environment in such a way that their motion
begins to be more ordered, which increases the effective
temperature Teff in comparison with the bath temperature T0.
Compared with the present model, the bath (equilibrium) tem-
perature T0 corresponds to the effective thermal temperature
θ , while Teff , which characterizes the more ordered motion of
the active colloids in comparison with the equilibrium state,
corresponds to the kinetic temperature T. To compare Eq. (49)
with the present model, we rearranging Eq. (40) as follows:

T

θ
= 1 + 1

8
Pe2. (50)

Taking into account that for active colloids PeS is defined in
terms of the rotational time scale τr = 4r2/3D [32], we infer
that the result of the present model for small deviation from
equilibrium, Eq. (50), agrees well with Eq. (49), obtained for
the active systems on the basis of the fluctuation-dissipation
theorem [32].

Ginot et al. [50] used sedimentation experiments to probe
the nonequilibrium equation of state of a bidimensional as-
sembly of active Janus microspheres and conduct computer
simulations of a model of self-propelled hard disks. It has been
shown that active colloids behave, in the dilute limit, as an ideal
gas with an activity-dependent effective temperature, which
also corresponds to Eqs. (49) and (50).

Multiple calculations of the effective temperature Teff for
self-propelled particles and motorized semiflexible filaments
have been carried out with molecular dynamic simulations
by Loi et al. [49] (see also review paper [40]). It has been
demonstrated that the FDT allows for the definition of an
effective temperature, which is compatible with the results
obtained by using a tracer particle as a thermometer [40,47].
It was found that all data can be fitted by the empirical law
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Teff/Tb = 1 + εf 2, where f is the active force relative to
the mean potential force, which plays a role analogous to
the Peclet number for colloidal active particles used in the
experiments [32], ε = 15.41 for filaments and ε = 1.18 for
partials [47]. Thus, the empirical law obtained by Loi et al.
[49] for the effective temperature in active systems is consistent
with Eqs. (49) and (50).

2. High heat flux limit |q̂| → 1

When |q̂| → 1, Eqs. (34) and (37) give θ → 0 (see Fig. 1)
and cneq → 0, respectively. These results are consistent with
the maximum entropy approach of Camacho [27], who has
shown that the high heat flux limit |q̂| → 1 corresponds to
the quantum case θ � TD . Thus, the present model provides
reasonable results both in the classical (|q̂| � 1) and in the
quantum (|q̂| → 1) limits, whereas the EIT and the TMM
are valid only for relatively small deviation from equilibrium
|q̂| � 1 in the classical limit θ � TD . Indeed, the TG represen-
tation, used in the present model [see Eqs. (30) and (31)], cor-
responds to the Debye approximation in the maximum entropy
formalism [27] when one can split the nonequilibrium phonon
distribution function in two Bose-Einstein distributions for
phonons moving to the left and phonons moving to the right,
respectively. As the heat flux increases, the temperature for
the phonons moving along the heat flux, T1, increases [see
Eq. (30)], whereas the temperature for the phonons moving
against the heat flow, T2, decreases so as T2 → 0 at |q̂| → 1
[see Eq. (31)]. This indicates that the limit |q̂| → 1 cannot
be addressed classically: in this limit, the number of phonons
moving against the heat flux is too low so as to permit the
classical limit to apply [27]. Thus, the present model due to
the TG representation is consistent with the Bose-Einstein
statistics and gives expressions for the effective temperature θ ,
Eq. (34), and corresponding nonequilibrium heat capacity cneq,
Eq. (37), which cover both the quantum,|q̂| → 1 and θ � TD ,
and the classical, |q̂| � 1 and θ � TD , limits.

For further consideration it is convenient to represent
Eq. (33) in a slightly different form:

T 2 = θ2 + (q/cv)2. (51)

In the quantum limit for n-dimensional space the local
energy density e is proportional to T 1+n [51], which for one
dimension gives e ∝ T 2 [6,27,51]. Thus, Eq. (51) is similar to
the energy conservation law e = etherm + eord, where e ∝ T 2

is the local energy density, which is the sum of the thermal
(disordered) fraction etherm ∝ θ2 and the ordered fraction
eord ∝ q2. According to the Debye model c ∝ T 3 in three
dimensions at low temperatures [3]. For n-dimensional space
c ∝ T n, which for one dimension gives c ∝ T . When q̂ → 1,
Eq. (37) gives cneq ∝ θ , which implies a generalization of the
Debye model for heat capacity in the low temperature quantum
limit to the nonequilibrium situation. In n-dimensional space
it is expected that cneq ∝ θn.

Disordered semiconductors. The non-linear relation for the
effective temperature has been observed in disordered semi-
conductors under electric field [5,43–48]. When an electric
field is applied to a semiconductor one can characterize the
combined effects of the field and the lattice temperature by
an effective temperature to describe carrier drift mobility, dark

conductivity, and photoconductivity [5,43–46]. Marianer and
Shklovskii [43] on the basis of their numerical calculations of
the linear balance equation for electron transition between lo-
calized states in an exponential tail have obtained the heuristic
formula for the effective temperature:

T 2
eff = T 2

0 + (AeelEl/kB)2 (52)

where Teff is the effective temperature of the crystal under
electric field, T0 is the crystal temperature with zero electric
field, E is the electric field, l is the localization length and
eel is the electron charge, and A≈0.67. Baranovskii et al.
[44] verified the concept of the effective temperature for the
distribution of electrons in band tails under the influence of
a high electric field using a new Monte-Carlo simulation
algorithm. The simulated data demonstrated a good agreement
with the phenomenological equation (52) in a wide temperature
range 3<T<150 K. These results indicate that the concept of
the effective temperature can in fact be used as a substitute for
the combined action of both the applied electric field and the
temperature, as far as relaxation processes are concerned [44].
Nebel et al. [45], who experimentally measured the electric-
field-dependent dc dark conductivity over a broad tempera-
ture range (10<T<300 K) in phosphorus- and boron-doped
and intrinsic amorphous hydrogenated silicon (a-Si:H), found
a good agreement with the phenomenological expression,
Eq. (52). Liu and Soonpaa [46] experimentally demonstrated
the similarity between temperature and electric-field effects
in thin crystals of Bi14Te11S10 and observed a good agreement
with Eq. (52), particularly at low temperatures from T = 1.8 to
4.5 K. Liu and Soonpaa noted that the quantum effects played
an important role in their experiments due to the sample size of
five atoms thick and the low temperatures. Note that although
the heuristic Eq. (52) provides a good comparison with the
experimental data [44,45] and is helpful from a practical point
of view, it did not obtain a physical interpretation [5,45].

Compared with the present model, the crystal temperature
with zero electric field T0 corresponds to the effective temper-
ature θ , while the effective temperature of the crystal under
electric field Teff corresponds to the kinetic temperature T.
Taking into account that the electric current i = σEE, where
σE is the electrical conductivity, plays an analogous role as
the heat flux q (see, for example, Ref. [6]), we obtain that the
heuristic Eq. (52) corresponds to the prediction of the present
model, Eq. (51).

More recently, Pachoud et al. [47] experimentally inves-
tigated electron transport in granular graphene films self-
assembled by hydrogenation of suspended graphene. The
authors measured the conductance G of different bias voltages
U and temperatures T to extract the typical localization length
of the samples l at different temperatures between 2.3 and
20 K. It was shown that charge carriers experience an effective
temperature Teff , which is described by Eqs. (51) and (52).
Importantly, Teff uniquely determines G, which implies that
constant-conductance domains of (U 2,T 2) space are straight
lines of slope (Aeell/LchkB)2, where Lch is the channel length
and Lch = U/E [47]. It has been also demonstrated that two
different regimes can be clearly distinguished in the behavior
of the standard deviations σln G of the log conductance as a
function of Teff : below Teff = 10 K, σln G is weakly temperature
dependent while, above 10 K, σln G decreases rapidly with Teff .
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This implies that the concept of the effective temperature is
very useful for analyzing transport phenomena in the granular
graphene materials [47].

Abdalla et al. [48] investigated the scalability of the
temperature and electric-field dependence of the conductivity
of disordered organic semiconductors by using the effective
temperature concept. It has been demonstrated that the scaling
phenomena can have their physical origin in a simple heat
balance of Joule heating and energy-dependent relaxation [48],
which corresponds to the physical origin of the effective tem-
perature in the present model (see discussion in Secs. III A1 a
and III A 2). However, depending on the used input parameters,
both the numerical and the empirical model developed by
Abdalla et al. [48] show smaller or larger deviations from
the ideal scaling behavior, Eq. (52). The discrepancy may be
caused by the difference between the electron and lattice tem-
peratures under nonequilibrium conditions, which is usually
described on the basis of the two temperature (TT) approach
[12,13,34,53–55]. Generalization of the present model to the
TT approach for semiconductors [53–55] is not a trivial matter;
however, the similarity between the effective temperature θ ,
Eq. (51), and the scaling behavior of the temperature- and
electric-field dependence of the conductivity of semiconduc-
tors [43–48] seems to be intriguing and is an important topic
for future work.

Thus, Eq. (33) for the effective temperature θ corresponds
to the results of the EIT [5,6], the TMM [41], and the FDT
approach for active systems [32,40,47–49] at small deviation
from equilibrium, whereas at high deviation from equilibrium
it agrees with the maximum entropy formalism of Camacho
[27] in the quantum limit and the empirical relation for
the effective temperature of disordered semiconductors under
electric field [5,43–48]. This implies that the definition of the
effective temperature, Eq. (33), can be used for systems of
different physical nature in a wide range of deviation from
equilibrium.

3. Some comments

a. Space-time evolution of the effective temperature. It
should be stressed that the space-time evolution of the kinetic
temperature T is governed by the HHCE with corresponding
(nonequilibrium) boundary conditions. The space-time evolu-
tion of the heat flux is governed by the MFL, which contains
the gradient of T, not of θ . However, the space-time evolution
of the effective temperature θ can be calculated in two ways.
The first way is to calculate T and q using the HHCE and the
MFL, which gives θ using Eq. (33). Another way is to calculate
T1 and T2 using the HHCE and then calculate θ from Eq. (32).
Note that although the space-time evolutions of T, T1, and T2

are governed by the same HHCE, Eq. (2), they do not coincide
due to different boundary and initial conditions.

b. Effective and reference temperatures. An effective tem-
perature is usually introduced as an additional variable which
serves as a measure of how far from equilibrium the system
is, while corresponding equilibrium temperature is considered
as a reference temperature. The effective temperature of ac-
tive systems Teff characterizes the nonequilibrium state and
depends on the consumed energy from the environment, while
the ambient (equilibrium) bath temperature T0 plays a role of

the reference temperature [32,40,47,49]. Analogously in the
disordered semiconductors [43–46,48], Teff characterizes the
nonequilibrium state under external electric field, while the
equilibrium crystal temperature at zero electric field T0 plays
the role of the reference temperature. In these cases Teff � T0.

The effective temperature of the passive relaxing systems θ

describes how far from equilibrium the system is and, in this
sense, θ is similar to Teff . However, θ characterizes the thermal
(equilibrated) fraction of the local energy density and, in this
sense, disagrees with Teff , but corresponds to the equilibrium
bath temperature T0. The kinetic temperature of the passive
relaxing systems T characterizes the local energy density of
the nonequilibrium state and, in this sense, is similar to Teff .
However, during relaxation to equilibrium (see Sec. IV A), the
thermal effective temperature θ increases due to thermalization
process, whereas T is kept constant and plays the role of the
reference temperature. Thus, there are some similarities and
differences between the effective and reference temperatures
of the active and passive relaxing systems with heat flux.
Therefore, it is important not to be confused concerning the
definitions of effective and reference temperatures under far-
from-equilibrium conditions (see also discussion in Ref. [5]).

B. Effective entropy

The information entropy is given by [3]

Sneq = −
∑

i

ui ln ui

where ui is the distribution function of subsystem i. For the
system under consideration we have two subsystems (i = 1,2),
the distribution function of which can be represented in terms
of the corresponding temperatures as ui = Ti/2T . In such a
case this equation takes the form

Sneq = −[T1 ln(T1/2T ) + T2 ln(T2/2T )]/2T .

Using Eqs. (30) and (31) for Ti , the expression for entropy
under far-from-equilibrium conditions can be rewritten in
terms of heat flux as

Sneq = ln 2 − 1
2 (1 + q̂) ln(1 + q̂) − 1

2 (1 − q̂) ln(1 − q̂).

(53)

The nonequilibrium entropy Sneq, Eq. (53), scaled with Seq,
is shown in Fig. 2 as a function of the nondimensional heat flux
q̂ (solid line). As expected, S is always less than or equal to
that of a local equilibrium situation Seq = ln 2. The presence
of the heat flux reduces the value of Sneq, indicating that the
nonequilibrium state is more ordered than the corresponding
equilibrium state.

The Lagrange multiplier γ assigned to the heat flux con-
straint can be calculated as

γ =
(

∂Sneq

∂q

)
e

= −1

2
ln

1 + q̂

1 − q̂
. (54)

The parameter γ has no analog in equilibrium and must
be regarded as a purely nonequilibrium quantity describing
how an increment in the heat flux modifies the entropy [6,27].
Figure 3 shows minus γ calculated from Eq. (54) as a function
of q̂.
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FIG. 2. Nonequilibrium entropy Sneq, Eq. (45), scaled with Seq

(solid line) and the entropy production σS , Eq. (46) (dashed line), as
functions of the nondimensional heat flux q̂. The nonequilibrium en-
tropy obtained by Camacho [27] from a maximum entropy formalism
is placed for comparison (dash-dotted line).

To introduce the corresponding entropy production σS , let
us consider, following the EIT [5,6], a volume element which
is sufficiently small so that within it the spatial variation of
temperature is negligible. If the volume element is suddenly
isolated and allowed to decay to equilibrium, the entropy
production would be σS = Ṡneq = γ ∂q̂/∂t ′, where t ′ = t/τ

is the nondimensional time. Taking into account that for the
small volume element Eq. (1) gives ∂q̂/∂t ′ = −q̂, the entropy
production can be expressed as

σS = − q̂

2
ln

1 + q̂

1 − q̂
. (55)

Figure 2 shows σS as a function of q̂ (dashed line). In
equilibrium q̂ = 0 and, as expected, σS = 0. When q̂ → 1,
Eq. (55) gives σS → ∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.1
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10
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-

Nondimensional heat flux,

FIG. 3. Parameter minus γ as a function of the nondimensional
heat flux q̂: solid line, the present model; dashed line, the quantum
limit by Camacho [27]; dash-dotted line, the classical limit by
Camacho [27].

Note that the 1D approach for heat transfer under far-
from-equilibrium conditions has proved to be very useful in
many applications [1,2,5,6,11,15–17,27,28,37,38,42], partic-
ularly for low dimensional nanosystems [11,15–17,37,38,42].
Moreover, following a maximum entropy formalism, Camacho
[27] demonstrated that 1D and three-dimensional (3D) models
for crystals under heat flux give the same asymptotic behavior
of the effective temperature and the nonequilibrium Lagrange
multiplier γ in the quantum limit [27]. Generalization of the
present 1D model to the two-dimensional and 3D case can
be based on the LBM [36,37,42], the DVM [34], and cellular
automata [52] approaches; however, it is not a trivial matter
and it will be an important topic of future work.

1. Low heat flux limit |q̂| � 1

For a relatively low heat flux q̂ � 1, the expression for the
entropy S, Eq. (53), and the entropy production σS , Eq. (55),
can be expressed as

Sneq = Seq − q̂2/2, (56)

σS = q̂2, (57)

which agree with the expression for the local nonequilibrium
entropy and the entropy production obtained by Jou and
coworkers [5,6] in the framework of the EIT and by Dong
et al. [41] in the framework of the TMM. In the limit the
parameter γ reduces to γ = −q̂, which corresponds to the
classical limit by Camacho [27] (compare solid and dash-
dotted lines in Fig. 3). Moreover, Eq. (56) corresponds to the
dependence of the entropy on the order parameter in the Landau
theory of second-order phase transition [3]. This indicates
that q̂ plays a role similar to that of the order parameter.
Indeed, the nondimensional heat flux q̂ varies from q̂ = 0
in the equilibrium (completely disordered) state to q̂ = 1 in
the completely ordered state, when all the particles move in
the same direction. As we discussed above, the low heat flux
q̂ ∝ q/Tk � 1 corresponds to the classical high temperature
limit.

2. High heat flux limit |q̂| → 1

When |q̂| → 1, i.e., in the quantum limit, Eq. (53) for the
nonequilibrium entropy Sneq results in Sneq → 0 (see solid
line in Fig. 2), whereas Eq. (55) for the entropy production
σS gives σS → ∞ (see dashed line in Fig. 2). This can be
understood microscopically as follows: as the heat flux grows,
the number of heat carriers moving contrary to the heat flow
decreases, and in the limit |q̂| → 1 they disappear. This implies
that the nonequilibrium state begins to be more ordered and
corresponding entropy, Eq. (53), tends to zero.

Thus, the present model provides a generalization of the
third law to nonequilibrium states: indeed, when |q̂| → 1,
Eqs. (53), (34), and (37) predict that Sneq → 0, θ → 0, and
cneq → 0, respectively, even at a nonzero value of T (see also
discussion about the third law in Refs. [5,6,27]).
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(a) (b)

q q=0

FIG. 4. (a) Schematic representation of the nonequilibrium state
with the maximum heat flux q = qmax when all the heat carriers
move in the same direction. In this case T1 = 2T , T2 = 0, and θ = 0.
(b) Schematic representation of the equilibrium state with q = 0. In
this case T1 = T2 = θ = T .

IV. ILLUSTRATIVE EXAMPLES

A. Effective temperature in monatomic ideal gas

Let us consider a virtual relaxation to local equilibrium of
a small adiabatically isolated system where the heat carriers
are placed uniformly and move in the same direction. In other
words, the initial condition for the situation is q = qmax at the
initial time moment t = 0 [see Fig. 4(a)]. In this case Eqs. (30)
and (31) give the initial conditions for the temperatures T1 and
T2 as follows: T1 = 2T and T2 = 0, while Eq. (32) gives θ = 0.
As we discussed above, the heat flux in the system is governed
by the equation ∂q̂/∂t ′ = −q̂, which gives q̂(t) = exp(−t/τ )
(see also [5,6]). Accordingly, the temperatures, T1 and T2, tend
to the equilibrium temperature T as T1 = T [1 + exp(−t/τ )]
and T2 = T [1 − exp(−t/τ )], respectively (see dashed lines in
Fig. 5). The effective temperature θ increases from zero at
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FIG. 5. Nondimensional effective temperature θ/T (solid line)
as a function of nondimensional time t/τ during relaxation from
the nonequilibrium state [see Fig. 4(a)] to the equilibrium state [see
Fig. 4(b)]. The temperatures T1/T (upper dashed line) and T2/T

(bottom dashed line) are also shown for comparison.

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

N
on

di
m

en
si

on
al

  e
nt

ro
py

 a
nd

 e
nt

ro
py

 p
ro

du
ct

io
n

Nondimensional time, t /

FIG. 6. Nonequilibrium entropy Sneq, Eq. (45), scaled with Seq

(solid line) and the entropy production σS , Eq. (46) (dashed line),
as functions of nondimensional time t/τ during relaxation from the
nonequilibrium state [see Fig. 4(a)] to the equilibrium state [see
Fig. 4(b)].

t = 0 to its maximum value θmax = T in the equilibrium state
at t → ∞ (see solid line in Fig. 5). Figure 6 shows the time
evolution of the nonequilibrium entropy Sneq, Eq. (53), scaled
with Seq (solid line) and corresponding entropy production
σS , Eq. (55) (dashed line). As expected, Sneq/Seq increases
from zero at t = 0 to unity at equilibrium at t → ∞ (solid
line in Fig. 6), whereas σS decreases from at t = 0 to zero in
equilibrium at t → ∞ (dashed line in Fig. 6)

The time evolution of T1 and T2 is analogous to the behavior
of the effective temperatures for a birth-death process in
gene networks [32]: as the coupling strength between species
increases, the effective temperatures of the species tend to
equalize, as the “hotter” one drops and the “cooler” one
increases, reaching the average temperature [compare Fig. 5
in the present paper with Fig. 4(a) in Ref. [32]].

Now let us compare the behavior of T1, T2, and θ in the
present model (Fig. 5) with the LBM simulation of pico- and
femtosecond laser heating of silicon [42]. In spite of the fact
that the LBM simulation calculates the temperature distribu-
tion in the bulk silicon as a function of coordinate, whereas
the present model gives the temperatures as a function of time,
the results can be qualitatively compared because they both
consider the energy evolution due to interaction (relaxation)
between different modes. So, after the laser heating in LBM
simulation [42] stops, the equivalent temperature in the laser in-
cidence direction, which corresponds to T2 in the present paper,
decreases with coordinate, while the equivalent temperature in
the opposite direction, which corresponds to T1 in the present
model, increases. This behavior exactly corresponds to the time
evolution of T2 and T1 (see Fig. 5). Moreover, the equivalent
temperature in the LBM simulation [42], associated with
the energy flowing in one of the lateral directions, increases
with coordinate in analogy to the increase of the effective
temperature θ in time (see solid curve in Fig. 5). Both temper-

022122-11



S. L. SOBOLEV PHYSICAL REVIEW E 97, 022122 (2018)

-2 -1 0 1 2

-100

-50

0

50

100

150

Te
m

pe
ra

tu
re

s 
an

d 
he

at
 fl

ux

Position, x 

FIG. 7. Nondimensional temperatures and heat flux distributions
as functions of coordinate x for a strong shockwave (x = 0 is the
wave front). The solid line denotes the longitudinal component of
the temperature in the direction of the shockwave T (or Txx in
terms of Ref. [30]) calculated from Eq. (34); solid circles denote
the nonequilibrium molecular dynamics simulation data for Txx [30];
the dashed line and dash-dotted line denote the average (or effective)
temperature θ and the heat flux q, respectively, taken from Ref. [30].

atures increase due to equalization of the initially nonuniform
distribution of energy between different degrees of freedom.

B. Effective temperature in shock wave:
Comparison with MD simulation

The shock-wave propagation occurs under strong nonequi-
librium conditions because the shock front is highly localized
in both distance (a few interatomic spacings) and time (a few
mean collision times) [30]. Due to the far-from-equilibrium
nature of the shock wave the average kinetic temperature
Tk is defined in terms of the local peculiar kinetic energy;
hence T is one-third the trace of the kinetic temperature tensor
[30]. In the shock front, the kinetic temperature component
in the direction of shock propagation, Txx , is higher than the
transverse components, Tyy and Tzz, which are equal to each
other by symmetry. Therefore Tk is also always lower than
Txx , except at equilibrium, which occurs long before the shock
has arrived and long afterwards, when equipartition holds.
Moreover, Txx shows a distinct peak near the center of the
shock front, and this disequilibrium is due to collisions in
the shock compression process [30]. The temperatures Txx

and Tk in the work of Holian et al. [30] correspond to T
and θ in the present model, respectively. To compare the MD
results with the present model, we take the data for q(x) and
θ (x) from Fig. 3 in Ref. [30] and then calculate T (analog

to Txx) from Eq. (34). All the functions were normalized
to the corresponding equilibrium values at x → ∞ taken
from [30], so we do not need to know the heat capacity
and phonon speed to calculate T from Eq. (34). Figure 7
shows the effective (average) temperature θ (dashed curve),
the longitudinal component of temperature in the shock-wave
direction T from Eq. (34) (solid curve), the MD data for Txx

from Ref. [30] (solid circles), and the heat flux q (dash-dotted
curve) as a function of coordinate x for a strong shockwave
in the Lennard-Jones dense fluid (x = 0 is the wave front).
Comparison of the behavior of T calculated from the present
model (solid curve in Fig. 7) and the nonequilibrium MD
data for Txx (solid circles) taken from Ref. [30] demonstrates
good agreement. Thus, the present model, Eq. (34), correctly
describes the relationship between the temperatures, Txx and
Tk , and the heat flux q in the front of the strong shock waves.
Note that a distinct peak of the longitudinal temperature near
the wave front due to nonequilibrium effects has been predicted
earlier around a fast-moving heat source [12].

V. CONCLUSION

The random walk with a finite value of the heat (mass)
carrier velocity [1,2], as well as the DVM with the wave law of
the continuum limit [12,13,26,34–36] and the BTE with the
single relaxation time approximation [6,10,18,24,37,38,42],
lead to the HHCE, Eq. (2), and the MFL, Eq. (1). The HHCE
describes the space-time evolution of the kinetic temperature
T, which characterizes the local energy density under far-from-
equilibrium conditions. The thermalized (disordered) fraction
of the local energy density is characterized by the effective
temperature θ , which is a nonlinear function of T and heat
flux q, Eq. (34). In equilibrium q = 0 and θ = T , whereas out
of equilibrium |q| > 0 and θ < T . In the quantum limit q →
qmax, where qmax is the maximum possible value of the heat flux
reached when all the heat carriers move in the same directions,
θ → 0, cneq → 0, and Sneq → 0 even at T > 0. This provides a
generalization of the third law to the nonequilibrium situation.

Thus the present model captures well the behavior of the
effective temperature and entropy in systems with heat flux
both in the classical and in the quantum limits. The definition
of the effective temperature can be also used for nonpassive
systems, such as active biosystems and systems under external
fields. However, a comprehensive formulation of the concepts
of nonequilibrium temperature and entropy for more complex
systems, particularly in the quantum limit, is still an open
problem and requires additional research.
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