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Thermodynamics of quasideterministic digital computers
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A central result of stochastic thermodynamics is that irreversible state transitions of Markovian systems entail
a cost in terms of an infinite entropy production. A corollary of this is that strictly deterministic computation is
not possible. Using a thermodynamically consistent model, we show that quasideterministic computation can be
achieved at finite, and indeed modest cost with accuracies that are indistinguishable from deterministic behavior
for all practical purposes. Concretely, we consider the entropy production of stochastic (Markovian) systems that
behave like AND and a NOT gates. Combinations of these gates can implement any logical function. We require
that these gates return the correct result with a probability that is very close to 1, and additionally, that they do
so within finite time. The central component of the model is a machine that can read and write binary tapes. We
find that the error probability of the computation of these gates falls with the power of the system size, whereas
the cost only increases linearly with the system size.
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I. INTRODUCTION

There is now a renewed interest in the statistical mechanics
of information processing [1]. Research in the area of infor-
mation thermodynamics focusses on individual processes such
as copying [2,3], feedback processes [4], information engines
[5,6], but also computational processes in chemical systems
[7–9]. What has received much less attention is universal
computation, that is, processes that can implement arbitrary
algorithms, although there have been some efforts in model-
ing Turing machines (for example, [10]), and Refs. [11–13]
propose general limits on computation but without explicitly
relating to specific models of theoretical computer science.

Interest in the physics of computation is not new. A key
result in the field goes back to the 1980s, stating, somewhat sur-
prisingly, that there is no minimal energy dissipation required
during a computation [14,15]. According to this, computation
can be done in principle at zero-energy usage. In practice this
zero-energy limit is unappealing because it usually requires
quasistatic processes—resulting in an infinite computation
time—or it entails an ultrasensitivity to initial conditions, as,
for example, in the billiard ball computer [16]. Complementary
to this is a more recent result coming out of stochastic
thermodynamics stating that irreversible state transitions in
stochastic systems entail an infinite entropy production. An
implication of this is that models of computation that postulate
irreversible state transitions, such as Turing machines or finite
state automata, are physically implausible.

Real world computing machines must inhabit a regime
in between the infinite dissipation of strictly deterministic
machines and the zero-energy limit. Consistent with this, in
biological systems one observes routinely tradeoffs between
the speed, accuracy, and energy usage of cellular information
processing [8,9,17]. Yet, at the same time, deterministic com-
puting machines with finite energy dissipation rates do exist.
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Their existence is not contradicting stochastic thermodynamics
because in reality these machines are not truly deterministic,
but they operate at extremely low, practically negligible error
rates. This seems to be sufficient to allow finite, even small,
energy dissipation rates of these machines.

In this contribution we will present a thermodynamically
consistent model of deterministic computation. By this we
mean a computation that (i) returns the “correct” result with
a probability that is indistinguishable from 1 for all practical
purposes, (ii) does so within finite time, and (iii) is universal.
By the latter condition, we mean that the model can be extended
so as to implement arbitrary computational functions. (iv)
Finally, we also assume that the model is based on stochastic
(Markovian) dynamics.

We will focus here on digital, or more specifically, binary
computing. Determinism in analog computers requires taking
the thermodynamic limit, which leads to poor scaling of
cost, accuracy, and speed [17]. More benign scaling can be
achieved with digital computation, whereby the state space
of the computing machine is partitioned into two equivalence
classes. Rather than setting the computer into a specific state,
it is only necessary to ensure that the machine is in one of
the states of the equivalence class. Thermodynamically, this is
much cheaper to achieve.

The core element of the model presented here are binary
tapes. Each tape encodes a single bit, corresponding to the
majority of its symbols. The idea here is that the tape represents
the record of several attempts to transmit a bit value, whereby
each transmission was only successful with some probability
ε. A stochastic reading machine is used to determine reliably
the bit value represented by the tape. Variations of such reading
machines can mimic NOT and AND gates, and can therefore be
combined to arbitrary logical circuits, thus enabling universal
computation. Using this model we will probe the costs of
deterministic computation, both in terms of entropy production
and computation time. We will find that the scaling of cost
and accuracy is benign, conducive to arbitrarily accurate
computation at a finite energy expense. When run in reverse,
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FIG. 1. The reading machine. The input to the machine is a tape
of length L consisting of m symbols “1”. The machine has N + 1
internal states and a display that represents the output tape of length 1.

then the reading machine can be used to write tapes, while
drawing work from an external work reservoir.

II. RESULTS

A. The reading machine

The central element in the model we propose is the read-
ing machine R (see Fig. 1), which is based on a machine
introduced by Barato and Seiffert [18] and thus ultimately on
the Mandal-Jarzynski device [5]. The prima facie function of
the machine is to decode a simple repetition error correction
code and to set the input to the computation accurately. The
machine thus performs proofreading on unreliable input. As
will become clear below, R has two further functions: (i) it
is an information processor for the computational circuits and
(ii) it also mediates the extraction of free energy from a “heat
reservoir” to power the computation. We will first describe
how the reading machine works, then determine its accuracy,
entropy production, and the time its operation takes. Following
that, we will show how the reading machine can be used to
implement a universal set of logic gates.

The machine R interacts with two binary random access
tapes, T1 and T2, acting as input and output, respectively. By
“random access tape” we mean that the symbols on the tape are
not spatially organized. Each reading event results in a random
tape element being accessed. The input tape T1 is of length L

and contains m copies of the symbol 1 and (L − m) copies of
the symbol 0. The second tape T2 is of length 1, i.e., it is a
single bit and will act as the output to the machine. The device
also has N + 1 internal states sx

i ; here x is an auxiliary index,
indicating the value of T2.

So as to function as a decoder, R is to output “1” if the
majority of bits on T1 is 1, and “0” if the majority of bits
are symbols of type 0. We do not require that this will work
reliably when the input tape has a slight bias only. However, the
machine must output the correct bit with probabilities close to
1 for as long as max(m/L,1 − m/L) > θ for some fixed value
1/2 < θ < 1. This can be achieved by a machine that works
according to the following stochastic rules.

(1) At any one time the reading head of the machine
accesses (reads) a symbol of T1.

(2) With rate ks the reading head accesses a new symbol of
T1.

(3) When the reading head accesses a symbol 1 and the
internal state is sx

i (i < N ) then with rate k+ the internal state
transitions to sx

i+1 and the reading head overwrites the current
symbol with a 0.

(4) When the reading head accesses a symbol 0 and the
internal state is sx

i (i > 0) then with rate k− the internal state
transitions to sx

i−1 and the reading head overwrites the current
symbol with a 1.

(5) When T2 takes the value 0 and the internal state is s0
N

then with rate γ the machine writes 1 onto T2 and transitions
into internal state s1

0 .
(6) When T2 takes the value 1 and the internal state is s1

0
then with rate γ the machine writes 0 onto T2 and transitions
into internal state s0

N .
In order to simplify the notation, we will define a 1 tape

with respect to R as a tape of a given length L that, when used
as input to R, yields T2 = 1 with a steady-state probability
π (s1) � p. Here we define s1 := sj�N as the set of states where
the output tape T2 is in state 1. Analogously, a 0 tape is a tape
that, when provided as input to R, outputs 0 with probability
π (s0) := 1 − π (s1) � p. The parameter p is a user-defined
confidence indicator with p ≈ 1. There may be many tapes
that are neither 1 tapes nor 0 tapes with respect to a given R.

The behavior of the machine R can be modeled as a random
walk characterized by the rate of interaction with tape elements
ks , forward rates k+r(m − i → m − i − 1), and backwards
rates k−r(m − i − 1 → m − i), where r(m − i → m − i −
1) = m−i

L
=: ρi and r(m − i − 1 → m − i) = 1 − m−i−1

L
:=

ρ̄i+1. The random walk can be visualized as follows.

The leftmost column indicates the number of 1s on the input
tape, the second column indicates the internal state, and the
final column illustrates the transitions. For mathematical con-
venience, but without limiting the generality of our argument,
we can assume that the reading head is in a quasi-steady-state
with the tape, i.e., ks � k−ρ̄i ,k+ρi for all i. In this case, the
machine R is simplified to a one-dimensional (1D) random
walk on 2N + 2 sites:

s0
0 ←→ s0

1 ←→ · · · ←→ s0
N ←→ s1

0 ←→ · · · ←→ s1
N .

The superscript indicates the value of T2. The transition rates
between states sx

i and sx
i+1 are k+ρi and k−ρ̄i+1 for the

backwards and forward direction, respectively, but the rates
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between s0
N and s1

0 are γ in both directions. Assuming that γ is
of the order of the other rates or faster, we can approximate the
dynamics of R by cutting out these two sites and connecting
s0
N−1 directly with s1

1 , leading to a random walk on K := 2N

sites. As will become clear below, for the parameters of interest,
the system spends a vanishing fraction of time on these two
sites and the error made by removing them is minimal. We
then end up with the final model, which is a random walk over
the states:

s0 ←→ s1 ←→ · · · ←→ sN−1 ←→ sN ←→ · · · ←→ sK−1.

Here, the states have been relabeled so that sN corresponds
to s1

1 and analogously for other states. The index specifies the
number of 1s that have been consumed from T1 in order to reach
the specified state. In the following we will predominantly be
interested in the probability p(s1) of a particular tape to be
recognized as 1:

p(s1) =
K−1∑
i=N

p(si). (1)

The model only makes sense if L � m � K .

B. Accuracy and resource usage of the reading machine

In this section we analyze the resource usage of the reading
machine. We will find that the “computation” time and the
entropy production scale linearly with the number of internal
state K , whereas the error probability scales with the power
−K/2.

1. Accuracy

We could now formulate a master equation for the probabil-
ity pi(t) that the system is in state si at time t ; we are, however,
more interested in the corresponding steady-state probability
πi . Due to detailed balance the steady-state probabilities obey

πik+ρi = πi+1k−ρ̄i+1.

Solving this for πi yields

πi = ηi

i∏
j=1

ρj

ρ̄j+1︸ ︷︷ ︸
=:uj

π0, η := k+
k−

. (2)

This leads to an expression of pi in terms of statistical weights
ui ,

πi = ηi ui

Z
, i > 0,

where Z = ∑K−1
i=0 ηiui and π0 = 1/Z.

There is no useful analytical expression for this probability,
but for long tapes, when L,m � K , the rates of the random
walk are approximately uniform and m/L can be replaced by
a fixed fraction ε. Remembering that s1 := sj�N we can now
write the steady-state probability for T2 = 1 as

π (s1) ≈
(

ηε

1−ε

)K − (
ηε

1−ε

) K
2(

ηε

1−ε

)K − 1
. (3)

This result is exact in the limit L → ∞. An important special
case for this equation is η = 1 and K = 2 where the exact and

FIG. 2. The steady-state probability to find the machine R in state
T2 = 1 as a function of ε, the proportion of 1s on the input tape of
length L = 100. The sigmoidal shape of the graph means that for
reasonably low or high values of ε the machine outputs 0 and 1 with
a probability of almost 1, respectively.

the approximate solutions coincide also for finite L and the
probability of transmitting the correct bit becomes π (s1) = ε.
This means, that in this case the machine does not improve
on the accuracy of the tape, i.e., it does not perform any
proofreading. For K moderately large and ε > 0.5 Eq. (3) can
be further approximated to obtain an estimate for the error
probability (see Fig. 2),

1 − π (s1) ≈
(

ε

1 − ε

)− K
2

. (4)

The error falls with the power of K . This means that with
a probability that is arbitrarily close to 1 the machine can
recognize tapes correctly even if ε is only marginally above
p = 1/2. When L � K then the accuracy of recognition is
only limited by K . For finite L the accuracy π (s1) increases
with L and approaches Eq. (3) asymptotically; the accuracy
also increases with K , up to an optimal K beyond which
the internal mechanism of the machine deprives the tape of
too many 1 symbols and significantly lowers their proportion,
which interferes with a proper functioning of the machine.

2. Entropy production

The operation of the reading machine is accompanied by
entropy production. Inserting a tape T1 takes the machine out
of equilibrium and initiates a relaxation back to equilibrium.
The entropy production ceases on average once equilibrium
is reached. Using the standard ansatz of stochastic thermo-
dynamics [19], the entropy export associated with a transition
from state i to state k is �senv(i → k) = kB ln ( πk

πi
). The second

component of the entropy is the system or “Shannon” entropy
which works out as the difference between the logarithm of the
probability of the initial and the final state, �ssys(i → k) =
−kB ln πk + kB ln pi(0). The total entropy production is the
average over all initial and final states. In the case of reading
a 1 tape the greatest amount of entropy is produced when the
initial state is s0, because in this case the greatest number of
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entropy producing steps are necessary in order to drive the
system to its equilibrium which is a narrow distribution around
sN . In this case the entropy production becomes

�Stot = −kB ln π0. (5)

In the limit of L → ∞ an analytic expression for π0 can be
obtained:

π0 ≈ (η + 1)ε − 1((
ηε

1−ε

)K − 1
)

(1 − ε)
. (6)

This shows that the entropy production is linear in K .

3. Computing time

The second resource consumed by the machine is the time
to reach equilibrium. While the relaxation time is infinite in
a strict mathematical sense, a time scale for relaxation can be
identified with the mean first passage time (MFPT) to reach
state sK from some initial state [20]. In the worst case, this
initial state is s0 in which case the MFPT is given by [21,22]

Tmfpt =
K∑

i=1

i−1∑
z=0

1

k−ρ̄i−1

i−1∏
l=z+1

k+ρl+1

k−ρ̄l

. (7)

In general, this formula needs to be evaluated numerically.
A compact, albeit approximate analytical expression can be
obtained in the case L,m � K , and ε = L/m.

Tmfpt ≈
[
((k− + k+)ε − k−)(K + 1)

(
εk+

k−(1−ε)

)K+1 + k+ε
](

k−(1−ε)
k+ε

)K+1 − k+ε

((k− + k+)ε − k−)2 .

For large K and k+ > k− this equation can be approximated to
Tmfpt ≈ (K + 1)(Y − k+)/Y 2, where Y := (k− + k+)ε − km.
This shows that the computing time is linear in K . Note that
for finite L the linearity regime is limited to K � L. For larger
K the time to compute increases exponentially as K grows.
Again, the exponential increase is due to the deprivation of the
tape for 1 symbols, as K → L.

In summary, the reading machine can determine whether
a given input T1 is a 0 tape or a 1 tape. By adjusting the
parameters of the machine, it is possible to make this decision
with arbitrary accuracy at a finite cost and within finite time.

C. Logic gates

The reading machine can be used as a basic component to
build AND and NOT gates, which in turn can be combined to
build arbitrary computational circuits. A NOT gate is obtained
from the basic reading machine by swapping the state labels
of T2. This does not affect the properties of the machine, such
as the computing time or the entropy production.

The AND gate is more involved. It requires two inputs, A

and B, respectively. We therefore require an extended reading
machine that accepts two input tapes. Its output is, as in the
standard reading machine, a single element output tape T2.
Each of the inputs A and B can be either a 1 tape or a 0 tape,
each of length L. Initially R∧ is set up as the combination
of two independent, noninteracting, reading machines R∧ =
RA ⊗ RB .

The computation of an AND gate proceeds in two separate
steps. (i) Set the input to the gate. First, the inputs A and B

are set by providing each of the independent reading machines
RA and RB with their respective inputs and letting them reach
their equilibrium states. The internal states of the combined
machine R∧ can then be written as (sx

k ,rl). Tape A drives state
transitions of type (sx

k ,rl) � (sx ′
k′ ,rl), and B drives interactions

of type (sx
k ,rl) � (sx

k ,rl′). The superscript of the internal state
label sx

k indicates the bit value of T2. It changes from 0 to 1
during the transition (s0

	−1,rl) � (s1
	,rl), for a fixed threshold

	 and arbitrary l.

(ii) Start the computation proper after a time of order Tmfpt

has passed. The inputs A and B are then disconnected and
the internal state reservoirs are allowed to interact by enabling
the state transitions (sx

k ,rl) � (sx ′
k+1,rl−1). The backwards and

forward rates should be equal and independent of k,x, and l.
There are choices for the parameters of the reading ma-

chines and the threshold 	 such that the output tape T2 behaves
like a quasideterministic AND gate. Define M := k + l as the
sum of the indices of sk,rl after the inputs have been set,
but before the internal states are connected. M isdistributed
according to

p∧(M) =
min(M,N−1)∑

i=max(0,M−K+1)

πkπM−k.

If both inputs to the gate are 1 tapes then before the internal
states are connected the state labels of sx

k and rl will be the
same on average with k ≈ l ≈ K . After the computation step
this will not change on average. The state will therefore be
(s1

k ,rl), i.e., the output of the gate is 1 quasideterministically as
long as ε was sufficiently high on the original tape, and 	 is
small enough in comparison to K . A similar argument applies
to the case where both inputs are zero.

The accuracy of the gate is limited by the probability to get
the correct output for mixed input, i.e., a 1 tape and a 0 tape as
A and B. A correct computation must yield the output 0. Yet,
the average state label of s after initialization will be close to
K , whereas the average state label of r after initialization will
be close to 0. The precise probability distributions for the two
cases are given by Eq. (2). After the computation step, both
state labels will be about K/2. In order for the output T2 to be
correct, the threshold 	 needs to be chosen such that the label
of state sk never fluctuates to or beyond 	 for the mixed input.
Given a set of parameters K,L,m for the writing machines,
there is an optimal choice for 	, namely the index i > N that
minimizes max(p11

∧ (i),p01
∧ (i)); see Fig. 3. Here p11

∧ (i) is the
probability that the state of the machine is (sx

i ,rk) given that
the input A and B are 1 tapes.
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FIG. 3. Accuracy of the AND gate. The graph shows the
max(p11

∧ (i),p01
∧ (i)) for various values of ε and N = 80. The threshold

	 ideally coincides with a minimum. The probability associated with
the minimum also defines the accuracy that can be achieved for the
computation.

This case of mixed input also leads to an additional entropy
production �s∧, which is a result of the two internal states
being connected and relaxing to a joint equilibrium. Assume
that after setting the input, the machine was in state (sx

k ,rl) and
M = k + l. After the computation step, the state is (sx

k ,rM−k)
and the state label k follows a binomial distribution p(k) =(
N

k

)
qk(1 − q)N−k , where q := M

2K
. This reflects the fact that

the internal states have “equilibrated” with one another. At the
beginning of the computation step, the system is out of equi-
librium with Shannon entropies ln(p(k)) that are distributed
according to πk . Hence, the change in entropy is

�s∧ =
∑

k

πk ln πk −
∑

k

p(k) ln(p(k)). (8)

Here, πi is calculated according to Eq. (1). This entropy
production is a direct consequence of the logical irreversibility
of the AND gate, and is related to Landauer’s limit. The NOT

gate, which is logically reversible, does not have such an extra
dissipative component. The entropy production �s∧ is also the
reason why the setting of the input and the computation must
be separated processes. If not there would be an ongoing com-
petition between computation and initialization with ongoing
need for energy input. Note that in the case A = B the entropy
production will be very small, i.e., �s∧ ≈ 0.

D. The writing machine

A computational cycle is closed by writing the output of
the computation to a tape. It is possible to run the reading
machine R run in reverse in order to write a 1 tape or a 0
tape. The following modifications are necessary. The input tape
T1 is a tape of length 1, the output tape T2 is of length L,
and the machine has L + 1 internal states, s1,s2, . . . ,sL+1. The
transition rules of the writing machine are as follows.

(1) When the internal state is sL and T1 = 1, then with rate
γ w, the internal state goes into state s0 while writing 0 onto T1.
The reverse transition happens with the same rate.

(2) With rate kw
s the machine gets in contact with a new

symbol from T2. If the machine is in state si then with
probability ((L − i)/L) it will be in contact with symbol 1,
and with probability (1 − (L − i)/L) it will be in contact with
symbol 0.

(3) With rate kw
− the machine writes a 0 onto the tape and

goes into state si−1 (provided i > 0).
(4) With rate kw

+ the machine writes a 1 onto the tape and
goes into state si+1 (provided i < L + 1).

Altogether, the machine, when in state si overwrites the
current symbol of T2 with a 1 with rate kw

+(L − i)/L and
correspondingly writes a 0 with rate kw

−(1 − (L − i)/L). The
system can be modeled as a biased random walk of the state
label ι. In the long-term limit the average state label has a
simple closed form [23].

〈ι〉 :=
∑

(iπw
i ) = L

(ηw + 1)L−1ηw) − (ηw)L

1 + (ηw + 1)L − (ηw)L
L�1≈ L

ηw

ηw + 1
,

(9)

where ηw := kw
+/kw

− . The accuracy εw = 〈ι〉/L of the writing
machine is the probability of finding a particular tape element
of T2 in the correct state, i.e., a 1 in the case of a 1 tape or 0 in
the case of a 0 tape. The average work required to write a tape
with accuracy εw is

〈W 〉 := kBT Lεw ln(ηw). (10)

We can now also relate the error probability of a reading
machine to the cost of reconstituting the tape. From Eq. (9), the
proportion of correct symbols written by the writing machine
is εw ∼ ηw/(ηw + 1); together with Eq. (4) the probability that
the reading machine fails, then scales like so

1 − π (s1) ∼ (
ηw

)− K
2 . (4b)

Finally, the MFPT to write the full tape can be evaluated along
the same lines as Eq. (7).

T w
mfpt =

L∑
i=1

i−1∑
x=0

1

t+(i − 1)

i−1∏
l=x+1

t−(l)

t+(l)
,

where t+(l) := kw
+(L − l)/L and t−(l) := kw

−(1 − (L − l)/L)
are shorthand for the forward and backwards rates of the
random walk, respectively. No useful closed form expression
exists for T w

mfpt and it needs to be evaluated numerically [23].
Note that the computation time cannot be expressed solely in
terms of the ratio ηw, but depends on the absolute scale of
the rates. This reflects the fact that the system can be made
arbitrarily fast at no additional cost by scaling the reaction
rates.

The most cost efficient way to write a tape of a particular
type (i.e., a 1 tape or a 0 tape) with a given accuracy εw is to
start from a relaxed tape of length L with, on average, L/2
symbols of type 1. To convert this tape into, say, a 0 tape with
(almost) only symbols of 0, only about half the symbols need
to be modified. The average cost of this writing procedure is
−(L/2)kBT ln ηw with the tape initially in state m = L/2 [23].
Writing a 1 tape is entirely analogous, but requires a special
writing machine for 1 tapes.

Additional costs arise when the bit to be recorded to tape
is unknown, which is typically the case at the end of a
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computational cycle. One protocol to deal with this case is
as follows.

(1) Prepare a writing machine that outputs 1 tapes with L

internal states by resetting its internal state to sL+1.
(2) Initialize the input tape T1 of the writing machine with

b, i.e., the output tape from the preceding computation.
(3) Initialize T2 with a 0 tape.
(4) Wait for a time of the order T w

mfpt and then remove T2.
If b = 0 then the machine would not have modified the output
tape T2, no extra cost arises here. Otherwise, the 0 tape output
would have been overwritten to be a 1 tape at a cost proportional
to L rather than L/2, i.e., twice the work to write a 1 tape
directly from an initially relaxed tape. In both cases the cost to
write the original 0 tape accrues and is ∼L/2.

An additional cost comes from the reset during step 1. If the
machines were not reset, then it would be initially in a random
state internal state si , where the state label i is uniformly
distributed across all possible states with average 〈ι〉 = L/2.
This is a source of error, because if the machine is initially in
state si it would write L + 1 − i 1s onto the tape, irrespective
of the input. When b = 0 then this could significantly degrade
the quality of the output tape T2. In the case of b = 1, this
would not be harmful though.

The reset of the writing machine comes at the average cost
of ∼L/2. Altogether, therefore, the cost of writing a 1 tape is
∼2L, which makes the average cost ∼(3/2)L.

This result is not a fundamental lower limit for the writing
of the output, which can only be reached using quasistatic
protocols [24].

III. DISCUSSION

In the model presented here, all computational processes
complete within a finite time. The error probability of the
computation falls much more rapidly to zero than the entropy
production increases, which makes it possible to achieve
quasideterministic computations at finite cost in finite time.
More specifically, the entropy production associated with
setting the input diverges linearly with the ability to correct,
which is parametrized by the number of internal states K .
This parameter also determines the cost of reconstituting the
input tape after the computation. Since in this model the tape
serves a dual role as a power source and information storage,
the reconstitution cost is the actual cost of the computation.
Note that it is normally not necessary to write tapes de novo

at a cost ∼L/2 because a computation only overwrites at
most K symbols on the input tape. An additional cost arises
when executing the AND gate. This cost is a consequence
of the logical irreversibility of the operation. It, too, scales
linearly with K . In contrast to the linear scaling of the cost, the
probability that the computer returns the wrong results follows
1 − π (s1) ∼ (ε/(1 − ε))−K/2 [see Eq. (4)].

The benign scaling of this machine is reassuring vis-à-vis
the existence of real world deterministic computing machines,
which are in reality only quasideterministic, i.e., stochastic
with a very low error probability. Indeed, determinism in
electronic circuits is achieved by using principles that are
formally not too dissimilar from the model presented here. Bit
values are represented as voltage spikes. If the amplitude of a
spike exceeds a certain voltage threshold, then it is interpreted
as a 1. The probability of an error can be reduced arbitrarily by
choosing the correct threshold value in relation to the average
voltage peak and typical fluctuations.

All this begs the question why biological systems do not, at
least not universally, use a similar route to deterministic com-
putation. Unlike the electronic machine, in vivo computation is
inherently stochastic and subject to performance tradeoffs. Part
of the explanation may be that cellular computing is analog,
rather than digital, and not admitting such a benign scaling.
Another reason could be that the infrastructure required to
perform digital computation cheaply, is itself not cheap to
maintain. Here, we have not included the maintenance cost of
the reading machine whereas a biological cell has to produce
and maintain or “compute” the reading machine itself. This
may not be worthwhile doing.

As a final remark, we note that the model used here is
but an application of the idea of nonconfusable subset coding
from information theory [25]. One may wonder whether more
advanced block coding schemes could be used to get an even
better performance. We conjecture that the computational cost
of decoding puts a limit to the use of error correction codes. The
computation necessary during the decoding step would itself
require energy and likely render the energy-accuracy balance
unfavorable.
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