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Thermodynamic curvature of soft-sphere fluids and solids
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The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for
the fluid and solid states is investigated for particles interacting with the inverse power (r−n) potential, where
r is the pair separation and 1/n is the softness. Exact results are obtained for R in certain limiting cases,
and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems
the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n)
particles across almost the entire density range, and can change sign between negative and positive at a certain
density. The relationship between R and the form of the interaction potential is more complex than previously
suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to
the thermodynamic properties of the system.
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I. INTRODUCTION

Riemannian geometry has attracted attention in the field
of equilibrium thermodynamics [1–3]. In this approach the
Riemannian curvature scalar, R, plays a central role. Its
importance follows from the fact that in two dimensions all
components of the Riemann tensor can be constructed using
R. Consequently in two dimensions R provides complete
information about the curvature at any particular point, and
any thermodynamic curvature theory must be based on R [4].
In other words, the thermodynamic curvature at any state point
characterized by R is independent of the coordinate system in
which it is calculated. Therefore, R, as the geometric invariant
in thermodynamics, is expected to contain information of
intrinsic physical meaning. As will be discussed below, the
R parameter defined in terms of derivatives of the free energy
in the temperature-density plane can probe the underlying free
energy landscape with key readily accessible thermodynamic
quantities such as the heat capacity and bulk modulus. To
extend our understanding of Riemannian geometry applied to
thermodynamics it is important to analyze R for systems whose
thermodynamic properties have been determined accurately
and precisely.

Two main approaches have been used to investigate R. First,
statistical mechanics can be applied for well defined model
systems [4,5]. Second, a database of thermodynamic properties
of various experimental liquids has been used [1,3]. R has
been investigated for many systems [6], including the Bose
and Fermi gas [7,8], Ising based models [9,10], van der Waals
and Lennard-Jones liquids [4,5], as well as for over 120 real
fluids, including water, carbon dioxide, hydrogen, and linear
alkanes [1–3], taking data from thermodynamic databases.
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The value of R across the phase diagram of various fluids
might provide a new perspective on the thermodynamic proper-
ties and reveal insights into the underlying significance of their
variation, which otherwise might be difficult to discern. The
variations in R found in experimental systems, and presented in
such diagrams, certainly coincide with well defined regimes in
the phase diagram (e.g., near the critical point region, near the
melting line, etc.). Therefore it might reasonably be expected
that a link between R and some more basic thermodynamic or
structural feature could eventually be found.

In spite of these previous studies, our knowledge of R and its
meaning is still fairly incomplete. In particular its connection
with the character of the microscopic interactions has not
been convincingly established. Nevertheless, an emerging
view is that the thermodynamic curvature scalar R may be
a measure of the intermolecular interaction. The sign of R

indicates whether the interaction or “effective” interaction is
predominantly attractive (R < 0) or repulsive (R > 0) [6,11].
It has been proposed that |R| ∼ ξ 3, where ξ is a correlation
length, and therefore |R| would be a measure of the size
of mesoscopic organized structures [4,12]. Consequently, the
locus of the maximum of |R| has been used to describe the
locus of the Widom line [13]. Also, as for the coexisting
phases the correlation length is the same, calculation of |R| can
help in determining the vapor-liquid coexistence line [5,13].
Of particular interest is the R = 0 line which it has been
suggested marks the transition from attractive to repulsive
interaction dominated parts of the phase diagram. It has even
been suggested that the R = 0 line could be connected to
the Fisher-Widom line [14], which reflects a similar kind of
transition. It is fair to say that the precise meaning of the R = 0
curve is still under debate.

To extend our understanding of the Riemannian geom-
etry approach to thermodynamics, we require a systematic
and precise analysis of the thermodynamic properties of a
well-defined model particle system over many state points.
A detailed analysis of the influence of the intermolecular
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attraction and repulsion terms on the curvature parameter R

can then be better established. Only recently have systematic
investigations of the dependence of R on the intermolecular
interaction strength been performed. In those studies a tunable
interaction going from the purely repulsive Weeks-Chandler-
Andersen or WCA potential to the Lennard-Jones potential
was used to monitor changes in R caused by increasing the
contribution of the attraction part [15]. The results support the
conjecture that the sign of R specifies whether the dominant
part of the interparticle interaction is attractive (R < 0) or
repulsive (R > 0).

Some work has been performed analyzing the effects of the
strength of repulsion [16], but the results were inconclusive,
presumably because the thermodynamic data was not precise
enough. In this work a detailed investigation of R of the soft-
sphere system in the fluid and solid phases has been performed,
and the influence of strength of interparticle repulsion on R

determined. The soft-sphere or inverse power potential (IP)
was used, which is defined as φ(r) = ε(σ/r)n, where r is the
separation between two particles, σ is the particle diameter, ε

sets the energy scale of the interparticle interaction, and 1/n

is a parameter determining the potential softness. By varying
n from very soft (n → 3) to extremely hard (n → ∞) this
potential can be used to establish the consequences of softness
on R. The study is limited to the softness range n > 3, because
for n � 3 the volume integral of the potential diverges and the
system becomes thermodynamically unstable.

There are at least two main reasons why the IP system
can be considered to be the most suitable for investigating
the influence of the repulsive part of any interaction on R.
First, the IP system possesses the useful (even unique) property
that its excess thermodynamic properties do not depend on
the density and temperature separately but on a dimensionless
combination of the two, a temperature-scaled packing fraction
ζ = (ε/kBT )3/nρσ 3π/6, where ρ = N/V is the number den-
sity, N is the number of particles in volume V , kB Boltzmann’s

constant, and T the temperature. A direct consequence of this is
that for a given n, the entire phase behavior on the (T ,ρ) plane
can be generated from evaluations along a single isotherm or
isochore. A range of densities at constant reduced temperature
T ∗ = kBT /ε = 1 is a popular practical choice.

Second, the IP system is, apart from the hard sphere (HS)
case, one of the best characterised off-lattice systems. The
thermodynamic properties of IP fluids have already been
determined to a large extent [17–19], and the scale invariance of
the IP potential allows us to obtain certain closed-form analytic
expressions valid, for example, in the low and very high density
limits. Some molecular dynamics (MD) simulations of these
systems were carried out for this study to supplement the
existing data.

In the Sec. II the curvature quantity, R, is expressed in a form
suitable for its calculation for the IP system, and in determining
informative limiting cases. In Sec. III the results for the IP fluid
and solid phases are presented and discussed. A summary of
the main conclusions is given in Sec. IV.

II. THEORY

The Riemannian curvature in (T ,ρ) coordinates has the
following form [4,5]:

R = 1√
g

[
∂

∂T

(
1√
g

∂gρρ

∂T

)
+ ∂

∂ρ

(
1√
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∂gT T
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, (1)

where g = gT T gρρ , gT T = −(1/T )∂2(ρf )/∂T 2, gρρ =
(1/T )∂2(ρf )/∂ρ2, and f denotes the free energy per
Boltzmann’s constant and per particle. It can be shown
that the quantity R, which has units of volume, can be
expressed in terms of two basic measurable thermodynamic
properties, the isochoric heat capacity CV = (∂U/∂T )V and
the isothermal bulk modulus BT = ρ(∂P/∂ρ)T (i.e., the
inverse of the system’s compressibility), where U is the total
energy and P is the pressure:
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(2)

where the asterisk indicates that the quantities are given in
dimensionless form, i.e., R∗ = Rρ, C∗ = CV /kBN , and B∗ =
BT /ρkBT . The above expression may have advantages for
some physical systems as it enables characteristic features of
R to be derived from available thermodynamic data. For any
thermodynamically stable system the terms C∗ and B∗ are
positive, so the sign of R will be determined by a combination
of their first and second derivatives, i.e., the terms in curly
brackets in Eq. (2). For different systems and thermodynamic
conditions these derivatives may change in relative magnitude
and sign, and therefore in general both positive and negative
R could be obtained. It is noteworthy that when B∗ and C∗
are in fact constant, their derivatives are zero, which means
that all terms in the curly brackets are zero, and consequently
so is R. A well known example of this case is the ideal gas,

where for any (T ,ρ) the B∗ and C∗ are constant. The ideal gas
case was discussed in Refs. [4,6,11], and this example gave
rise to the interpretation that R is a measure of the interaction
strength. Equation (2) indicates that R∗ = 0 may be obtained
in any situation when the expressions in the curly brackets sum
up to zero, without necessarily both B∗ and C∗ being constant.

If C∗ is nearly constant, R is determined practically only
by B∗ and its derivatives. This feature may be expected in
systems where the short-ranged repulsive part dominates and
ones that are close to being hard spheres as a limit. More
detailed analysis of R requires an interparticle potential and
the system’s thermodynamic properties (i.e., C∗ and B∗ here).
The IP system is a valuable model system in this respect, as
the complexity of Eq. (2) can be reduced substantially and its
thermodynamic properties accurately determined.
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For the IP system, after some algebra, the formula in Eq. (2) reduces to the following:

R∗ = ζ

B∗C∗
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2
ζ
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]
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2
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}
. (3)

Also, in this case the prime shorthand notation for derivatives can be used unambiguously and will be employed in what follows.
Thus the above equation is, in more compact notation,

R∗ = ζ

B∗C∗

{
(9B∗/n2 + C∗)′

[
1 − 1

2
ζ [ln(B∗C∗)]′

]
+ ζ (9B∗/n2 + C∗)′′ − 1

2
C∗[ln(B∗/C∗)]′

}
. (4)

Now using C∗ = 3/2 + 3Z/n − 9ζZ′/n2 and B∗ = 1 + Z + ζZ′ [19], the relationship 9B∗/n2 + C∗ = 3/2 + 9/n2 +
(3/n + 9/n2)Z, where Z = P/ρkBT − 1 is the excess compressibility factor (ECF), can be obtained. Therefore, only Z, Z′,
and Z′′ are involved in the above expression for R∗. The absence of terms involving the third derivative, Z′′′, is important, and
a unique feature of the IP system. Note, that the presence of the second derivatives of B∗ and C∗ in Eq. (2) means that in the
general case the third derivatives of P and U are required, which are normally difficult to obtain with sufficient accuracy, and
can be a serious obstacle in the determination of R to sufficient precision. We verified that Eq. (4) is equivalent to those given by
Ruppeiner in Eqs. (29)–(31) in Ref. [16].

Equation (4) can be rewritten as follows:

R∗ = ζ

B∗C∗
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2
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2
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= R1 − R2, (5)

where R∗ = R1 − R2 is the difference between two terms,
R1 = ζ [ (9B∗/n2 + C∗)′ + ζ (9B∗/n2 + C∗)′′ + (C∗)′/2]/
(B∗C∗) and R2 = ζ [ζ (9B∗/n2 + C∗)′[ln(B∗C∗)]′/2 +
C∗[ln(B∗)]′/2]/(B∗C∗). Both terms are always positive
(i.e., for any n and ζ ), and therefore their relative magnitude
alone determines the sign of R(ζ,n).

With Eq. (5), rigorous and useful results for several limiting
cases can be obtained, of which five are identified below. The
first is when n → ∞, where the IP system manifests many
properties the same as the hard sphere system [19]. Because
for the HS system C∗ is a constant, the term R1 is zero, and
therefore its thermodynamic curvature reduces to

R∗
HS = R∗(ζ,∞) = −ζ (ln B∗)′

2B∗ = − ζ (B∗)′

2(B∗)2
, (6)

which is always negative. This is a significant result which is
exact, and demonstrates that even at high fluid densities and
in the crystal the thermodynamic curvature can be negative,
i.e., R < 0. Moreover, significantly, this situation occurs for
a system composed of particles interacting with an entirely
repulsive potential.

The result obtained for the HS system gives rise to a
question about its uniqueness: Is R also negative for any
n range? At least a partial answer to this question may be
obtained by considering steeply repulsive IP fluids (or SIP),
which may be defined as those where n is approximately
greater than about 70, and for which the thermodynamic
behavior is so close to the HS over the entire fluid phase
that a perturbation approach based on the HS fluid can be
exploited [18,19]. The perturbation approach in this case
can be based on an appropriate choice of an effective hard
sphere diameter, σ

ef

HS . This can be used to define an effective
packing fraction, ζ

ef

HS/ζ = (σ ef

HS/σ )3, which in turn is the
solution of the equation Z(ζ,1/n) = ZHS(ζ ef

HS) [20,21]. Thus,
knowing ζ

ef

HS we can obtain Z(ζ,1/n) of the SIP from the

HS fluid formula. As has been shown the simplest solution
for ζ

ef

HS , which well represents the SIP, is that by Barker and
Henderson (BH) [22], which give ζBH = ζ
(1 − 1/n)3 [18],
where 
 is the Gamma function. A more complex analytic
prescription could be used but the identity ζ

ef

HS = ζBH is
sufficiently accurate for the present purpose. With ζBH the
SIP ECF can be represented by Z = ZHS + εζZ′

HS + O(ε2),
where ε = 
(1 − 1/n)3 − 1 ∼ 1/n. Using this representation
of Z, it can be shown that the thermodynamic curvature of the
SIP has the form R∗(ζ,1/n) = R∗

HS + εF + O(ε2), where F is
a function of ZHS and its derivatives. Importantly, this function
is positive, which means that for SIP fluids R∗ > R∗

HS . Thus,
on increasing n, the R∗ continuously approaches R∗

HS from
above, which means that the HS system is the lower bound for
the SIP fluids and indicates that there may exist a range of n

for which R∗(ζ,1/n) < 0.
The third rigorous case is in the low density limit, where

Eq. (5) yields

R∗(ζ → 0,n) = −
(

1 − 3

n
− 3

n2

)
b2(n)ζ, (7)

and b2(n) = 4
(1 − 3/n) is the second virial coefficient of
the IP system. This result indicates that at very low ζ the
thermodynamic curvature can be negative or positive, depend-
ing on the value of the system’s softness parameter, 1/n. The
initial slope of R∗(ζ ) changes sign at a particular value of
n or n = n0 = (3 + √

21)/2 ≈ 3.7913 for which the term in
parentheses in Eq. (7) becomes zero. This is a significant result
as it indicates that for n greater than a certain value, n0, that is,
for most of the IP systems considered typically, it is expected
that R∗ changes sign from negative to positive at a certain
packing fraction value, ζ = ζ0.

The fourth important limiting case is in the very soft-sphere
limit, i.e., n → 3. In this limit the ECF is determined mainly by
the second virial coefficent, and as was argued in Ref. [19,23]
the ECF may be represented in the fluid phase by the simple
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formula, Z(ζ,n → 3) → b2(n)ζ + γ ζ α , where α ≈ 0.5 and
γ ≈ 1.5. Because b2(n → 3) → ∞ both Z and Z′ also tend
to ∞. However, many thermodynamic properties that are
combinations of these two quantities have a finite value in
the n → 3 limit, e.g., C∗ → 1.5 + (1 − α)γ ζα [19]. With
this ECF the thermodynamic curvature is always positive as
R1 > R2 for any ζ > 0, and

R∗(ζ > 0,n → 3) → 4 + √
ζ

3(2 + √
ζ )2

. (8)

Taking into account these additional results for the low density
limit given in Eq. (7), it is reasonable to expect that the
thermodynamic curvature of very soft (3 < n < n0) inverse
power fluids is always positive, or R∗ > 0.

For the fifth case, which is concerned with the solid phase,
it is known that the IP fluid on increasing density transforms
into a crystal structure which is FCC for n > nt and BCC for
n < nt , where nt is estimated to be about 6 [17,24]. For the
static perfect crystalline structure the total internal energy per
particle, u = U/NkBT can be readily computed, and from this
the ECF becomes Z = nu/3. It can be verified that the ECF of
the perfect cubic structure (FCC and BCC) is well represented
by the simple formula ZS = anζ

n/3 + n/2, where an is an n-
dependent constant. This is consistent with Z′

S = nZS/3ζ and
Z′′

S = n(n − 3)ZS/9ζ 2, which gives B∗ = anζ
n/3(n/3 + 1) +

1 + n/2, and C∗ = 3 which is in agreement with the Dulong-
Petit law for heat capacity.

These B∗ and C∗ substituted in Eq. (5) give a thermody-
namic curvature which tends to 1/6 for large ζ . This means
that all IP solids have the same limiting R∗ value, irrespective
of the interaction softness. Therefore, the R∗ quantity captures
a fundamental difference between the IP and HS potentials. The
HS potential has at the close packing density (ζcp = √

2π/6 =
0.7405) the limit R∗ → 0. In contrast, the soft-sphere crystal
can be compressed without any bounds, and in this case
R∗(ζ → ∞,n) → 1/6. Thus, the ζ limits for R∗(1/n → 0)
and R∗(1/n = 0) are different. For arbitrarily large n there
exists a value of ζ at which R∗ changes sign from negative to
positive, and only for the HS crystal does R∗ remain always
nonpositive. Note also that, in the high density limit,R = R∗/ρ
tends to zero, in both cases, but for any IP crystal from above
(the 0+ limit) and for the HS system from below (the 0− limit).

From the above analysis of Eq. (5), it may be observed that
by merely changing the softness of the repulsive particle, three
qualitatively different types of behavior in R can be obtained:
only negative, negative and positive, and only positive. We
note that for purely repulsive particles, for most of the density
range (even in solid phase), R is negative. We consider this to
be a significant result as in the literature a repulsive interaction
has been associated with a positive R. Indeed, it is difficult to
interpret R < 0 for nearly HS particles as being “effectively
attractive” (particularly for a fluid).

III. RESULTS AND DISCUSSION

To obtain sufficiently accurate results for R, the data for
the ECF of the IP systems from Refs. [19,23] and for the
hard sphere fluid from Ref. [25] were used, and additional
molecular dynamics simulations for these systems were car-
ried out. The new calculations were performed for steeply

repulsive potential fluids with exponents, n = 36, 72, 88, and
144, and for very soft IP particles using n = 4 and 5. Long
simulations were necessary to obtain sufficient accuracy for
Z at high packing fractions. For the crystalline (FCC) phase
the calculations were performed for n = 12, 72, and 144 IP
systems and for hard spheres. The simulations were carried
out mostly with N = 4000 particles. The equations of motion
were integrated with the leap-frog Verlet algorithm with a time
step of dt = 0.001 for n > 12 and dt = 0.005 for n < 12. The
interaction truncation distance, rc, was where the potential was
0.0001. The averages were calculated from well-equilibrated
simulations of length 4 × 105 time steps. The accuracy of the
resultant Z was estimated to be better than �0.2%. The hard
sphere data were generated with the DYNAMO code [26] for
N = 131 072 particles with 109 collisions.

A. Inverse power, IP fluid

Figure 1 shows the calculated thermodynamic curvature of
the IP fluids for a number of representative n values which
cover the entire range of softness, i.e., 0 � 1/n < 1/3. In the
figure the different kinds of limiting behavior discussed in
Sec. II are clearly visible. That is, the HS fluids bound the
IP system from below, and R∗ for SIP fluids can be negative
especially for large n and density. For soft particle fluids
R∗ is predominantly positive. On increasing the interaction
softness, three different types of behavior are revealed. If nf is
a particular value of n, (a) for 0 � 1/n < 1/nf the thermody-
namic curvature is negative, (b) for 1/nf < 1/n < 1/n0 the
curvature, R∗ changes sign at a certain packing fraction, ζ0(n),
and (c) for 1/n0 < 1/n < 1/3 the thermodynamic curvature is
positive. Also, R∗(n → 3) is the upper bound for the IP fluids
(the bold green line in the figure) at all densities.

It was found that, by applying the BH perturbation approach
to the SIP fluids near freezing using the HS equation by Kolafa,
Labík, and Malijevský [25] (or any other accurate formula for
the hard sphere compressibility factor), it is when nf = 88 that

FIG. 1. The thermodynamic curvature of IP fluids. The lines
from bottom to top are for the HS fluid (magenta bold line) and
n = 72,36,18,12,8,6,5,4 (black lines). The top green bold line
represents the limiting formula in Eq. (8) for R∗(ζ > 0, n → 3).
The freezing point packing fractions ζf are obtained from Ref. [27]:
0.487,0.492,0.531,0.610,0.825,1.22,1.73,2.98 for the correspond-
ing n values. In the calculations the MD simulation data and the ECF
for the hard sphere fluid from Ref. [25] were used.
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FIG. 2. The packing fraction value, ζ0, at which the thermody-
namic curvature R∗ = 0. The open symbols are from the curves in
Fig. 1, the end points are ζ0(nf ) = ζf (n = 88) = 0.492 and ζ0(n0) =
0, and the solid (blue) line is a polynomial fit (note the function is
divided by 5 on the figure). The bold solid (red) line represents the
pseudo-Fisher-Widom line for the IP fluids (w = 0.525). It is obtained
as a fit to ζFW (1/n) (solid red circles) determined from the MD
data and which represent a crossover from oscillatory to monotonic
behavior of the radial distribution function.

R∗ = 0 at the freezing packing fraction. Thus for all fluids with
n > 88 the corresponding R is negative near freezing.

The softness (i.e., 1/n) dependence of the packing fraction
at which R∗ = 0 or ζ0 is shown in Fig. 2, which shows that it
is a monotonically decreasing function which starts at n = nf

and terminates at n = n0. Possible relationships between R and
various physical properties have been the subject of debate in
the literature, one suggestion being that the R∗ = 0 line may
be linked to or even coincide with the so-called Fisher-Widom
(FW) line [12]. The FW is a line in the density-pressure plane
along which a change from monotonic to damped oscillatory
decay in the radial distribution function (RDF) takes place
[14]. This is interpreted as being a crossover from domination
by the attractive to the repulsive interaction, and if a similar
interpretation for the R = 0 line is made, it might be expected
that the two lines are fundamentally connected. In the case
of fluids with short-ranged interactions, the FW line can
be determined by the conventional pole structure approach
[28–30]. In the case of the inverse power fluid the ultimate
(large r) decay is algebraic, as is the potential itself. Con-
sequently there is a qualitative difference in the asymptotic
behavior of the RDF in fluids composed of particles with
finite ranged or exponentially decaying potentials and fluids
composed of particles with long-ranged interactions. However,
in the last case instead of the FW line the pseudo-FW line can
be defined. The pseudo-FW line defines the crossover from
pseudoexponential to damped oscillatory contributions to the
RDF, and follows from the existence of a complex (pseudo-
exponential) pole positioned very close to the imaginary axis
[31,32]. Thus the term FW line for the IP systems is to be
understood as the pseudo-FW line.

In the case of the inverse power fluid, due to the scaling
properties of the IP interaction, we have points (one for each
value of n) instead of lines. Just as the R = 0 line in the density-
temperature plane is represented by a single ζ0 point, we have
a FW point for the FW line. A number of FW points or ζFW

have been estimated for several different softness values using

FIG. 3. The ECF of IP solids vs ζ/ζf shown on a log-linear
scale (note log is the natural logarithm). The symbols are the MD
results for n = 12,72, and 144 IP systems. The continuous curves
represent Z = anζ

n/3 + n/2; log(a12) = 4.3908, log(a72) = 12.1808,
log(a144) = 20.0848 for the cubic crystal. On the figure, the log(Z)
for n = 72 and 144 are shifted down by 2 and 4, respectively.

the pole structure method [31,32]. It was found that they can
be represented well by the simple algebraic formula, ζFW =
w/n3/2, where w = 0.525. It can be seen in Fig. 2 that in the
case of the IP fluid it is not easy to find any simple relationship
between the zero R and FW lines. In fact the trends are to a
large extent opposite, as ζ0 decreases and ζFW increases with
increasing 1/n.

B. Inverse power, IP solid

As mentioned above, at a certain packing fraction, the IP
system freezes into a crystalline solid. It is expected that in the
HS solid the thermodynamic curvature remains negative up
to the close packing density and that for any 1/n > 0, on in-
creasing ζ , R∗ converges towards 1/6 (i.e., to a single positive
value). The calculations for the HS solid were performed with
the DYNAMO program [26] for a very large system composed of
N = 105 particles. Such large systems were used to establish
the ECF with an accuracy of 10−5, which in turn allowed us to
assess the performance of the Speedy formula [33],

Z = 3ζcp

ζcp − ζ
− a(ζ − bζcp)

(ζ − cζcp)
− 1, (9)

where a = 0.5921, b = 0.7072, and c = 0.601. We have found
that the Speedy formula represents the HS solid structure
for all packing fractions greater than the melting ζm = 0.545
with an accuracy better than 10−3. The Speedy formula yields
practically the same R∗ as that obtained directly from the
current MD data. It is noteworthy that the very good agreement
between the MD data and the Speedy formula indicates that
the limiting form of the ECF is not a logarithmic divergence
[16], but Z(ζ → ζcp) ∼ 1/(1 − ζ/ζcp).

The density dependence of log(Z) given in Fig. 3 for three
different softness values shows that at a certain value of ζ

(corresponding to the situation when the soft-spheres start to
overlap substantially or r becomes less than σ ) the excess
compressibility factor starts to be represented very well by the
static lattice approximation (the continuous line on the figure).
The static lattice approximation predicts that on increasing
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FIG. 4. The thermodynamic curvature scalar, R∗, of the IP poten-
tial solids vs ζ/ζf . The bold lines from bottom to top represent the
HS and n = 144, 72, and 12 IP systems obtained from MD results.
The R values from the Speedy formula in Eq. (9) are superimposed
on the figure as a solid line for the HS systems. The symbols denote
the freezing (open circles) and melting (solid dots) packing fractions
taken from Ref. [27]. The thin lines mark out the static model values.
The diamond terminating the HS line in the solid phase is at the HS
close packed density. The dashed line marks out the limiting 1/6
value.

density all IP solids must tend towards a positive value of
R∗ = 1/6, which implies that R∗ of dense IP solids is positive
and can be represented well (at least for ζ > 1.5ζf ) in analytic
form calculated from the static ZS calculation.

The R∗ values for the solid phase and the transition region
are shown in Fig. 4. The fluid-solid coexistence line for the
soft-sphere fluid as a function of n was determined by Agrawal
and Kofke [27] and the coexistence fluid and solid packing
fractions, ζf and ζm, respectively, were taken from that work.

In the case of the HS system the thermodynamic curvature
R∗ increases almost linearly from about −0.09 at ζm to the
limiting zero value at ζcp, the maximum packing density. Also
note that R∗

HS(ζf ) > R∗
HS(ζm), and that in general R∗(ζf ,n) 	=

R∗(ζm,n), which implies that the thermodynamic curvature
is not a property that can be used to identify the location
of the freezing transition. Also note that for R∗(ζf ) < 0
we have R∗(ζf ) > R∗(ζm), and for R∗(ζf ) > 0 the inverse
relation occurs, i.e., R∗(ζf ) < R∗(ζm). As may be seen, for the
solid IP systems (where n = 12, 72, and 144), R∗ increases
monotonically towards a limiting value of 1/6. As discussed
above, at high densities R∗ is well represented by the static
approximation (the continuous line on the figure). In the case
of n = 12 (and for softer interactions) the static approximation
works well over most of the solid phase, and the R value
depends weakly on ζ as the function R∗(ζ ) becomes quite
flat. Note the results for n = 144 indicate clearly that, for large
n, the crossing R∗ = 0 value is located in the solid phase.
Therefore it can be concluded that there are solids composed
of purely repulsive particles for which the scalar curvature is
negative for a range of densities.

IV. CONCLUSIONS

The influence of softness or the strength of repulsion
between particles on the thermodynamic curvature scalar R has
been investigated. The soft repulsive sphere or inverse power

FIG. 5. Relative contribution of the total energy and excess
entropy in the IP fluid with different n. The ratio Sex/U on the
left-hand frame (a) shows that for n < 4 the energetic contribution
becomes order of magnitude larger than the entropic one. ForU/Sex on
the right-hand frame (b), it may be seen that for n > 72 the energetic
contribution is an order of magnitude smaller than the entropic one.

(IP) potential with variable exponent was used for the system
over the entire stable range. It was shown that R for the hard
sphere system is negative and constitutes a lower bound for all
inverse power systems. Also R∗ of the IP systems in the solid
phase must tend to a common limiting value at high density.

By changing the interaction softness a qualitative change
in R∗ behavior takes place. For very soft systems R is always
positive, and on decreasing softness R changes sign from being
negative to positive at a certain packing fraction. For the steeply
repulsive soft inverse power systems the behavior is (apart from
in the very dense solid region) like that of the hard sphere, i.e.,
R < 0.

The results obtained clearly indicate that a purely repulsive
interaction between particles can give rise to a negative as
well as an “expected” (based on previous literature [6,11])
positive R. Moreover, apart from very soft particle systems,
the negative sign seems to be a characteristic feature at low
densities. For steeply repulsive particles any interpretation in
terms of an effective attractive causing clustering in the low
density region seems to us to be questionable. The results
obtained broaden the spectrum of possible interpretations of
R, rather than just whether the attractive or repulsive terms
dominate. Certainly further study of the relationship between
the sign and magnitude of R and the structural properties of the
inverse power potential system could well prove informative.

Also, the IP results may suggest an interpretation of R as
an indicator of the energy-to-entropy balance in the system.
Figure 5 shows that the ratio entropy/energy (Sex/U ) is more
than 10 for n > 72 and less than 0.1 for n < 4 for all of the fluid
phase. In other words, the energetic contribution is an order
of magnitude larger (lower) than the entropic one for n < 4
(for n > 72). Therefore, Fig. 5 demonstrates that for a very
soft system with a long range repulsion (characterized by R >

0) the energetic part dominates, and for the steeply repulsive
cases (characterized by R < 0) entropy dominates. It would
be interesting to explore further the observed relationship for
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some colloidal systems which are driven purely by entropy
(e.g., see Refs. [34,35]).

To conclude, our results show that the dependence of R on
the details of the interaction potential and the physical state
of the system can be more complex than has hitherto been
suggested.
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