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Log-correlated random-energy models with extensive free-energy fluctuations: Pathologies caused
by rare events as signatures of phase transitions
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We address systematically an apparent nonphysical behavior of the free-energy moment generating function
for several instances of the logarithmically correlated models: the fractional Brownian motion with Hurst index
H = 0 (fBm0) (and its bridge version), a one-dimensional model appearing in decaying Burgers turbulence with
log-correlated initial conditions and, finally, the two-dimensional log-correlated random-energy model (logREM)
introduced in Cao et al. [Phys. Rev. Lett. 118, 090601 (2017)] based on the two-dimensional Gaussian free field
with background charges and directly related to the Liouville field theory. All these models share anomalously
large fluctuations of the associated free energy, with a variance proportional to the log of the system size. We
argue that a seemingly nonphysical vanishing of the moment generating function for some values of parameters
is related to the termination point transition (i.e., prefreezing). We study the associated universal log corrections
in the frozen phase, both for logREMs and for the standard REM, filling a gap in the literature. For the above
mentioned integrable instances of logREMs, we predict the nontrivial free-energy cumulants describing non-
Gaussian fluctuations on the top of the Gaussian with extensive variance. Some of the predictions are tested
numerically.
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I. INTRODUCTION

Fractional Brownian motions (fBm) were introduced first by
Kolmogorov (in 1940) and later independently by Mandelbrot
and van Ness. They are uniquely characterized as Gaussian
random processes having zero mean, stationary increments,
and self-similarity. These properties determine a family of pro-
cesses BH (x), parametrized by a Hurst exponent H , describing
the “roughness” of BH (x) or the scaling of its increments:
[BH (x) − BH (x ′)]2 ∝ |x − x ′|2H . In particular, the Brownian
motion (Wiener process) corresponds to H = 1

2 . Yet, the
limit H → 0+, which is one of the models we study in this
work, does not make sense naively. A consistent way of
defining a nontrivial extension of the fBm with H = 0+ [fBm0,
denoted below as B0(x)] was suggested in Ref. [1], and some
statistics associated with the corresponding model were then
investigated in Ref. [2]. In a nutshell, it was shown that fBm0
can be properly defined as a log-correlated process, whose
increments increase as the log of distance:

[B0(x) − B0(x ′)]2 = ln
|x − x|′2 + ε2

ε2
,

where a short-distance cutoff ε > 0 is necessary to regularize
the divergence of ln |x − x ′| when x ′ → x. As it turns out,
the singular short-distance behavior of fBm0, absent in H >

0-fBm’s, has important consequences, in particular for the
extreme value statistics (EVS) of the process. The EVS of
fBm with H > 0 is a subject of active investigations (see, e.g.,
Refs. [3–7] for some recent developments). A considerable
amount of work relies on an expansion around the Brownian,

H = 1
2 , case [8], and does not investigate the special point

H = 0, on which we focus in this work.
To explain why H = 0 is special, one may view the

process BH (x) as a random-energy potential, and consider
the statistical mechanics model of a particle thermalized in
that potential. Such a model is defined by the associated
partition function ZB = ∫

exp[−βBH (x)]dx, where β is the
inverse temperature. As discussed, e.g. in Ref. [9], as long as
H > 0 the associated Boltzmann-Gibbs probability weights
pβ(x) = Z−1

B e−βBH (x) at any temperature T = 1/β > 0 are
typically dominated by the absolute minimum of the potential
BH (x) and its small neighborhood. In contrast, when H = 0,
there is a nontrivial competition between the entropy and the
deepest minima of B0(x); as a result, in such a system there
is a freezing transition at a finite critical inverse temperature
β = βc, which we can always ensure to be βc = 1 by proper
normalization (see, e.g., Ref. [10], Sec. 2.1). Such freezing
transition is not limited to fBm0, but is a general property of
the class of log-correlated random energy models (logREMs),
i.e., the statistical mechanics models of a thermalized particle
in a log-correlated random potential. Models in this class arise
in various contexts, e.g., spin glass theory [11–14], extremal
properties of branching processes [15,16], two-dimensional
(2D) XY model [17,18], Anderson localization transitions
[19–21], random matrix and number theory [22–27]. In one
and two spatial dimensions, log-correlated processes are akin
to the 2D Gaussian free field (2D GFF). 2D GFF is a natural
model of rough interfaces, realizable in experiments [28], and
also a fundamental mathematical object behind 2D conformal
field theory, and therefore many logREMs are integrable by
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the replica approach and with the help of exactly solvable
Selberg-type Coulomb gas integrals (in 1D) [2,29–34], or
by mapping to Liouville conformal field theory [35–38].
Using these methods, it is sometimes possible to obtain exact
predictions of observables such as the free-energy distribution,
Gibbs measure correlations, and in particular minimum value
and position distributions.

Despite these apparent successes, in a few cases, some puz-
zling, even seemingly pathological and nonphysical features
of the resulting expressions were noticed, mainly related to
the free-energy distribution in logREMs defined on unbound
regions [30,31,35], as well as for fBm0 restricted to the
[0,1] interval [2]. The main aim of this paper is to suggest
a way to reinterpret, and eventually cure, these pathologies.
A common feature of all the above cases is an anomalously
large fluctuation of free energy: its variance is extensive in
these models, while being of order unity in ordinary logREMs.
This observation turns out to be crucial for resolving the
puzzles involved. Indeed, it will be clear that in the replica-
trick approach, the resulting Coulomb gas integrals do not
correspond to the free-energy moment generating function
as in ordinary logREMs, but to the non-Gaussian cumulant
corrections to a Gaussian distribution with extensive variance.
We will argue that discarding such results as nonphysical
based on the observation that the non-Gaussian corrections
cannot be the cumulants of a valid probability distribution is
not at all warranted. Instead, after correct reinterpretation the
corresponding expressions yield nontrivial predictions which
can be tested numerically (and for some cases, are tested in
this paper). In terms of probability theory, our predictions
are conjectures about the mod-Gaussian convergence [53] of
the free-energy distribution in the thermodynamic limit [see
discussion around Eq. (32) below].

To illustrate our point, we first focus on the case of fBm0
in Sec. II. For such a case, the extensive free-energy variance
arises as a consequence of the fact that the random potential is
pinned to 0 at the origin.1 We show numerically that the non-
Gaussian corrections to the free-energy cumulants are correctly
predicted by a standard replica-trick calculation. This answers
positively the question whether these formal results do have
a statistical interpretation. Another known puzzle is related to
a “problematic zero” of the analytically continued Coulomb
gas integrals, observed in Ref. [2]. The latter paper pointed
out rightly that it could be related to some phase transition.
Here, we make this intuition more precise, by relating the
problematic zero to a termination point transition [35,39],
also known as the prefreezing [40,41]. The termination point
transition is due to a simple fact which is valid for fBm of any
value of H : since the random potential is pinned to 0 at the
origin, its minimum Bmin must be nonpositive. So, we have a
hard cutoff of its probability distribution (this translates to a
hard wall of the large deviation rate function, as we will see
below). It turns out that the moment generating function of the
minimum exp(tBmin) becomes dominated by rare events where
Bmin is close to 0, when t is larger than some threshold: this is
the what we shall call “termination phase,” which is, strictly

1We are grateful for this observation pointed out to us by D.
Ostrovsky.

speaking, a large deviation regime [42]. In the log-correlated
case, the termination point transition is known to be associated
with additional log-correction factors and we extend the results
of Refs. [35,43] for these corrections to any temperature in
Appendix A not only for logREMs, but also for the standard
REM, filling a gap in the literature.

Finally, in Sec. III we apply the same approach to two
logREMs defined on unbounded domains: the 1D Gaussian
model [31] which originally appeared in the problem of
decaying Burgers turbulence with log-correlated initial con-
ditions, and finally the two-dimensional logREM introduced
in Ref. [35] which is based on the 2D Gaussian free field with
background charges, and is directly related to the Liouville field
theory and associated Dotsenko-Fateev Coulomb integrals. In
particular, we predict the non-Gaussian cumulant corrections
to the free-energy distribution of that model, and discuss
the problematic zero of the associated moment generating
function, which we assign to yet another termination point
transition (Sec. III B).

II. FBM0 AS PINNED LOGREMS

We first show that fBm0 can be defined as a pinned logREM.
For this let Vj , j = 1, . . . ,M , be an “ordinary” logREM
discrete potential sequence with zero mean and logarithmically
decaying correlations. We refer to Ref. [43], Sec. 2.2.1, for a
more precise definition. Here, we will concentrate on a few
principal examples, which are all one dimensional:

(i) Vj is the discrete potential of the circular model [29]:

Vj = 0, V 2
j = 2 ln M + w,

VjVk = −2 ln |e2πij/M − e2πik/M |, |k − j | � 1. (1)

Here and below, w denotes an O(1) correction that depends
on the model and M (but has a calculable limit as M → ∞).
This logREM is obtained by restricting the (infinite-plane)
2D GFF to the unit circle, and is one of the most studied
models in this class [29,32–34]. More precisely, we define
the covariance matrix by discrete Fourier transform: VjVk =
2

∑M/2
p=1 cos[2πp(j − k)/M]/p.

(ii) The interval model without charge [2,30]:

Vj = 0, V 2
j = 2 ln M + w,

VjVk = 2 ln
M

|k − j | , |k − j | � 1. (2)

This logREM is obtained by restricting the same 2D
GFF onto the interval [0,1]. As a numerical remark [30],
we note that although the continuum covariance matrix
C(x,y) = −2 ln |x − y|, x,y ∈ [0,1] is not translationally
invariant, fast Fourier transform can still facilitate its
sampling. Indeed, we can extend C(x,y) to a cyclic
covariance matrix for x,y ∈ [0,2], viz., C(x,y) =
−2 ln [min (|x − y|,2 − |x − y|)]. Its Fourier expansion
is C(x,y) = 2 + 4

∑∞
p=1 cos[π (x − y)p]Si(πp)/(πp), where

Si(x) = ∫ x

0 sin(y)y−1dy is the sine integral. A discrete version
can be obtained by replacing x,y = j/M,k/M and cutting off
the sum up to p = M .

Now, given any 1D logREM and a marked point, which we
fix as j = 1, we define the corresponding pinned logREM by
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the potential

Bj := Vj − V1. (3)

This pins the value of the potential sequence Bj at j = 1 to
B1 = 0. The covariance matrix of Bj is simply related to that
of Vj as follows: we have BjBk

c = Cjk − Cj1 − C1k + C11,
where we denoted Cjk := VjVk

c
. Note that Bj has also zero

mean: Bj = 0 for any j .
Let us consider the example where Vj is the potential of the

interval model. In that case, Cjk = C(|j − k|) depends only
on the distance, so that C(0) = 2 ln M and C(j ) = 2 ln M −
2 ln(j ) for M > j � 1. By the relation (3) the increments’
covariance structure is then given by

(Bj − Bk)2
c = (Vj − Vk)2 = 2C(0) − 2C(|j − k|)

|j−k|�1= 4 ln |j − k|. (4)

We see that the increments are stationary, and the variance
grows logarithmically. Combined with B1 = 0, this pinned
interval model qualifies as a definition of a discrete version
of the fBm0, BH=0.

In the example where Vj is the potential of the circular

model, the increments of Bj are also stationary: (Bj − Bk)2
c =

2C(|j − k|) |j−k|�1= 4 ln sin(π |j − k|/M), and B1 = 0. So, the
pinned model defines a periodic fBm0 that starts at and returns
to 0, and hence can be called a fBm0 bridge.

A. Free energy: Large deviation function and
termination point transition

Although many quantities of interest related to the Gibbs
measure for the above pinned logREMs can be successfully
evaluated, it remains an open challenge [2] to calculate the
associated free-energy distribution, defined by the partition
function

ZB =
M∑

j=1

e−βBj . (5)

By the definition (3), we can relate ZB directly to the Gibbs
weight pβ,j of the logREM with potential Vj (which we shall
call the ordinary logREM):

ZB = ZeβV1 = p−1
β,1

where pβ,j := Z−1e−βVj , Z =
M∑

j=1

e−βVj . (6)

In this way, we have reduced the problem of finding the free-
energy distribution of a pinned logREM or fBm0 model to that
of the Gibbs weight pβ,1 of the ordinary logREM:

FB = −β−1 lnZB = β−1 ln pβ,1. (7)

As is well known, the Gibbs measure associated with
ordinary logREMs is multifractal [19–21,40] which is reflected
in the nontrivial scaling of moments of the Gibbs weights pj

with the system size M . At the leading order, the associated
large deviation function of FB is therefore directly related to
the multifractal spectrum of the Gibbs measure. As a result,

FIG. 1. Left: large deviation rate function of the free energy FB

[Eq. (8)]. The variance σ 2 refers to that of FB . Right: the leading
exponent of the moment generating function of FB [Eq. (A1)]. The
two functions are related by Legendre transform.

we have, for large M � 1,

L(f ) := − ln Prob(f = FB/ ln M)/ ln M

=
{

(f + Q)2/4, f < 0

+∞, f � 0
,Q=b+b−1, b = min(1,β).

(8)

See Fig. 1 for an illustration.
A simple argument to understand the above result is

the following ([43], Sec. 2.1.4). Equation (6) implies that
FB = F − V1, where F = −β−1 lnZ is the free energy of
the ordinary logREM. Its universal extensive behavior was
predicted in [9]:

F = −Q ln M + χ ln ln M + O(1), (9)

where χ = 3
2 when β > 1 (see Refs. [44,45] for a universal

mechanism behind this exponent in disordered multifractals,
and Ref. [46] for a rigorous proof for general log-correlated
fields), 1

2 when β = 1 and 0 when β < 1. The log corrections
are universal and are closely associated with the logREM freez-
ing transition, whereas an O(1) is the nonuniversal fluctuating
part of the free energy, whose variance is of order unity. Thus,
F/ ln M = −Q + o(ln M) in a typical realization. On the
other hand, V1 is a Gaussian variable of zero mean and variance
2 ln M . Therefore, one should expect that f := FB/ ln M is a
Gaussian variable with mean −Q and variance 2/ ln M . This
leads to the large deviation function (8) for f < 0.

However, the same expression cannot be valid when f > 0.
Indeed, since the Gibbs weight pβ,1 � 1,FB = β−1 ln pβ,1 can
never be positive. This fact is precisely behind the “hard wall”
condition in the bottom line of Eq. (8), the value at f = 0
being the so-called termination point of the Gibbs measure
multifractal spectrum. The realizations where f ∼ 0 are rare
(since typically f ∼ −Q), and are such that the “pinned” value
B1 = 0 is among the deepest minima of the potential Bj .
This implies that the Gibbs probability weight pβ,1 in these
realizations is of order unity. Note that as the points near 1
contribute significantly to the free energy, the values of V1 and
F (and thusFB) become strongly correlated when conditioned
to these realizations.

Let us stress the most important difference between fBm0
models and ordinary logREMs: FB has an extensive variance
2 ln M + O(1), whereas for usual logREMs the variance is
of order O(1). As such a feature seems to be at the heart
of the peculiarities of the models that we are considering,
we give a simpler and rigorous verification of this fact
for the particular case of the circular model. Since without
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pinning the potential is statistically translationally invariant,

we haveFV1
c = M−1F

∑M
j=1 Vj

c

= 0 since the “zero-mode”∑M
j=1 Vj vanishes in all realizations [see below Eq. (1)].

Therefore, as FB = F + V1, we further have

F2
B

c = V 2
1 + F2

c = 2 ln M + w + F2
c
, (10)

where the two last terms are of order unity, and known exactly
[29] [see also Eq. (22) below].

Finally, let us discuss the moments of the partition function
(or the moment generating function of the free energy) Zn =
exp(tFB), t = −nβ. Those are directly given by the moments
of the Gibbs weight via Eq. (6), and thus closely related to
the so-called inverse participation ratios in the “annealed”
ensemble (see further detail and discussion in Ref. [40]). The
leading large-M behavior of such a generating function is
then obtained as the Legendre transform of the large deviation
function given in Eq. (8). The result is [20] (see Fig. 1 for an
illustration)

etFB = p
t/β

β,1 =
{

M−tQ+t2+o(1), t < Q/2

M−Q2/4+o(1), t � Q/2
(11)

where o(1) denotes finite-size corrections that go to zero in
the M → ∞ limit. The hard wall, or termination point, at
f = 0 gives rise to a nonanalytic behavior of the leading
scaling exponent at t = Q/2, known as the termination point
transition, also known as prefreezing [40,41]. Beyond that
point, the exponent “freezes,” i.e., becomes independent of
t , similarly to the free-energy density F/ ln M , which also
“freezes” beyond β = 1. The similarity between termination
point and freezing transition goes beyond the leading order:
the multiplicative log corrections to Eq. (11) turn out to be
reminiscent to those of the freezing transition. Such corrections
were predicted in Refs. [35,43] in the high-temperature β <

1 phase. In Appendix A, we extend these results to any
temperature.

B. Coulomb gas integrals

The predictions in the previous section (and in Appendix
A) are expected to be universally valid for all logREMs in the
thermodynamic limit M → ∞. For a few integrable logREMs,
we may go further to predict the precise value of O(1) terms
above. We shall first focus on the example of the circular model
and periodic fBm0, defined in Eq. (1); analytical results on the
interval model were obtained in Refs. [2,34] by relying upon
the Selberg Coulomb gas integrals [47,48] and will be recalled
briefly below.

1. Circular model and fBm0 bridge

The approach of this section is based on employing the
standard heuristic method of the physics of disordered systems
known as the replica trick. Roughly speaking, it starts by
considering partition function integer moments Zn

B , which,
when n = 1,2,3, . . . , can be expanded as a sum over n replica

positions:

Zn
B =

M∑
j1=1

· · ·
M∑

jn=1

exp(nβV1) exp(−βVj1 ) . . . exp(−βVjn
),

(12)
where we used Eqs. (5) and (3). Note that the disorder average
can be simply performed by Wick theorem [using Eq. (1)
for the circular model]. Then, one replaces the sum by a
Coulomb gas integral in the thermodynamic limit; when the
integral has an exact expression, one can analytically continue
it to arbitrary complex n [29,31,49] and obtain exp(tFB) for
generic t . The correspondence between discrete sums and
continuum integrals is determined by the replica symmetry
breaking mechanism (RSB) which may or may not be operative
in the phase in question, and so depends on whether β < 1 and
t < Q/2. For ordinary logREMs, which in their free energy
only exhibit a freezing transition, the formalism is described
in Refs. [10,31,43]. In the present case of pinned logREM, the
termination point or prefreezing transition is also present, and
requires extending the RSB formalism; such an analysis was
initiated in Ref. [40] and developed further in Ref. [42], from
which we shall apply some results.

Let us start within the (high-temperature) phase where β <

1 and t < Q/2, so that the replica symmetry is unbroken. The
sum (12) can be replaced by an integral over n points on the
unit circle. As a result, the moment generating function of FB

is given in the M → ∞ limit by an analytically continued
Coulomb gas integral [34] (see also Appendix 7 of Ref. [2]):

exp(tFB) = M−Qt+t2
e

1
2 w(t2−t)M(n = −t/β,a = t,b = β),

(13)

where M is known as the Morris integral, defined as [47]

M(n,a,b)

=
∫ 2π

0

n∏
i=1

[
dθi

2π
|1 − eiθi |−2ab

] ∏
i<k

|eiθi − eiθk |−2b2

=
n−1∏
j=0

�(1 − 2ab − jb2)�(1 − (j + 1)b2)

�(1 − ab − jb2)2�(1 − b2)
(14)

= M̃(n,a,b)

�n(1 − b2)
where M̃(n,a,b)

= �(1 − nb2)
G̃b(Q − 2a)G̃b(Q − a − nb)2

G̃b(Q − 2a − nb)G̃b(Q − a)2

G̃b(Q)

G̃b(Q − nb)
.

(15)

Let us explain the above equations by relating to the general
introduction of the method above. Starting from Eq. (12), each
sum over ji is replaced an integral Mdθi/(2π ), i = 1, . . . ,n,
in Eq. (14) (the factor M is an entropic term); the discrete
position ji is replaced by the continuous variable θi = 2πji/M

in the following. Then, we perform the disorder average in
the right-hand side of Eq. (12) by the Wick theorem: the
Wick contraction between exp(−βVji

) and exp(−nβV1) gives

|1 − eiθi |−2ab
and the Wick contraction between exp(−βVji

)

and exp(−βVjk
) gives |eiθi − eiθk |−2b2

(for i 	= k), with b = β,
by the covariance of the circular model (1). The contributions of
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FIG. 2. (a) Circular model: numerical calculation of the cumulants of the minimum of the fBm0 bridge. For the variance, k = 2, we define

v2
min := B2

min − V 2
1

c

, i.e., the extensive Gaussian contribution is subtracted from the raw data. Higher cumulants are not affected by the Gaussian

contribution, and are plotted as such: vk
min := Bk

min, k > 2. A quadratic ansatz a1 + a1/ ln M + a2/(ln M)2 is used to account for the finite size
scaling and extrapolate the M → ∞ value from M = 28 → ,223. The extrapolation is then compared to the predictions (22), plotted as markers
at left. (b) Interval model: the same for the fBm0 on the interval [0,1] (pinned interval model M = 210, . . . ,223), compared with Eq. (31).

type exp(−βVji
) and exp(−nβV1), together with the entropic

terms, are gathered in front of the right-hand side of Eq. (13).
Finally, we rewrite the results by a change of variable Zn

B =
exp(tFB), n = −t/β. These steps will be applied each time we
obtain a Coulomb gas integral expression of exp(tFB) in the
following for a new logREM: the only change is the covariance
matrix of the model.

Equation (15) is the analytical continuation of Eq. (14)
to continuous values of n. The procedure of analytical con-
tinuation is facilitated by a class of special functions: G̃b,
the generalized Barnes function. Its defining property is the
following functional relation [we adopt the notation of Ref. [2],
see Eq. (237) therein]:

�(bx) = G̃b(x + b)

G̃b(x)
⇔

n∏
j=1

�(bx−jb2) = G̃b(x)

G̃b(x−nb)
,

(16)

which facilitates the analytically continuation of products
of gamma functions. G̃b(x) is an entire function with the
following simple zeros:

G̃b(x) = 0, x = −nb − m/b, n,m = 0,1,2, . . . . (17)

When b = 1, G̃b(x) reduces to the ordinary Barnes function

G̃1(x) = G(x) = (2π )x/2 exp ((x − 1)[log �(x) − x/2]

−ψ (−2)(x)), (18)

where ψ (n)(x) is nth poly-gamma function. Note that the
first line of Eq. (15) holds only when the integral converges,
whereas the second line is an analytical continuation that makes
sense for general complex value of parameters. We refer to
Ostrovsky’s work on rigorous aspects of such a procedure
[34,49–52].

Now, in the phase defined by β > 1, t < Q/2 = 1 [note that
in the β > 1 phase, Q = 2, see Eq. (8)], the above expression
is modified by the freezing transition in a fashion known as
the duality-freezing scenario (which can be understood by a
breaking of replica symmetry [10,31] occurring in the bulk
and unrelated to the presence of the pinning at a particular

point), and becomes (with Q = 2)

exp(tFB)�(1 + t/β) = M−2t+t2+ct e
1
2 wt2

�(1 + t)

× M̃(n = −t,a = t,b = 1), (19)

where c = 3
2 ln ln M/ ln M + cUV contains the log correction

of Eq. (9) and the constant cUV that depends on the short-
distance details of the model [10]. In particular, by expanding
the above equation at t = 0, we obtain the cumulants of FB .
At zero temperature, we thus obtain that the cumulants of the
distribution of the minimum Bmin for the fbM0 bridge, Bj , are
a sum of those of a Gaussian distribution of variance 2 ln M

and non-Gaussian corrections, whose values are given in the
M → ∞ limit as (with Q = 2)

B2
min

c − 2 ln M − w
M→∞−→ C2, Bk

min

c M→∞−→ Ck , k > 2, (20)

Ck := dk

dtk
ln[�(1 + t)M̃(−t,t,1)]|t=0

= dk

dtk
ln

[
G(2 − 2t)�(1 + t)2

G(2 − t)3G(2 + t)

]∣∣∣∣
t=0

, (21)

{C2,C3,C4}circular =
{

π2

3
,−2π2 + 8ζ (3),

14π4

15
− 72ζ (3)

}
= {3.28987,−10.1228,4.36705}. (22)

Here, ζ (x) is the Riemann zeta. The above predictions are
tested numerically [see Fig. 2(a)]. The prediction for C2 is

tested by computing B2
min − V 2

1

c

. As an independent check,
we recall that C2 = π2

3 is known as the minimum variance of
the circular model without pinning [29,30]. Thus, we recover
Eq. (10), which was obtained rigorously. Higher cumulants Ck

are also easily expressed in terms of poly-gamma functions,
using the formula (B8) in the Appendix.

In general, at any temperature, the free-energy FB’s cumu-
lants are the sum of those of a Gaussian of variance 2 ln M

and non-Gaussian corrections Ck,β , which are given by the
Taylor expansion of the analytically continued Morris integral
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with Q = 2:

F2
B

c = 2 ln M + w + C2,β , F k
B

c = Ck,β , k > 2, (23)

Ck,β = dk

dtk
ln[M̃(−t/β,t,β)]|t=0, β < 1 , k > 1, (24)

Ck,β = Ck − β−k(−1)k(k − 1)!ζ (k), β > 1 ,k > 1. (25)

We emphasize that the last identity is a direct consequence of
the freezing scenario, and applies to the low-temperature phase
of all models in this work, as well as ordinary logREMs [in
which case it was known since Ref. [30], Eq. (24)]. Notice
that the low-temperature variance C2,β = C2 − π2/(6β2) is
smaller than the zero-temperature one. Heuristically speaking,
this reflects the fact that the non-Gaussian fluctuations of the
free energy of logREMs in the frozen phase are dominated

by those of the minimal energy. For the fBm0 bridge case,
Eqs. (25) and (22) imply more explicitly

C2,β = (2β2 − 1)π2

6β2
,

C3,β = 2

(
4 + 1

β3

)
ζ (3) − 2π2, β > 1. (26)

Analogous formulas for the other models in the sequel can be
similarly obtained and will not be displayed explicitly.

2. fBm0 on an interval

The method above applies also to the interval model (or fBm
on [0,1]), defined in Eq. (2), upon replacing the Morris integral
M(n,a,b) by a special case of the Selberg integral [2,34]:

S(n,a,b) :=
∫ 1

0

n∏
i=1

[
x−2ab

i dxi

]∏
i<j

|xi − xj |−2b2

=
n−1∏
j=0

�(1 − 2ab − jb2)�(1 − jb2)�[1 − (j + 1)b2]

�[2 − 2ab − (n + j − 1)b2]�(1 − b2)
(27)

= S̃(n,a,b)

�n(1 − b2)
where S̃(n,a,b) = G̃b(1/b)G̃b(Q − 2a)G̃b(Q)G̃b(2Q − 2a − 2nb)

G̃b(1/b − nb)G̃b(Q − 2a − nb)G̃b(Q − nb)G̃b(2Q − 2a − nb)
, (28)

which agrees with Eq. (238) in [2], upon setting ā = −2a =
2bn and b̄ = 0 there. In the above equations, the second line
is the analytical continuation of the first line using generalized
Barnes functions, just as in the Morris case. We remark
that Morris integral and Selberg integral (in their respective
general form) are related [47] and this fact has been used
in Refs. [2,34]. We then obtain, following similar steps as
above the non-Gaussian corrections to the cumulants of the
probability distribution for the mininum Bmin of the [0,1]-
fBm0, for k > 1 [compare with Eq. (22) above],

B2
min

c − 2 ln M − w
M→∞−→ C2, Bk

min

c M→∞−→ Ck, (29)

Ck = dk

dtk
ln[�(1 + t)S̃(−t,t,1)]|t=0

= dk

dtk
ln

[
2G(2 − 2t)�(1 + t)

G(2 − t)G(4 − t)G(1 + t)G(2 + t)

]∣∣∣∣
t=0

(30)

(see also Eq. (236) in [2]). Now, we can go further than Ref. [2]
and obtain the following explicit prediction for the lowest
cumulants:

{C2,C3,C4}[0,1] =
{

9

4
,8ζ (3) − 8π2

3
+ 17

4
,

−72ζ (3) + 4π4

5
+ 99

8

}
= {2.25,−12.4525,3.75418}. (31)

These predictions are also found to be in nice agreement
with numerical calculation, with similar strong finite size

corrections [see Fig. 2(b)]. Note that since the interval model is
not translationally invariant, the argument leading to Eq. (10)
is invalid and C2 is considerably different from the variance
of the minimum of the unpinned interval model 4π2

3 − 27
4 =

6.409 47 [30]. Higher cumulants Ck are also easily expressed
in terms of poly-gamma functions, using the formula (B8) in
the Appendix.

We now address two pathological features noticed in
Ref. [2], p. 57, and argue that they do not invalidate the
foregoing predictions.

First, it was observed that the cumulant corrections Ck

cannot correspond to a well-defined positive probability dis-
tribution. For the sake of argument, let us call vmin a fictitious
random variable whose kth cumulant is Ck . Then, its fourth
moment obtained from Eq. (31) would be negative: v4

min =
−0.115 · · · < 0. This feature would become problematic if
and only if one wanted to view the minimum Bmin as a sum
of a Gaussian of variance 2 ln M and an independent random
variable vmin. We stress that such a “natural” interpretation
of the above results (22) and (31) is not possible in any way.
However, this does not preclude the fact that the non-Gaussian
random variable Bmin has a probability distribution whose
cumulants are correctly predicted by the above equations (22)
and (31).

In fact, the above scenario is known in the theory of
mod-Gaussian (generally, mod-φ) convergence (see Ref. [53]
and references therein for a comprehensive review). In terms
of this theory, our prediction (13), its low-temperature and
interval-model analogs, and similar predictions in Sec. III
are all mathematical conjectures about the mod-Gaussian
convergence of free-energy and minimum distribution in the
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thermodynamic limit. In general, a mod-Gaussian convergence
concerns a sequence of random variables XM , whose cumulant
generating functions ln exp(tXM ) converge to a limit after
subtracting that of a Gaussian with diverging variance:

ln exp(tXM ) − aMt − bMt2/2 → ψ(t), M → ∞ (32)

for all t inside some vertical strip of the complex plane,
and some fixed choice of deterministic sequences aM , bM ,
and function ψ . In the case of Eq. (13), XM is the free
energy of a circular model of size M , aM = −Q ln M , bM =
2 ln M , and ψ(t) is given by the analytically continued Morris
integral. In the mod-Gaussian convergence theory, ψ needs
not to be the cumulant generating function, and can provide
statistical properties of XM beyond the large deviation theory,
and the central limit theorem [53]. The cumulant corrections
investigated above are the simplest examples.

A second disturbing feature is that in both models studied
so far, the moment generating function of FB has a zero at
t = Q/2, coming from the factor G̃b(Q − 2a) (with a = t)
present in Eqs. (28) and (15), respectively [see Eq. (17)]. So,
the cumulant generating function ln exp(tFB) must become
nonconvex when t is close enough to Q/2 [despite the presence
of the Mt2

factor in Eq. (19)], which calls for a further
explanation.

Nicely, the required explanation of this feature is provided
by the considerations of Sec. II A: t = Q/2 is the locus of
the termination point transition. Beyond that point and in the
phase dominated by the termination or prefreezing mechanism,
the RSB becomes nontrivial: a finite portion of replicas become
bound and freeze at j ∼ 1 [40,42]. For this reason, the moment
generating function of the discrete model is not naively given
by the continuum integral as indicated by Eq. (13). As argued in
Ref. [42], the zero at t = Q/2 is intimately related to the log
corrections associated with the termination point transition.
Nevertheless, these modifications do not affect the validity
of the free-energy cumulant predictions (22) and (31), which
are determined by the derivatives at t = 0 of the cumulant
generating function and therefore is unaffected by a far zero
at t = Q/2. We conclude that when the termination point
dominates in the large deviation regime of the free energy, it
cannot affect the cumulant of the free energy at leading order
in the M → ∞ limit.

III. 1D GAUSSIAN AND 2D LOGREM MODELS

As we mentioned in the Introduction, a few other logREMs
defined on unbounded domains exhibit similar pathologies in
their free-energy cumulant generating function. As we shall
see, the reasons for this behavior are similar to the ones
discussed above for the fBm0 models (pinned logREMs).
Enlightened by the understanding of these previous examples,
let us review two more representative cases: the 1D Gaussian
model [30,31,43] and the 2D GFF model in the plane in
presence of two background charges. The latter was studied
in Ref. [35], which showed that moments of the associated
Gibbs probability density at any point in space can be mapped
to four-point correlation functions of the Liouville field theory.
Here, we shall call this model simply the 2D logREM since it is
presently the only one in this class for which exact results are
available. Its study is facilitated by using the famous Dotsenko-

Fateev (DF) Coulomb gas integrals (see below). Note that the
“pathological features” of these models concern uniquely their
free-energy fluctuation, not their Gibbs measure. The latter has
been well understood in the above quoted works, so we shall
focus on the former. For the sake of simplicity, we switch to the
continuum formalism, and work in the “simple scaling” part
of the high-temperature phase, i.e., β < 1, t < Q/2, unless
otherwise stated.

A. Gaussian model

The Gaussian model describes a disordered potential V (x)
on a 1D infinite line that is the sum of a parabola x2

2 and the
restriction of the 2D GFF on the real line φ(x):

V (x) = φ(x) + x2

2
. (33)

Its arises in the study of decaying Burgers equation in 1D
with log-correlated initial data [31]. To obtain a well-defined
statistical model, one needs a large-distance cutoff L (in
additional to a short-distance cutoff ε needed for all logREMs);
the continuum partition function has the following form:

ZG =
∫ L/2

−L/2

dx√
2πε

exp[−βφ(x) − βx2/2], φ(x) = 0, φ(x)2

= 2 ln(L/ε), φ(x)φ(x ′) = 2 ln

∣∣∣∣ L

x − x ′

∣∣∣∣, |x − x ′| � ε.

(34)

When L → ∞, the positive integer moments ofZG are exactly
computable, thanks to the Mehta integral [47]. After analytical
continuation using the Barnes function, we have, in the β < 1
phase (and in the ε → 0, L → ∞ limit),

exp(tFG) = exp[tC1 + t2 ln(L)]
G̃β(1/β)

G̃β(t + 1/β)
, (35)

where C1 = Q ln (ε
√

β) + ln �(1 − β2)
1
β is unimportant for

the following. Implementing the freezing scenario (or RSB) in
theβ > 1 phase, we obtain in particular the following cumulant
predictions for the minimum of the total potential V (x) in the
thermodynamic (L → ∞, ε → 0) limit:

V 2
min

c = 2 ln(L) + C2, V k
min

c = Ck, k > 2;

Ck = dk

dtk
ln

[
�(1 + t)

G(1 + t)

]∣∣∣∣
t=0

, (36)

the first values are

{C2,C3,C4} =
{

1 + γ + π2

6
,−2ζ (3) − π2

3
,6ζ (3) + π4

15

}
= {3.22215,−5.69398,13.7063},

where γ is the Euler constant. Higher cumulants Ck are also
easily expressed in terms of poly-gamma functions, using the
formula (B8) in the Appendix. The above predictions were
already obtained in Ref. [30], Sec. 5, and justified there, to
some extent, using the fact that the model can be obtained
as some limit of an interval model with edge charges (with
no pathology before taking the limit). Here, we revisit the
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problem, with a different limiting and cutoff procedure, and
make some further clarifying remarks.

First, we notice that the free-energy (minimum) distribution
given by Eq. (35) [Eq. (36), respectively] has a extensive
variance ∝ln L, similarly to that of fBm0 models (pinned
logREMs). Yet, the large variance has a different origin:
it arises from the fluctuations of the log-correlated field of
typical wavelength ∼L. Second, we consider the convexity
of the cumulant generating function κ(t) := ln exp(tFG). It is
known that ln G̃b(x) ∼ x2 ln(x2) when x → +∞ (see, e.g.,
Ref. [43], Sec. 2.3.3), so for any fixed L < ∞, by Eq. (35),
κ(t) ∼ −t2 ln(t2) for large enough t � ln L (it can be shown
similarly that the same problem exists with the free energy
at any finite temperature). Therefore, adding a fixed cutoff L

cannot cure the nonconvexity problem for t ∈ [0,∞).
We believe that this problem reflects only the noncommu-

tation of the limits L → +∞ and t → +∞ and as such does
not discredit the results above. For any fixed t > 0, Eq. (35)
becomes exact in the L → ∞ limit. In contrast, for any fixed
L, Eq. (35) must break down for some large enough t (since the
Mehta integral is on the infinite axis), and be replaced by some
unknown finite size expression which should be everywhere
convex.

In summary, like fBm0, the free-energy distribution of
the Gaussian model is the convolution of a Gaussian with
extensive variance and an O(1) correction, which was cal-
culated correctly by the methods of Refs. [30,31], despite
apparent pathologies, which, in the present case are due to
noncommutativity of limits.

B. Two-dimensional logREM

The 2D logREM studied here is defined by a random
potential V (z) which is the sum of a 2D GFF on the complex
plane φ(z), and of a deterministic background potential U (z):

V (z)=φ(z) +U (z), U (z) = 4a1 ln |z/L| + 4a2 ln |(z − 1)/L|,
a1,a2 < Q/2, a1 + a2 > Q/2. (37)

U (z) is characterized by two parameters a1,a2 (called the
charges), which should satisfy the above restrictions (see
below). This model is the simplest exactly solved 2D logREM
(see Ref. [35] for generalization to other geometries).

Introducing again the large-scale cutoff L, the domain
size, and ε, the short-distance cutoff, the continuum partition
function is written as

Z2D =
∫

�(L)

d2z

ε2
e−βφ(z)

∣∣∣∣Lz
∣∣∣∣4a1β

∣∣∣∣ L

z − 1

∣∣∣∣4a2β

, φ(z) = 0,

φ(z)2 = 4 ln(L/ε), φ(z)φ(z′) = 4 ln

∣∣∣∣ L

z − z′

∣∣∣∣, z 	= z′. (38)

Here, the integral domain is �(L) =
{z : |Re(z)| < L/2,|Im(z)| < L/2}, and d2z = dx dy. The
restriction on the charges in Eq. (37) ensures that the associated
Gibbs measure, as ε → 0,L → ∞, tends to a nontrivial limit
which is neither a delta peak at 0 or 1, nor zero everywhere.
The disorder-averaged Gibbs probability density at any point
z can be calculated as a four-point correlation function of
Liouville field theory [35]. Note that for convenience we

added a constant ∝ln L to U (z) compared to op. cit., so that
U (z) < 0 everywhere in �(L).

While Ref. [35] focused on the (well-defined) Gibbs mea-
sure, here we shall be interested in the free-energy fluctua-
tions. Similarly to the Gaussian model, the long wavelength
fluctuations of the 2D GFF result in a free-energy distribution
of variance ∼4 ln L + O(1). To obtain the non-Gaussian cor-
rections, we consider the replicated partition function, which
becomes (as ε → 0,L → ∞) a Dotsenko-Fateev (DF) integral
[54] when averaged over disorder. The analytical continu-
ation of the DF integral leads to essentially the Dorn-Otto
and Zamolodchikov brothers’ (DOZZ) structure constant of
Liouville field theory [55,56] (see Refs. [57,58] for recent
rigorous developments). Indeed, assuming unbroken replica
symmetry, we find (a self-contained derivation is provided in
the Appendix B)

exp(tF2D) �(1 + t/β) = ε2QtL−4(a1+a2)t+2t2
t

× Cb(a1,a2,Q − a1 − a2 + t),

(39)

where Cb(a1,a2,a3) is the DOZZ structure constant:2

Cb(a1,a2,a3) = [γ (b2)πb2−2b2
](Q−a1−a2−a3)/bC̃b(a1,a2,a3),

(40)

C̃b(a1,a2,a3)

:= ϒ ′
b(0)

ϒb

(∑3
j=1 aj − Q

) 3∏
k=1

ϒb(2ak)

ϒb

(∑3
j=1 aj − 2ak

) . (41)

Here, γ (x) = �(x)/�(1 − x), and ϒb(x) is the Upsilon
function, which can be related to G̃b by Refs. [59], Eq. (3.16),
and [2], below Eq. (237) [see also Ref. [35], Eqs. (C5)–(C9)]:

ϒb(x) = Gb(x)Gb(Q − x), Gb(x)

= G̃b(x)bx(Q−x)/2(2π )x(1−1/b)/2. (42)

ϒb(x) satisfies functional relations similar to Eq. (16). Both
ϒb(x) and Gb(x) are invariant under the change of variable
b → 1/b, i.e., they enjoy the “duality invariance” property,
as does the structure constant: C̃b(a1,a2,a3) = C̃1/b(a1,a2,a3).
We recall that in the above equations,

Q = b + b−1, b = β , β < 1. (43)

In the β > 1 phase, by the RSB or duality-freezing scenario
[2,30], the left-hand side of Eq. (39) freezes at b = 1 (Q = 2),
so that Eq. (42) simplifies to a product of two ordinary Barnes
functions:

ϒ1(x) = G(x)G(2 − x). (44)

Therefore, the β > 1 phase version of Eq. (39) is simplified to
the following [note that G(0) = 0, G′(0) = 1, and G(2) = 1,

2The relation between C and C̃ is the same as that between M and
M̃ in Sec. II B 1, Eq. (15). The differing factor will only contribute to
the first cumulant [see also below Eq. (45)].
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so ϒ ′
1(0) = 1]:

exp(tF2D) �(1 + t/β) = ε2QtL−4(a1+a2)t+2t2 ec1t t

G(t)G(2 − t)

×
3∏

k=1

G(2ak)G(2 − 2ak)

G(2ak − t)G(2 − 2ak + t)
,

a3 := 2 − a1 − a2 + t (45)

where c1 = c1(β) depends on short-distance details and only
affects the first cumulant [10]. The above equation holds down
to the zero-temperature limit β → ∞. In that limit, the free
energy becomes the minimum Vmin of V (z) Eq. (37), for which
we predict the non-Gaussian cumulant corrections:

V 2
min

c = 2 ln(L2) + C2, V k
min

c = Ck, k > 2 (46)

Ck(a1,a2) = dk

dtk
ln

[
t

G(t)G(2 − t)

3∏
k=1

× G(2ak)G(2 − 2ak)

G(2ak − t)G(2 − 2ak + t)

]∣∣∣∣
t=0

,

a3 := 2 − a1 − a2 + t. (47)

Note that the factor �(1 + t/β) in Eq. (45) tends to 1 when
β → ∞ and implies Eq. (25) for low-temperature free-energy
cumulant corrections. Using Eq. (18), the cumulants are readily
expressed in terms of poly-gamma functions. The explicit
expression of cumulants Ck(a1,a2) is given in (B6) in Appendix
B where their dependence in the charges a1,a2 is studied in
some details.

We now turn to the analytical properties of the moment
generation function (39), which we would expect to resemble
that of the above discussed Gaussian model, given that they are

both defined on unbounded domains. However, while Eq. (35)
never vanishes for t > 0, Eq. (41) has the first zero at t → a1 +
a2 − Q/2, which comes from the Upsilon factor ϒb(2a3) =
ϒb(2(Q − a1 − a2 + t)) [by Eqs. (42) and (17), ϒb(x) has a
zero at x = Q].
To reveal the physical significance of this zero, we come
back to the leading behavior of the free energy F2D, which,
according to Eq. (11), has a Gaussian distribution of mean
value 2Q ln ε − 4(a1 + a2) ln L and variance 4 ln L, up to O(1)
corrections, whose cumulants can be obtained from Eq. (39).
Yet, we argue now that the Gaussian tail of the free-energy
distribution cannot prevail in the whole large deviation regime.
To see this, let us ignore the restrictions of Eq. (37), and
consider the 2D logREM with a1 = a2 = 0, that is, without the
background potential. Then, we have an ordinary logREM with
size M = (L/ε)2 and by Eq. (9), its free energy Fφ has mean
value 2Q ln(ε/L) + o(ln(ε/L)) and variance of order unity.
Now, since U (z) < 0 for any z ∈ �(L), F2D < Fφ for any
fixed 2D GFF realization φ(z). We deduce that the Gaussian
tail cannot continue beyond ∼2Q ln(ε/L); as a result, the large
deviation function of F2D (using 2 ln L as the large variable,
with ε small but fixed) has a hard wall:

L(f2D) := − 1

2 ln L
ln Prob[F2D = f2D ln(L2) + o(ln L)]

=
{

[f2D + 2(a1 + a2)]2/4, f2D < −Q

+∞, f2D � −Q.
(48)

Note that this large deviation function has the form of a
Gaussian cutoff by a hard wall, reminiscent of the fBm0
case [Eq. (8)]. Therefore, the moment generating function
exp(tF2D) has also a termination point transition, which occurs
precisely at t = a1 + a2 − Q/2 according to Eq. (48). So,
Eq. (39) should be amended in the following way:

ln exp(tF2D) ∼
{
Qt ln(ε2) + [t2 − 2(a1 + a2)t] ln(L2), 0 � t < a1 + a2 − Q/2
Qt ln(ε2) − Qt ln(L2), t � a1 + a2 − Q/2

(49)

where “∼” refers to equality modulo o(| ln ε|), o(ln L) terms.
The physical origin of the zero at t = a1 + a2 − Q/2 is now
revealed. It is of the same nature as the “problematic” zero of
fBm0 models: it signals another termination point transition
and the associated log corrections.

We close this section with some comparing remarks. First,
the 2D logREM has such a termination point transition thanks
to the logarithmic growth of the background potential U (z).
In contrast, the Gaussian model has a quadratic background
potential, so it has no termination point transition (hence no
problematic zero).

Second, the 2D logREM’s termination point transition is
of long-distance nature [the large number is L2, not the
number of sites M = (L/ε)2], while that of fBm0 is of short-
distance nature (the large number is M = 1/ε). Nevertheless,
it is interesting to notice that, in terms of a3 = Q − a1 −
a2 + t , the third charge (“charge at infinity”) appearing in
the DOZZ structure constant (39), the termination phase of
Eq. (49) is described as a3 > Q/2. This inequality is known
in Liouville field theory as the violation of the Seiberg

bound, which is associated to short-distance termination point
transitions, in geometries where the charge is not at infinity
[35,42]. Thanks to the conformal invariance of Liouville field
theory, the short- and large-distance transitions are nicely
unified.

Finally, the large deviation function (48) is identical to
that of logREMs with one charge a = a1 + a2 > Q/2 [42].
This is understandable since the two charges of the DF model
merge into one seen, viewed from the scale L. From this
viewpoint, the phase f2D < −Q can be called a bound phase,
in the sense that the thermal particle is confined in a region
of size ∼1, much smaller than the system size L, whereas
the phase where f2D = −Q is associated to rare realizations
just like the termination or prefreezing phase. (Indeed, they
can be unified as the critical phase in a broader framework
[42].) Remarkably, thanks to the presence of two charges at
the intermediate O(1) scale, there is a nontrivial Coulomb gas
integral in the bound phase, providing an integrable signature
of the bound-critical transition that was not possible in simple
one-charge models considered in Ref. [42].
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IV. CONCLUSION

In this work, we suggested a cure to the apparent pathologies
that plagued some logREMs associated with exact solvable
Coulomb gas integrals: those defined on unbound regions
and fBm0 models, which can be seen as pinned logREMs.
The common origin of the “problems” turns out to be the
extensive variance of the free-energy distribution. Recognizing
the importance of this feature allows benign reinterpretation of
the apparent pathologies in the calculation of the cumulants.
As a result, we give here nontrivial predictions (some tested
numerically) for the cumulants of the distributions of the
free energy and the global minimum value for the fBm0
models (bridge and interval) and for the 2D logREM. As we
pointed out around Eq. (32), our results are conjectures of
mod-Gaussian convergences of the free energy (and minimum)
of fBm’s and unbound logREMs. They are known to have
further implications [53], which are worth investigating in the
future. Furthermore, the “problematic zero” of the free-energy
moment generating function is not a signal of the breakdown
of the method used, but rather is a signature of a termination
point or prefreezing transition and of the associated emergence
of log corrections.

Nevertheless, some issues still call for a deeper understand-
ing. In particular, the question of the convexity of the moment
generating function, especially in presence of the termination
point transition. Since the convexity fails before hitting the
termination point zero, a satisfactory discussion of this point
would require mastering the finite size properties of the termi-
nation point transition. From a broader perspective, finite size
properties of glassy transitions in general log-correlated REMs
are by themselves a hard but valuable problem for future study.
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APPENDIX A: LOG CORRECTIONS INDUCED BY THE
TERMINATION POINT OR PREFREEZING TRANSITION

Recently [35,43] a relation between logREMs and Livouille
field theory has been exploited to predict the new subleading
logarithmic factors to the free-energy moment generating
function. Such corrections are reminiscent of those arising at
the point of the freezing transition [Eq. (9)], but arise instead
in the high-temperature phase β < 1 at the termination point
or prefreezing transition. Namely, when β < 1 one needs to
replace the leading order expression (11) with a more accurate

expression

etFB =p
t/β

β,1 =

⎧⎪⎨⎪⎩
M−tQ+t2

O(1), t < Q/2
M−Q2/4(ln M)−

1
2 O(1), t = Q/2

M−Q2/4(ln M)−
3
2 O(1), t > Q/2.

, β < 1

(A1)

In the β > 1 phase (and at the freezing transition β = 1), the
log corrections are however different, and remained so far
inaccessible by the mapping to Liouville field theory [35,43].
Here, we aim to filling in this gap by means of a simple
argument, supported by a numerical study.

When β > 1, the termination point transition [see Eq. (9)]
happens at t = Q/2 = 1. Although for t < 1 the system is
not in the termination point dominated phase, there is still
a log correction to FB = F − V1 stemming from that of the
ordinary logREM free energy F . Our idea is to establish the
log correction to FB by neglecting correlations between
the free energy F and the value V1 of the potential in the
ordinary logREM:

etFB = etF−tV1 � etF exp(−tV1) � etF exp

(
t2

2
V 2

1

)

= M−2t+t2
(ln M)χtO(1), t < 1, χ =

{
1
2 , β = 1
3
2 , β > 1

(A2)

where we have used Eqs. (9) and (1). Note that, by setting
t � 1, the above equation reduces to Eq. (9). For finite t , we
find that Eq. (A2) is consistent with the results of our numerical
simulations (see Fig. 3). The factorization approximation in
Eq. (A2) can be justified with the following, heuristic but
plausible, argument: since the free energy F is dominated by
the deepest minima of the potential V , it is strongly correlated
with V1 only in such realizations when V1 is close to one
of such minima. As the deepest minima happen randomly
in of the order of one site in the sample, the correlations
in question happen with probability of order of 1/M which
for t < 1 is much smaller than �M−2t+t2

. Hence, the error
made by omitting contributions from such events should be
subdominant compared to Eq. (A2).

When t � Q/2 = 1, the quantity etFB becomes dominated
by realizations in which the free energy receives significant
contribution from the site j = 1, which is close to a deep
minimum. Heuristically, we may expect that when t crosses the
value Q/2 in the β > 1 phase, the change in the log corrections
should be identical to what happens in the β < 1 phase since
it should be determined by the potential structure around the
site j = 1. This mechanism is suggestive of predicting the
following behavior:

etFB =
{

M−1(ln M)χ− 1
2 O(1), t = 1

M−1(ln M)χ− 3
2 O(1), t > 1

, β � 1 (A3)

where χ = 1
2 for β = 1 and χ = 3

2 for β > 1, i.e., the same
as given in Eq. (A2). We find that Eq. (A3) is again in
a nice agreement with the numerical data (see Fig. 3). We
perform some further consistency checks. First, let us consider
a special case t = β. Then, for β < 1 we have t = β < Q/2 =
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FIG. 3. Numerical test of the predictions of the termination point transition, at the freezing transition β = 1 (a), and in the frozen β > 1 phase
[(b), β = 2.5]. The straight lines represent the log-correction predictions in Eqs. (A2) and (A3). Markers represent the numerical data obtained
in the circular model (see [30] for simulation method), with sizes M = 28, . . . ,224 (translation invariance is used to enhance the statistics), with
various values of t , above and below the critical value tc = Q/2. The leading behavior � ln M is extracted, according to Eq. (11). The analog
test for β < 1 can be found in Ref. [43], p. 114.

1
2 (β + β−1), hence, Eq. (A1) shows that the log correction
is absent. They are also absent for t = β as long as β � 1,
as follows from Eq. (A3). This should be no surprise since
for t = β, Eq. (6) implies etFB = pβ,1 which is simply the
Gibbs probability weight of an ordinary logREM. Restricting
further to translation invariance systems (such as the circular
model), we then have the identity 1 = ∑M

j=1 pβ,j = Mpβ,1,
thus pβ,1 = M−1 with no approximation, leaving no possibility
of log corrections. For general values of t > 0 and β > 1, we
observe that Eqs. (A2) and (A3) imply that pt

β,1 � 1/M ×
O(1). This is consistent with the presence of a few (i.e., of
order unity) Gibbs weights pβ,j ∼ O(1) in typical samples in
the low-temperature phase: indeed, a consequence is that the
site j = 1 has such a Gibbs weight with probability ∼1/M ,
leading to pt

β,1 � 1/M × O(1).
Finally, we remark that for the uncorrelated REM, the log

correction is also absent in the β > 1, t > 1 phase, as was
shown in Ref. [40]. Indeed, Eq. (9) in that paper implies

etFREM
B → 1

M

�((t − 1)/β)
�(t/β)�(1 − 1/β)

, t > 1, β > 1 (A4)

where FREM
B is given by Eq. (7), but for uncorrelated REM.

We see that when t → 1+ (with β > 1 fixed), the � factor in
the numerator diverges to +∞, suggesting a log correction in
the regime t < 1, β > 1. Indeed, below we derive the t < 1
counterpart of Eq. (A4) :

etFREM
B ≈ Mt2−2t (ln M)

1
2 t

× (4π )t/2

�(1 − 1/β)t
�(1 + t)

�(1 + t/β)
, t < 1, β > 1

(A5)

as M → ∞. Thus, a log correction appears also in the standard
REM case, albeit with an exponent different from Eq. (A3).
This is not at all surprising as it is well known that the free
energy of the REM has a 1

2 ln ln M correction in the frozen
phase, rather than 3

2 ln ln M typical for logREMs.
We now derive Eq. (A5) for the REM. Let V1, . . . ,VM be the

Gaussian energy levels of the REM, so that Vi = 0 and ViVj =

δij 2 ln M . LetZ = ∑M
j=1 e−βVj be the REM partition function,

then FREM
B := FB = −V1 − β−1 ln Z as Eq. (7) (here and

below we drop the “REM” subscript).
The ensemble average featuring in the left-hand side of

Eq. (A5) can be rewritten as the following integral:

etFB = e−tV1Z−t/β = β

�(t/β)

∫ +∞

−∞
e−t(V1−y) exp(−eβyZ)dy.

(A6)

Now, we calculate the integrand in the right-hand side. Writing
exp(−eβyZ) = ∏M

i=1 exp(−eβ(y−Vi )) and exploiting that Vi’s
are independent and identically distributed, we have

e−t(V1−y) exp(−eβyZ) = g(t,y)[g(0,y)]M−1,

g(t,y) := e−t(V1−y) exp(−eβ(y−V1)). (A7)

Note that function g(0,y) is identical to one denoted γ (y) and
computed in the last appendix of Ref. [10] [see also [43], Eqs.
(2.17)–(2.22)]: when M → ∞, g(0,y)M−1 tends to a Gumbel
double exponential shifted by the extensive free energy of
REM; more precisely, we have

[g(t,δ + F )]M−1 M→∞−→ exp
(−eδ

)
,

F := −2 ln M + 1
2 ln ln M − ln �(1 − 1/β)

+ ln(
√

4π ), β > 1. (A8)

The method suggested in Ref. [10] and based on a variant of
the Hubbard-Stratonovich transformation readily generalizes
to any t > 0. Employing it, one has the following integral
representation:

g(t,y) =
∫

−t+ε+iR

dp

2πi
ep2 ln M−pyβ−1�((t + p)/β), (A9)

where the contour of integration runs in the complex plane par-
allel to the imaginary axis, with a fixed real part >−t . We then
evaluate the above integral in the saddle-point approximation,
justified by ln M � 1. The saddle point is at p∗ = y/(2 ln M).
Now, when t < 1, p∗ < −t for any y/ ln M ∈ (−∞,−2t), and
to deform the contour through the saddle point one has to
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cross a pole of the gamma function at p = −t , which gives
the dominant contribution to the integral:

g(t,y) = et2 ln M+ty + subleading terms, y/ ln M � −2t.

(A10)

When y/ ln M > −2t > −2, the value of the factor
[g(0,y)]M−1 given by Eq. (A8) is so small that the precise
behavior of the factor g(t,y) is immaterial for the value of the
integral (A6). Combining expressions (A6)–(A10) we see that

etFB ≈ β

�(t/β)

∫ ∞

−∞
et2 ln M+t(δ+F ) exp

(−eδ
)
dδ

= Mt2−2t (ln M)
1
2 t (4π )t/2

�(1 − 1/β)t
�(1 + t)

�(1 + t/β)
, (A11)

which is Eq. (A5). We remark that the log correction can be
traced precisely to that of the REM free energy in the β > 1
phase [see Eq. (A8)].

APPENDIX B: REPLICA APPROACH TO 2D logREM AND
DOTSENKO-FATEEV INTEGRALS

Here, we outline the steps that lead to Eq. (39), in the most
self-contained way possible, and without assuming knowledge
from Liouville field theory. Using the replica trick and as-
suming replica symmetry (in particular, recall b = β and Q =
b + b−1), we calculate the integer moments of Z2D [Eq. (38)]
in the L → ∞ limit:

Zn
2Dε−2QtL4(a1+a2)t−2t2 L→∞−→

∫
Cn

n∏
i=1

[|zi |−4a1b|1 − zi |−4a2bd2zi]
∏
i<j

|zi − zj |−4b2
:= DF(n,b,a1,a2). (B1)

The right-hand side is known as the Dotsenko-Fateev (DF) integral and has the following exact expression [54] whenever it
converges:

DF(n,b,a1,a2) = n!
πn

γ (−b2)n

∏n
k=1 γ (−kb2)∏n−1

j=0[γ (2ba1 + jb2)γ (2ba2 + jb2)γ (2ba3 + jb2)]
, a3 := Q − a1 − a2 − nb (B2)

where γ (x) = �(x)/�(1 − x). In order to analytically continue Eq. (B2) to n complex, we apply the functional relation (16) to
each chain of gamma functions,

1

n!
DF(n,b,a1,a2) = lim

ε→0

[
[π/γ (−b2)]n

G̃b(ε)G̃b(Q)

G̃b(ε − nb)G̃b(Q + nb)

3∏
k=1

G̃b(2ak)G̃b(Q − 2ak)

G̃b(2ak + nb)G̃b(Q − 2ak − nb)

]

= Rest→−nb

[
[γ (−b2)/π ]t/b

G̃′
b(0)G̃b(Q)

G̃b(t)G̃b(Q − t)

3∏
k=1

G̃b(2ak)G̃b(Q − 2ak)

G̃b(2ak − t)G̃b(Q − 2ak + t)

]∣∣∣∣∣
a3:=Q−a1−a2+t

. (B3)

In the first line, we introduced an infinitesimal ε for the product
∏n

k=1 �(−kb2) in the numerator of Eq. (B2): when n is a positive
integer, both G̃b(ε) and G̃b(ε − nb) tend to 0 as ε → 0 but their ratio tends to

∏n
k=1 �(−kb2). Then, we interpreted that limit as

a residue, and redefined a3 in function of t = −nb. Now, observe that any analytical continuation of 2D(n,b,a1,a2) to n complex
should satisfy the following relation [since �(x) has a simple pole at x = −n with residue (−1)n/n!, n = 0,1,2, . . . ]:

Rest→−nb[�(t/b)DF(−t/b,b,a1,a2)] = (−1)nb

n!
DF(n,b,a1,a2), n = 0,1,2, . . . . (B4)

Comparing Eq. (B3) and the above one leads to the following analytical continuation of 2D(n = −t/b,b,a1,a2) [this method of
analytical continuation is well known in the context of conformal field theory (see e.g. [56], Sec. 3]:

DF(−t/b,b,a1,a2)�(1 + t/b) = (−γ (−b2)/π )t/b
tG̃′

b(0)G̃b(Q)

G̃b(t)G̃b(Q − t)

3∏
k=1

G̃b(2ak)G̃b(Q − 2ak)

G̃b(2ak − t)G̃b(Q − 2ak + t)
. (B5)

As a consistency check, we note that when t = 0, the right-hand side tends to 1 as does the left-hand side since G̃b has a simple
zero at 0. Simplifying Eq. (B5) using Eq. (42) and noting a3 = Q − a1 − a2 + t , we obtain Eq. (39) after some algebra.

Performing the derivatives in Eq. (47), we obtain the general result for the cumulants in terms of poly-gamma functions for
k � 2 as

Ck = dk + (−1)k+1[φk(2) + φ̃k(a1) + φ̃k(a2)] + (2k − 1)φ̃k(2 − a1 − a2), (B6)

where we have defined the constants dk and functions φ̃k and φk as follows:

dk = dk

dtk
ln(t/G(t))

∣∣∣∣
t=0

=
{
ζ (2) + γ + 1, k = 2
(−1)k[ζ (k − 1) + ζ (k)]�(k), k � 3

(B7)
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FIG. 4. Low-order cumulant corrections to the minimum distribution of 2D logREM [Eq. (B6)]. (a) The variance correction C2 in the
whole region R [Eq. (B10)] (delimited by the yellow triangle). The behavior of the minimum variance in the short-distance bound phase (blue
polygon on top right) and the large-distance escaping phase (red triangle on bottom left) the 2D logREM is also indicated [see Eqs. (B15) and
(B14)]. (b) 3D version of (a) inside the region R. (c) First cumulants Ck along the line a1 = a2 = a ∈ (1/2,1). C1 is defined in the same way as
Eq. (B6). C1,3 diverge negatively when approaching any boundary of R, while C2,4 diverge positively (negatively) when undergoing a binding
(unbinding) transition, respectively.

φk(x) = dk

dtk
ln G(x + t)|t=0 = (k − 1)ψ (k−2)(x) + (x − 1)ψ (k−1)(x) − δk,2, (B8)

φ̃k(x) = φk(2x) + (−1)kφk(2 − 2x). (B9)

Some plots are made from them in Fig. 4. Note that Ck’s are all symmetric in a1 and a2. Note that the sum of three φ̃k functions
in (B6) can be loosely interpreted as arising from three independent random variables associated to each charge aj , j = 1,2,3,
however, since the “charge at infinity” a3 = 2 − a1 − a2 the last term provides a coupling between the contributions of charges
a1 and a2. It is important to recall that the charges should be inside the triangular region [see Eq. (37) with Q = 2 in β > 1 phase]
for the model to be well defined (see discussion in the text):

R = {(a1,a2)|a1,a2, < 1,a1 + a2 > 1} = {(a1,a2,a3)|a1,a2,a3 < 1,a1 + a2 + a3 = 2}. (B10)

As a concrete example, let us give the special value for the point at the center of the triangle in Fig. 4 corresponding to charges
a1 = a2 = 3

4 :

{C2 , C3 , C4}a1=a2=3/4 = {ln(256) ,−32ζ (3) , 0}. (B11)

Since the poly-gamma function ψ (n)(x) is regular everywhere for x > 0, with a pole at x = 0: ψ (n)(x) = n!(−1)n+1/xn+1 +
O(1), the above formulas (B6) diverge rapidly when the parameters approach the boundary of R. More precisely,

φk(x) = (k − 1)!(−1)k+1

xk
+ O(1), φ̃k(x) = 2−k(k − 1)!

(
(−1)k+1

xk
− 1

(1 − x)k

)
+ O(1). (B12)

Hence, the singular part of Ck in the allowed domain R is easily written as

Ck = (k − 1)!2−k
∑
j=1,2

(
1

ak
j

+ (−1)k

(1 − aj )k

)
+ (1 − 2−k)

[
(−1)k+1

(2 − a1 − a2)k
− 1

(a1 + a2 − 1)k

]
+ O(1), (B13)

where the O(1) part remains regular when approaching the
boundary of R. Formally, near each boundary the cumulant
corrections have two statistically independent pieces: one
divergent part scaling as the inverse distance to the boundary,
and one of order unity.

To interpret the divergent part, let us recall that when (a1,a2)
crosses one of the boundaries of R, the 2D logREM goes
through a phase transition [9,30,35,42]. Nicely, the divergences
of the variance corrections C2 can be interpreted as the
integrable signature of phase transitions. Those of the other
cumulant corrections can be also rationalized, albeit on a more
formal level. Since there are two types of them, we discuss
separately below [see Fig. 4(a)]:

(i) When a1 + a2 decreases below 1, the 2D logREM
goes through a long-distance unbinding (or escaping [35])
transition. The potential U (z) can no longer confine the thermal
particle in an O(1)-size region around 0 and 1. Then, the free
energy and minimum of the 2D logREM behaves as in an
ordinary logREM without background potential. In particular,
its variance is of order unity, parametrically (in L) smaller than
compared to Eq. (46):

V 2
min

c
∣∣∣
a1+a2<1

∼ O(1) � 2 ln(L2) + C2

= V 2
min

c
∣∣∣
a1,a2∈R

, L → ∞. (B14)
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Now, at the brink of the binding transition, i.e., as a1 + a2

approaches 1−, the minimum variance correction C2 → −∞:
such a negative divergence is the precursor signature of the
parametric decrease caused by the long-distance escaping
transition. Since C2 is not a variance itself but a correction
thereof, its negativity is not problematic.

In general, Ck diverges negatively for all k [see Eq. (B13)
and Fig. 4(c)]. Formally, this is due the fact that when a1 +
a2 ↘ Q/2 (Q = 2 in the low-temperature phase), the zero of
the moment generating function exp(tVmin) at t = t∗ = a1 +
a2 − Q/2 ↗ 0 approaches from the right, whose physical
significance is discussed in Sec. III B. Such a zero contributes a
term ∼ln(1 − t/t∗) to the cumulant generating function, thus a
negatively divergent contribution −t−k

∗ (k − 1)! → −∞ to the
kth cumulant, consistent with Eq. (B13).

(ii) When a1 increases beyond 1, the 2D logREM goes
through a short-distance binding transition: its Gibbs mea-
sure becomes concentrated in an ε-size region around the
associated log-singularity z = 0 of the deterministic potential
U (z) [Eq. (37)]; we recall that ε is the short-distance cutoff
of the 2D logREM [see Eq. (38)].3 In this short-distance
bound phase, the minimum variance will become paramet-
rically (in 1/ε) larger compared to Eq. (46) (see, e.g., [43],

3The discussion applies to a2 in lieu of a1 by symmetry.

Sec. 2.3.4):

V 2
min

c
∣∣∣
a1>1

∼ 2 ln(L2/ε2) � 2 ln(L2) + C2

= V 2
min

c
∣∣∣
a1,a2∈R

, ε → 0. (B15)

Now, at the brink of the binding transition, i.e., as a1 or a2

approaches 1−, the minimum variance correction C2 → +∞:
such a positive divergence is the precursor signature of the
parametric increase caused by the phase transition.
In general, Ck diverges positively (negatively) if k is even
(odd, respectively) [see Eq. (B13) and Fig. 4(c)]. Formally,
this is due the fact that when a1 ↗ Q/2 (Q = 2 in the low-
temperature phase), a negative pole of the moment generating
function exp(tVmin) at t = t∗ = 2a1 − Q ↗ 0 approaches 0
from the left. This pole comes from the factor G̃b(Q − a1 + t)
in Eq. (B5) [see also Eq. (17)]. Such a pole appears generally
in logREMs with a charge a1 < Q/2 [30], and is related to
a universal negative exponential tail of form e−F2Dt∗ of the
free-energy distribution [42]. Such an exponential distribution
has t−k

∗ (k − 1)! as kth cumulant, coinciding with the corre-
sponding divergent part of Eq. (B13). Therefore, in this case,
the divergent part has a standalone statistical interpretation.
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