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We study diffusion-controlled two-species annihilation with a finite number of particles. In this stochastic
process, particles move diffusively, and when two particles of opposite type come into contact, the two annihilate.
We focus on the behavior in three spatial dimensions and for initial conditions where particles are confined to a
compact domain. Generally, one species outnumbers the other, and we find that the difference between the number
of majority and minority species, which is a conserved quantity, controls the behavior. When the number difference
exceeds a critical value, the minority becomes extinct and a finite number of majority particles survive, while below
this critical difference, a finite number of particles of both species survive. The critical difference �c grows alge-
braically with the total initial number of particles N , and when N � 1, the critical difference scales as �c ∼ N 1/3.
Furthermore, when the initial concentrations of the two species are equal, the average number of surviving
majority and minority particles, M+ and M−, exhibit two distinct scaling behaviors, M+ ∼ N 1/2 and M− ∼ N 1/6.
In contrast, when the initial populations are equal, these two quantities are comparable M+ ∼ M− ∼ N 1/3.
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I. INTRODUCTION

Theoretical studies of nonequilibrium dynamics are pri-
marily concerned with the behavior of infinitely extended
systems [1,2]. Indeed, the statistical physics of time-dependent
phenomena such as ordering [1–3], avalanches [4–6], and
reaction processes [7–9] typically focus on scaling laws for
unbounded systems composed of infinitely many interacting
particles (or spins). In most cases, theoretical techniques,
which successfully describe infinite systems, cannot be spe-
cialized to finite ones [10,11]. Yet, experimental [12–14] and
computational [15] studies necessarily involve finite systems.

Reaction-diffusion processes (see Refs. [1,7–9] for a re-
view) constitute an important class of nonequilibrium dynam-
ics [16]. Recent studies show that these processes exhibit
phenomena that are unique to finite systems [17,18]. In
particular, for reaction-controlled single-species annihilation,
it was recently found that a finite number of particles may
survive indefinitely. Specifically, starting with a finite number
of particles, which are confined to a bounded domain, a small
subset of particles may escape far outside the initially occupied
region and thereby avert annihilation. Here, we study two-
species annihilation and find another phenomena, a transition
from survival to extinction, together with scaling laws that are
unique to finite systems.

We investigate a random process where two distinct species
diffuse in unbounded space and additionally, the two species
annihilate each other. While we also present results for general
spatial dimensions, we focus primarily on the most interesting
case of three dimensions. When a finite number of particles
is initially localized within a compact domain, there are two
greatly different outcomes. In the first scenario, a finite number
of particles of each species survives the annihilation process.
In the second scenario, one species vanishes and one species

partially survives. The initial population difference controls
this transition from survival to extinction.

Generally, one species outnumbers the other. Moreover,
the difference between the number of majority particles and
the number of minority particles is conserved throughout the
annihilation process. This population difference controls the
outcome of the reaction process and moreover, there is a critical
difference �c. When the number difference exceeds the critical
difference, all minority particles eventually vanish, but in the
complementary regime, some minority particles do survive.

A number of finite-size scaling laws characterize these
behaviors. First, the critical difference grows algebraically with
the total number of particles N ,

�c ∼ N1/3. (1)

We investigate the total number of surviving particles from
each species, and we consider two initial conditions: (i) equal
populations of the two species, and (ii) equal concentrations
of the two species. For equal populations, the behavior is very
similar to that found for single-species annihilation [17]. In
this case, the average number of surviving particles M grows
algebraically with system size,

M ∼ N1/3. (2)

For equal concentrations, the average number of surviving
majority particles, M+, is much larger than the average number
of surviving minority particles, M−. Interestingly, these two
averages exhibit different scaling laws,

M+ ∼ N1/2, M− ∼ N1/6. (3)

Neither one of these two scaling behaviors coincides with
Eq. (2). Our theoretical analysis combines the rate equation
approach with scaling estimates for the finite duration of the
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reaction process. Results of extensive numerical simulations
confirm the theoretical predictions.

II. TWO-SPECIES ANNIHILATION

In the two-species annihilation process, particles are ini-
tially distributed randomly in space with a uniform concen-
tration. There are two types of particles, denoted by A and
B. Each particle moves diffusively, the diffusion coefficient D

is assumed to be the same for both species. Particles of the
same type do not interact but two particles of the opposite type
annihilate upon contact, as represented by the reaction scheme

A + B → ∅. (4)

This stochastic process can be realized in continuous or discrete
space. Our numerical simulations implement the discrete
version where particles occupy sites of a regular lattice. Each
particle performs a random walk as it moves from one lattice
site to a randomly chosen neighboring site. Annihilation occurs
whenever a particle lands on a site that is occupied by a
particle of the opposite type. Two-species annihilation has
been used to model bimolecular chemical reactions [7,14],
particle-antiparticle annihilation in the early universe [19], and
particle-hole recombination in irradiated semiconductors [12].

Two-species annihilation has been studied extensively for
unbounded systems populated by infinitely many particles,
typically starting with equal concentrations of the two species.
The spatial dimension d controls the behavior and there are
two regimes. In sufficiently low spatial dimensions, d < 4,
A-rich domains and B-rich domains develop and since spatial
correlations are significant, the particle concentration c decays
slowly with time t , namely c ∼ t−d/4 [20–32]. In sufficiently
large dimensions, d > 4, spatial correlations do not play a
significant role, and the concentration decays more rapidly,
c ∼ t−1. In the latter case, the decay exponent is universal
and further, the prefactor does not depend on the initial
concentration.

Here we study the annihilation process (4) when the num-
ber of particles is finite. Initially, N particles are randomly
distributed inside a bounded domain [33], which is embedded
in infinite space. Without loss of generality, we set the initial
concentration to unity such that the volume of the domain V

equals the number of particles, V = N . In the simulations,
we used spherical domains for the initial configuration. We
reiterate that the particles are not confined to a box of finite size,
and that they can move in unbounded space. This setup mimics
physical processes such as the recombination of vacancies and
interstitials produced in crystals by neutron, ion, or electron
radiation [13].

A recent study [17] of a diffusion-controlled annihilation
process involving a single type of particle has shown that
starting with a finite number of particles, on average, a finite
number of particles avoid annihilation as these surviving
particles escape far outside the initially confining domain. Our
goal is to study this escape phenomena when there are two
species.

While in the case of equal concentrations the populations
of both species are equal on average, for a given realization,
one population is larger than the other. Let N+ be the initial
majority population and N− be the initial minority population.

The total initial population is N = N+ + N−, and we consider
the case where the minority constitutes a finite fraction of the
population N− ∝ N . The population difference � is defined as

� = N+ − N−. (5)

Each annihilation event decreases the number of majority
and minority particles by one and therefore, the population
difference is a conserved quantity.

We denote the average number of surviving majority (mi-
nority) particles by M+ (M−). Conservation of the population
difference implies M+ − M− = �. As long as the two initial
populations are not equal, � > 0, some majority particles do
survive, M+ � �.

However, there is no guarantee that minority particles sur-
vive, and indeed, in sufficiently small dimensions, all minority
particles are annihilated. In dimension d � 2, a random walk
is recurrent as it is guaranteed to return to its starting position
[34]. Since each particle performs a random walk, the distance
between any two particles itself performs a random walk.
Hence, even if a minority particle survives to a very late time,
it is bound to eventually encounter a majority particle. This
argument shows that in spatial dimensions d � 2, the minority
species becomes extinct while the number of surviving major-
ity particles is deterministic, M− = 0 and M+ = �. We now
consider the behavior in three dimensions.

III. RATE EQUATIONS

Our approach generalizes the methods previously used to
analyze the one-species annihilation process [17]. We assume
that particles are confined to a domain with volume V and
that they are uniformly distributed inside this region. Ignoring
spatial correlations, the average numbers of majority and
minority particles, n+(t) and n−(t), at time t , obey the rate
equations

dn+
dt

= −n+n−
V

,
dn−
dt

= −n+n−
V

. (6)

Without loss of generality, we set the reaction rate to unity.
Equation (6) can be derived from the rate equations for the
concentrations c+ and c− inside the occupied domain with
volume V : we simply substitute c+ = n+/V into the canonical
rate equation dc+/dt = −c+c− [1,35]. By subtracting one
equation in (6) from the other, we confirm that the population
difference, n+ − n−, is conserved.

As shown in Ref. [17], there are two regimes of behavior.
At early times, particles remain inside the initially confining
region with volume V = N . At late times, particles manage
to diffuse outside the initial domain but are confined to an
expanding region whose linear dimension grows diffusively
with time. Hence,

V (t) ∼
{
N t � T ;
t3/2 t � T .

(7)

The crossover time T can be estimated by matching the two
behaviors,

T ∼ N2/3. (8)
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FIG. 1. The average number of surviving particles M versus
system size N for equal populations. The inset shows the quantity
α ≡ d ln M/d ln N versus N . Fitting the data to the power law
M ∼ Nα in the range for N > 104 yields the exponent α = 0.34.

The quantity T is simply the diffusion time, T ∼ L2, that
characterizes the time it takes a particle to exit the initially
occupied domain with linear size L ∼ N1/3.

For single-species annihilation, it was found that the bulk of
the reaction events occur during the early phase. Furthermore,
while rare additional annihilation events may occur in the
late phase, the number of such reactions does not alter the
scaling laws for the ultimate number of surviving particles.
It is thus possible to estimate the final number of surviving
particles by evaluating the solution to Eq. (6) when V = N

at time t ∼ T ∼ N2/3. According to the above definitions,
M+ = limt→∞ n+(t) and similarly, M− = limt→∞ n−(t). We
anticipate that

M+ ∼ n+(T ), M− ∼ n−(T ). (9)

As discussed below, our numerical simulations confirm these
behaviors for a wide range of initial conditions.

IV. EQUAL POPULATIONS

We first consider the simplest case of equal populations,
� = 0. Since the number difference is conserved, the two
populations are identical n+ = n− = n/2 with n = n+ + n−
the total population. From the rate equations (6), the total
population decays according to

dn

dt
= − n2

2N
, (10)

during the early phase t � T . For the initial condition
n(0) = N , the population decays as the inverse of time,

n(t) ∼ N t−1. (11)

Let M = limt→∞ n(t) be the average number of surviving
particles. At the crossover time, the number of particles
M ∼ n(T ) is therefore (see Fig. 1)

M ∼ N1/3. (12)

Our numerical simulations, shown in Fig. 1, confirm this
scaling relation. As expected, the vast majority of annihilation
events occur during the early phase when particles are inside
the initially occupied region. A finite fraction of the particles
that manage to survive at time T persists forever.
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FIG. 2. The scaling function F (z) defined in (13). Shown is
the scaled number of particles F ≡ n/N1/3 versus the scaled time
z ≡ t/N 2/3 for the case of equal number of particles for three different
system sizes.

The scaling relations (8) and (12) specify the typical time
scale and the typical surviving population. These scaling laws
fully characterize the time-dependent behavior as the scaled
population n/M is a universal function of the scaled time t/T

for large systems (Fig. 2)

n(t) ∼ N1/3F (t/N2/3), (13)

where F (u) ∼ u−1 for u � 1 and F (u) ∼ u0 for u � 1.
The average number of surviving particles (12) and the

finite-size scaling behavior (13) agree with the corresponding
behaviors for the single-species annihilation process. Hence,
a finite and equal number of particles from each species
survive the annihilation process when the initial populations
are identical.

V. CRITICAL DIFFERENCE

In the rest of this paper, we consider situations where the two
populations differ in size, � > 0. In this section, we analyze
the case where the population difference is fixed, that is, the
disparity between the two populations is always equal to �.

Since the population difference is conserved, we may
consider the minority population without loss of generality.
By substituting n+ = n− + � and V = N into (6), we see that
the minority population decays according to

dn−
dt

= −n−(n− + �)

N
. (14)

The solution of this equation subject to the initial conditions
n−(0) = N− can be readily obtained,

n−(t) = N−
�

N−(et�/N − 1) + �
. (15)

Hereinafter, the dependence of n−(t) on � and N is left
implicit. We can recover the decay (11) from (15) in the limit
� → 0.

The average number of surviving minority particles can be
estimated by evaluating the minority population (15) at the
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FIG. 3. The scaling function G(x), defined in Eq. (18). Shown
is the scaled number of surviving minority particles G ≡ M−/N 1/3

versus the scaled difference x ≡ �/N1/3 for the case of fixed
population difference �. Inset shows the function 1 + x/G, which
according to Eq. (19) should increase exponentially with x.

crossover time (8),

M− ∼ N−
�

N−(e�/N1/3 − 1) + �
. (16)

According to this expression, the number of surviving minority
particles grows algebraically with system size as in (12)
when � � N1/3, but it decays exponentially when � � N1/3.
Therefore, there is a critical difference, given by (1), and
drastically different behaviors occur above and below this
threshold,

M− ∼
{
N1/3 � � �c,

� exp(−c �/N1/3) � � �c.
(17)

Here, c is a constant. For subcritical differences, a finite
number of minority particles survive and the same hold for the
majority species. Essentially, the system behaves as if the two
populations are equal. However, for supercritical differences,
extinction of the minority species is inevitable and the number
of surviving majority particles is always equal to the initial dif-
ference. In the N → ∞ limit, we have M− → 0 and M+ → �.
Hence, the initial disparity dictates if the minority species
survives or if it becomes extinct. Also, the final number of
surviving particles fluctuates in the subcritical case but it is
deterministic in the supercritical case.

We note that in the supercritical region, � � �c, there
is an additional characteristic time scale. Initially, the two
populations are comparable and consequently, the decay
(11) holds. However, the two populations are no longer
comparable, n−(τ ) ∼ � at time τ ∼ N/�. The majority
population becomes dominant, n+ � n− when t � τ , and
according to (6), the minority population decays exponentially,
dn−/dt = −�n−/N , thereby leading to the exponential decay
in (17).

Numerically, we can confirm that the critical difference
(1) characterizes the final population M−. The scaled number
M−/N1/3 becomes a universal function of the scaled difference
�/N1/3 in the large-N limit (Fig. 3)

M− ∼ N1/3 G(�/N1/3). (18)
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FIG. 4. The surviving populations M+ and M− versus system
size N for the special case � = N1/3. A fit of M+ and M− to a
power law, M± ∼ Nβ± in the range N > 104 yields the exponents
β+ = 0.34 and β− = 0.35, respectively. The inset shows the quantity
β± ≡ d ln M±/d ln N versus N .

The underlying scaling function is simply

G(x) = x

ec x − 1
. (19)

Results of our numerical simulations support this functional
form as well (see inset in Fig. 3). The limiting behaviors of the
scaling function are

G(x) ∼
{

1 x � 1
x e−c x x � 1.

(20)

The small-x behavior shows that the problem reduces to the
equal population case in the subcritical regime. The large-x
behavior reflects the extinction in the supercritical regime.

To further verify the predictions of (16), we examined
two special cases: � = N1/3 and � = N1/2. In the first case,
which corresponds to the critical difference, we can confirm
that M+ ∼ M− ∼ N1/3 (Fig. 4). In the second case, which is
typical for equal initial concentrations, we expect a stretched
exponential decay with a rather small characteristic exponent

M− ∼
√

N exp(−c N
1
6 ). (21)

Our numerical simulations are consistent with this behavior,
despite the fact that M− grows with system size over the range
of system sizes we probed numerically (Fig. 5).

VI. EQUAL CONCENTRATIONS

We now consider the situation where the initial concen-
trations are equal. In this case, we have N+/N → 1/2 and
N−/N → 1/2 in the limit N → ∞. The disparity between
the two populations is a fluctuating quantity, characterized by
the typical difference � ∼ N1/2. Moreover, the difference is
normally distributed and fully characterized by the distribution

P (�) =
(

1

2πN

)1/2

exp

(
− �2

2N

)
. (22)

We are interested in the average number of surviving particles
M+ and M−, where the average is performed over all initial
conditions and all realizations of the annihilation process.

The scaling law for M+ in (3) follows from conserva-
tion of the number difference. As discussed in Sec. II, the
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FIG. 5. The normalized population M−/N 1/2 versus N 1/6 for the
special case � = N1/2. The inset shows the surviving population M−
versus system size N .

initial difference provides a lower bound for the final number
of majority particles, M+ � �. For equal concentrations,
� ∼ N1/2, and according to (1) the system is typically in the
supercritical regime. Consequently, the majority is dominant
and M+ ∼ N1/2.

The scaling law for M− can also be obtained using heuristic
arguments. According to Eq. (17), the minority population
disappears when � � N1/3, but some minority particles do
remain when � � N1/3. For equal concentrations, initial
conditions of the former type occur with high probability,
but initial conditions of the latter type may still be realized
with a small probability. To estimate this small probability
we conveniently replace the Gaussian in (22) with a uniform
distribution with support in the compact interval [−N1/2 :
N1/2]. The initial difference is subcritical with probability
∼N−1/2 × �c ∼ N−1/6. Therefore, the average size of the sur-
viving minority population is M− ∼ N−1/6 × N1/3 ∼ N1/6.

Thus, there are two different scaling laws for majority and
minority survivors, M+ ∼ N1/2 and M− ∼ N1/6. Yet neither
of these behaviors resembles the scaling behavior (2) when
the populations are equal. These two scaling relations give
the survival probability of a majority particle, S+ ∼ N−1/2,
and that of a minority particle, S− ∼ N−5/6. The former
survival probability increases by a factor ∼N1/6, while the
latter decreases by a similar factor when compared with the
equal population case where S+ ∼ S− ∼ N−2/3.

The surviving minority population may also be obtained
by calculating the weighted average

∫ ∞
0 d�P (�)M− with

M− given in (16). By scaling the integration variable from
� to �/N1/3 and keeping only the leading-order terms, it is
easy to see that M− ∼ N1/6. Alternatively, we can estimate this
integral by using (17) to separate contributions corresponding
to the subcritical phase and the supercritical phase,

M− ∼
∫ N1/3

0
d�

(
1

2πN

)1/2

N1/3 exp

(
− �2

2N

)

+
∫ ∞

N1/3
d�

(
1

2πN

)1/2

� exp

(
− �2

2N
− �

N1/3

)
.

(23)
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FIG. 6. The average number of surviving minority particles M−
versusN for the equal concentration case. The inset shows the quantity
β− = d ln M−/d ln N versus N .

The first integral, which corresponds to the subcritical phase,
is much larger than the second one, and indeed it gives
M− ∼ N1/6.

We performed two sets of simulations to verify the scaling
law M− ∼ t1/6. First, we simulated initial conditions where
each site within the initially occupied domain contains a single
particle, and the two concentrations are equal. The numerical
simulations show that M− ∼ Nβ− with β− < 1/3 (Fig. 6).
However, the exponent β− converges slowly to the asymptotic
value. Next, we considered initial conditions where the number
difference � is drawn from the Gaussian distribution (22). To
realize this initial state, all sites inside the initially occupied
domain are set to contain two particles of opposite type, but
then a number � of randomly selected minority species are
removed from the system. For this version, the quantity M−
converges more rapidly to the asymptotic behavior, and we are
able to obtain some confirmation for the theoretical prediction
β− = 1/6 (Fig. 7).

We stress that the algebraic behavior M− ∼ N1/6 char-
acterizes an average over all realizations of the stochastic
process and over all initial conditions. The initial difference
� fluctuates from realization to realization and it is governed
by the distribution (22). Once the initial conditions are set, the
fate of the system is determined from the initial difference �.
There is a critical threshold �c ∼ N1/3. Below this threshold,
� � �c, a finite number of particles from both the majority
and the minority survive ad infinitum and M− ∼ M+ ∼ N1/3.
Above this threshold, however, all minority particles are
annihilated and a finite number of majority particles survive:
M− → 0 and M+ → �.

Clearly, there are wild fluctuations from realization to
realization. In the most probable scenario, the minority species
goes extinct, but there are rare cases where the minority species
survives and its population is comparable with that of the
majority species. One way to characterize these fluctuations
is through moments of the fluctuating number of minority
survivors, n−(∞). It is simple to generalize (23) and find a
continuous spectrum of scaling exponents that characterizes
these moments

〈n−(∞)m〉 ∼ N
2m−1

6 . (24)
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FIG. 7. The average number of surviving minority particles M−
versus N when the initial difference � is distributed according
to (22). A fit of M− to the power-law, M− ∼ Nβ− in the range
N > 104 yields the exponents β− = 0.21. The inset shows the
quantity β− = d ln M−/d ln N versus N .

The decaying zeroth moment reflects that initial conditions
with � ∼ N1/3 are realized with probability N−1/6. The
behavior of large moments is controlled by the scaling law
(2) for equal populations.

VII. MONTE CARLO ALGORITHMS

Numerical simulations of two-species annihilation with
a finite, yet large, number of particles are challenging for
multiple reasons. First, the system is three dimensional. Even
sophisticated Monte Carlo algorithms [36], developed recently,
have not been able to produce numerical verification of the
decay c ∼ t−3/4 in unbounded systems because the conver-
gence to the ultimate asymptotic behavior is extremely slow
[37]. Second, large memory is required because particles may
escape far outside the initially occupied domain. Third, the
computing time is large because the very last annihilation
event is unknown a priori and it fluctuates greatly from
one realization to another. Knowledge of the time scale
(8) is helpful with respect to this third challenge, and we
run our simulation to time tf much larger than this scale,
tf ∝ 104 × N2/3.

In our numerical simulations, N sites that fall within a fixed
distance from the origin are occupied initially, but all remaining
lattice sites are vacant. In each elementary simulation step, one
randomly selected particle moves to a randomly selected near-
est neighbor. If the target site contains a particle of the opposite
type, the two particle are removed from the system. Time is
augmented by the inverse number of remaining particles after
each such elementary simulation step. We used two different
algorithms to simulate this process. The two implementations
differ in one respect only: in the first algorithm we do allow
multiple occupancy, but in the second, we restrict occupancy
to one particle per site. In the first implementation each of the
N sites are occupied by one majority particle and one minority
particle but then � randomly selected minority particles are
removed from the system. In the second implementation each
of the N sites are occupied by a single particle. These two
implementations yield very similar results, which become
essentially indistinguishable for large systems. As mentioned

in the preceding section, we have generally found that the
convergence to the asymptotic behavior is faster under the first
implementation.

Our first simulation method is a brute force algorithm in
which a one-dimensional array is used to keep track of each
particle’s location. The advantage of this algorithm is that
the memory required scales linearly with the initial number
of particles. However, the number of operations per unit
time grows quadratically with the total number of active
particles. This algorithm performs surprisingly well because
most reaction events occur in the early phase [17]. We used
this straightforward algorithm to produce the results shown in
Figs. 1–5 and in Figs. 7 and 8.

Our second algorithm is more sophisticated in that it is
efficient in both computation time and memory. To optimize the
number of operations, we implement the standard approach for
simulating diffusion-controlled reaction processes. Particles
occupy an actual three-dimensional lattice and each lattice site
contains a pointer to the particle occupying it such that one does
not need to search through all particles in each move. With this
approach, the number of operations per unit time scales linearly
with the number of active particles. To optimize memory use,
we take advantage of the fact the system becomes sparse with
time. We thus map every lattice site in our very large array
to a much smaller array using a hash function [38,39]. This
approach allows us to simulate a large system with much less
memory than would be needed if we stored the entire original
lattice, and yields a speed up of up to a factor 10 for N ≈ 107.
Results of this simulation algorithm are shown in Fig. 6.

Our basic assumption, stated in Eq. (9), is that the number
of surviving particles at time T ∼ N2/3 yields the correct
scaling behavior for the surviving populations. To further test
this assertion, we examined the reaction rate at late times.
According to the rate equation (6) and the confining volume in
(7), we expect dn+/dt ∼ n+n−/t3/2. Our simulations confirm
this behavior for both equal populations and equal concentra-
tions. Hence, the residual correction to the ultimate number
of surviving particles decays algebraically, n(t) − M ∼ t−1/2,
and from this behavior it is simple to show that the total number
of reaction events in the late-time regime t � N2/3 is small
enough so that (9) holds.

VIII. GENERAL SPATIAL DIMENSIONS

We now briefly discuss the behavior in general spatial
dimensions; we restrict our attention to the equal concentration
case and dimensions d > 2 where the final state is nontrivial. It
is straightforward to generalize the main results (1) and (3) to
arbitrary dimension by replacing the characteristic time scale in
(8) with T ∼ N2/d . The critical difference grows algebraically
with the number of particles,

�c ∼ Nδ with δ = d − 2

d
, (25)

when d > 2. The surviving majority population exhibits two
regimes of behavior

M+ ∼ Nβ+ , β+ =
{

1
2 d � 4
d−2
d

4 � d.
(26)
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FIG. 8. The reaction rate −dn/dt versus time t for the case
N = 7,153.

The behavior agrees with (3) below the critical dimension, and
the behavior coincides with that of single-species annihilation
above the critical dimension. Finally, the surviving minority
population exhibits three regimes of behavior

M− ∼ Nβ− , β− =

⎧⎪⎨
⎪⎩

0 d � 8
3 ,

3d−8
2d

8
3 � d � 4,

d−2
d

4 � d.

(27)

Interestingly, the quantity M− does not grow with system size
below the lower critical dimension d < 8/3 [40]. However, the
two surviving populations are comparable, and both are much
larger than the initial difference � ∼ N1/2 above the upper
critical dimension, d > 4.

IX. CONCLUSIONS

To summarize, we studied diffusion-controlled two-species
annihilation in an unbounded space with a finite number of
particles. Specifically, we addressed initial conditions where a
finite number of particles is confined to a compact domain.
We found that the disparity between the two populations
controls the behavior. When the disparity is small enough, the
two populations remain comparable throughout the reaction
process, and a finite number survives the annihilation process.
These particles manage to escape far outside the initial domain.
However, when the initial disparity is large enough, the
minority population becomes extinct while a finite number of

majority particles survives. We used the rate equation approach
to obtain a number of scaling laws for equal initial populations
and for equal initial concentrations. Our numerical simulations
support the theoretical predictions.

Our study focused on the most interesting case of three
dimensions, which is below the critical dimension dc = 4
for a homogeneous infinite-particle systems [1]. For such
systems, spatial correlations spontaneously develop and the
result is a mosaic of A-rich and B-rich domains. These
correlations play a crucial role and consequently, predictions
based on the mean-field rate equations do not hold in three
dimensions. The qualitative behavior is quite different when
the number of particles is finite. No matter how large the initial
number of particles is, the system remains well mixed and
spatial correlations are not strong enough to affect the scaling
behavior. Our results show that spatial correlations are transient
as they do not affect the scaling behavior. Consequently, the
rate equation predictions hold for finite systems [11].

Survival occurs only when d > 2 and in some sense this
escape phenomena is counter to the behavior when the number
of particles is infinite. In an infinite system, the reaction rate
is smaller in low dimensions whereas in a finite system, the
total number of reaction events is smaller in high dimensions.
Hence, the system size and dimensionality generally compete
in reaction-diffusion processes as both affect the survival
probability.

Our study highlights the serious challenge of developing
theoretical tools for describing strongly interacting particle
systems such as reaction-diffusion processes involving a large
but finite number of particles. Existing theoretical methods
are inadequate to handle such problems. As a rather straight-
forward extension of our work one may investigate two-
species annihilation with unequal initial concentrations where
according to (17), the survival probability of minority particles
decays as a stretched exponential, S− ∼ exp(−const. × N2/d ).
Finally, we mention that it would be interesting to investigate
another basic reaction-diffusion process, Brownian coagula-
tion [35,41], for initial conditions with a finite number of
clusters.
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