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Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined
in a disordered matrix: The collective-variables-based approach
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We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of
asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the
perturbation theory using an extension of the scaled particle theory for a description of a reference system
presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a
size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical
potential of a confined ionic system which takes into account the third-order correlations between ions. Using
this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as
well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves
with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence
region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature T ∗

c and
the critical density ρ∗

i,c become lower. At the same time, our results suggest that an increase in size asymmetry
of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of T ∗

c and
ρ∗

i,c and even to a disappearance of the phase transition, especially for the case of small matrix particles.
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I. INTRODUCTION

Ionic liquids confined in mesoporous matrices attract a
significant attention because of their specific physicochemical
properties and find widespread application in many areas of
modern science and technologies ranging from electrochem-
istry to biology and medicine. In particular, such systems are
considered as very promising candidates for new types of elec-
trolytes in fuel cells, supercapacitors, solar cells, and batteries.
Ionic liquids confined in nanoporous materials are used in
catalysis, sensing and biosensing, gas capture and separation.
Having a high surface area and a large pore volume the bio-
compatible porous materials are used for a drug delivery, and
ionic liquid encapsulated together with bioactive molecules
can be utilized for controlled release of the latter. Ionic liquids
are also considered as efficient porogenic agents used to tune a
porous structure (porosity, pore surface area) during formation
of confining material. In the literature one can find a number of
excellent reviews devoted to ionic liquids confined in different
porous geometries; in particular, special attention has been paid
to disordered mesoporous materials [1–3].

One of the interesting phenomena related to liquids in
confinements, which have been a subject of intensive in-
vestigations for the last decades, is the vapor-liquid phase-
transition behavior [4–6]. It has been shown that a porous
medium strongly affects the phase diagram of a guest liquid.
In particular, the phase behavior of liquids in a confined
geometry is considerably altered relative to their unconfined
(bulk) state. A distinguished feature of the phase diagrams of
such systems as compared with the bulk case is a lowering
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of both the critical temperature and the critical density and a
narrowing of the coexistence region. A review of experimental
and theoretical efforts in the field is also given in Refs. [5–7].
However, despite much efforts being devoted to theoretical
studies of these systems, most of them have been related to
studies of simple liquids or ionic liquids in simple geometries
like a single slit or cylindrical pore [8–11]. Moreover, even for
simple fluids in disordered confinements some questions have
remained open [12]. At the same time, the phase behavior of
systems comprised of charged particles confined in disordered
matrices has received substantially less attention. This is
mostly related to the fact that it is still a challenge to provide a
good quantitative and, in some cases, a qualitative theoretical
description of the phase behavior of ionic fluids even in the
bulk. In particular, this concerns the effects of size and charge
asymmetry of ions on the vapor-liquid phase diagram of ionic
fluids with Coulomb-dominated interactions (see Ref. [13]
and references cited therein). On the other hand, such fluids
as ionic liquids are melted organic salts, which are usually
characterized by a significant size asymmetry between cations
and anions. Thus, in the present work we develop the method
capable of describing the thermodynamics of model ionic
liquids confined in disorder matrices in order to study the
vapor-liquid transition in such systems.

The model most frequently used for ionic fluids is a
two-component primitive model (PM) consisting of an elec-
troneutral mixture of charged hard spheres (HSs) immersed
in a structureless dielectric continuum. The simulation re-
sults for this model have shown that asymmetry in size
and charge strongly affects the critical parameters, i.e., the
suitably normalized critical temperature decreases with size
and charge asymmetry while the critical density increases with
charge asymmetry but decreases with size asymmetry [14–19].
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The original Debye-Hückel theory and the mean spherical
approximation (MSA) are not capable of predicting the trends
observed in simulations [20,21]. Moreover, both theories
predict no dependence on charge asymmetry in the equisize
case. Progress on a theoretical description of the effects of
asymmetry on the vapor-liquid phase behavior has been made
within the framework of the associative approach [22,23].
However, certain arbitrariness in determining the association
constant is implied in these theories. On the other hand, the
effect of asymmetry on the vapor-liquid phase diagram has
been studied within the framework of the theory based on
the method of collective variables (CVs) [24–28]. The theory
allows one to take into account the effects of higher-order
correlations between ions and, as a result, to obtain, on an an-
alytical basis, the trends of the critical parameters with charge
and size asymmetry that qualitatively agree with simulation
findings.

It should be noted that the vapor-liquid phase behavior of a
symmetric ionic model confined in uncharged pores of “simple
geometry”, e.g., of a slit-like or cylindrical shape was studied
numerically by using the density functional theory [8–10] and
quite recently by the field-theoretical variational approach [11].
However, the case of size and charge asymmetry of ions was not
considered in these studies. On the other hand, the behavior of
ionic fluids in a disordered porous matrix is more complicated
because one should take into account the effects of separate
pores as well as the effects of correlations between the ions
confined into different pores. Furthermore, a disordered porous
matrix is characterized by specific features as porosity and
pore surface area. Since the particles composing a matrix are
of spherical shape, the mean pore surface curvature can play a
role as well. To the best of our knowledge, no theoretical results
have been obtained until recently for these rather complex
systems.

Fluids confined in disordered porous materials can be
treated as partly quenched systems in which some of the
degrees of freedom are quenched while the others are annealed
[29]. Partly quenched systems containing charges were mainly
studied by using the replica Ornstein–Zernike (ROZ) theory
(see review [30] and references cited therein). However, the
phase behavior of such systems has not been considered within
this approach. Moreover, unlike bulk fluids, no analytical
result has been obtained from the ROZ theory even for a HS
fluid confined in a HS matrix, being the model of particular
importance for the development of perturbation theories. On
the other hand, based on the scaled-particle theory (SPT)
[31], a pure analytical approach has been recently proposed
to describe the thermodynamics of the latter system [32–37].
An extension of the SPT developed for a HS fluid confined
in a HS matrix, also referred to as the SPT2 approach [38],
has already been successfully applied for the description of
reference systems of different kinds of liquids including the
systems with associative [36] and anisotropic interactions
between particles [39]. More recently this approach has been
generalized to the case of a multicomponent HS fluid confined
in a multicomponent HS matrix [40].

In the previous paper [41], following the idea of Qin and
Prausnitz [23] for the bulk PM, we developed a theoretical
approach for the study of a vapor-liquid phase transition of a

monovalent size-asymmetric PM confined in a disordered HS
matrix. The approach combines a new extension of the SPT
[40] and the associative MSA (AMSA) based on the simplified
MSA [23]. While the SPT is used for the description of the HS
subsystem presented as a two-component HS fluid confined
in a HS matrix, the simplified MSA approximates the ionic
subsystem by a symmetric ionic fluid with the effective ion di-
ameter σ+− = (σ+ + σ−)/2. However, the charge asymmetry
cannot be taken into consideration within this approach.

In this paper, we continue our systematic studies of the
vapor-liquid phase behavior of ionic systems confined in a
disordered porous medium. Considering a two-component
charge- and size-asymmetric ionic model confined in a dis-
ordered HS matrix, we exploit the idea of a partly quenched
model and use the replica trick [42]. We extend the work
[43] devoted to a symmetrical ionic model and develop a
CV-based theory that allows one to simultaneously take into
account charge and size asymmetry. Our approach enables
us to formulate the perturbation theory using the SPT for
a description of the thermodynamics of a reference system.
In Ref. [40], different modifications derived from the basic
SPT formulation are presented and their accuracy is evaluated
against the simulation results. Here, we use the SPT2b ap-
proximation which provides more accurate results for excess
chemical potentials.

First, we restrict our consideration to the Gaussian approx-
imation and derive the grand potential of our partly quenched
system. For a particular case where interactions between matrix
particles and matrix and fluid particles can be neglected beyond
the hard core, we derive an explicit expression for the relevant
chemical potential conjugate to the order parameter in the
approximation that takes into account the effects of correlations
up to third order. To this end, we use the method proposed in
Refs. [24,26] for the bulk PM. Based on this expression, we
calculate the phase diagrams depending on the characteristics
of an ionic fluid and a HS matrix. Here, we focus on the
size-asymmetric case and consider, apart from an ion size
asymmetry, different size ratios between the ion particles
and the matrix obstacles. We analyze how variations in the
size-asymmetry parameters and in the matrix porosity affect
the vapor-liquid phase diagram of a confined ionic model.

The paper is arranged as follows: In Sec. II, we present a
theoretical formalism. An explicit expression for the relevant
chemical potential which takes into account the correlation
effects beyond the Gaussian approximation is derived in this
section. Section III is devoted to the reference system. In
Sec. IV, the vapor-liquid phase diagrams of a size-asymmetric
ionic fluid confined in HS matrices of different characteristics
are presented and discussed in detail. We conclude in Sec. V.

II. MODEL AND THEORY

A. Model

We consider a two-component charge- and size-asymmetric
ionic model confined in a disordered porous matrix formed by
uncharged particles. The interaction potentials between the two
matrix particles and between the ion (cation or anion) and the
matrix particle include a short-range attraction or repulsion
in addition to a hard-core repulsion. Furthermore, the ions
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themselves and the ions and the matrix particles differ in size.
Therefore, the interactions in the matrix-ionic fluid system
can be described by a set of pairwise interaction potentials:
u00(x), u++(x), u−−(x), u+−(x) = u−+(x), u0+(x) = u+0(x),
u0−(x) = u−0(x), where the subscript 0 refers to the matrix
particles and the subscripts +,− refer to the ions. We assume
that the interaction potentials between different particles can
be split into a reference part denoted by index “r” and a
perturbation part denoted by index “p”:

uij (x) = u
(r)
ij (x) + u

(p)
ij (x), (1)

where u
(r)
ij (x) is a potential of a short-range repulsion which,

generally, describes the mutual impenetrability of the particles,
while u

(p)
ij (x) mainly describes the behavior at moderate and

large distances. The system in which the particles interact via
the potentialsu

(r)
ij (x) is regarded as the reference system,u(r)

ij (x)
is specified in the form of the HS potential. We assume that
the thermodynamic and structural properties of the reference
system are known.

We follow the formalism originally proposed in Ref. [29]
and consider our matrix-fluid system as a partly quenched
model. This means that our system contains two subsystems:
the first one, the matrix itself, is composed of particles
quenched or frozen in place, while the second subsystem is
an annealed (allowed to equilibrate) binary ionic fluid which
is in equilibrium with the matrix. It is assumed that the matrix
particles were quenched into an equilibrium configuration
corresponding to the Gibbs distribution associated with a
pairwise interaction potential. The ionic fluid is treated as
a two-component charge- and size-asymmetric PM. In this

case, statistical-mechanical averages used for calculations of
thermodynamic properties become double ensemble averages:
the first average is taken over all degrees of freedom of annealed
particles keeping the quenched particles fixed, and the other
average is performed over all realizations of a matrix. To treat
the averages we use the replica method. It allows us to relate
the matrix averaged quantities to the thermodynamic quantities
of the corresponding fully equilibrated model, referred to as
a replicated model. In our case, the replicated model consists
of a matrix and of s identical copies or replicas of the two-
component ionic model. Each pair of particles has the same
pairwise interaction in this replicated system as in the partly
quenched model except that a pair of particles from different
replicas has no interaction. Thus, the interaction potentials
between matrix particles, matrix and fluid particles and fluid
and fluid particles can be presented as follows:

u00(r0 − r ′
0), uα

0A

(
r0 − rA

α

)
, u

αβ

AB

(
rA
α − rB

β

)
δαβ, (2)

where index “0” refers to matrix particles, Latin indices denote
fluid (ion) species (A,B = +,−), and Greek indices denote
replicas (α,β = 1,2, . . . ,s). Furthermore, each interaction po-
tential can be split into two terms in accordance with Eq. (1).

B. Collective-variables-based approach:
Gaussian approximation

We consider a (2s + 1)-component system with the in-
teraction potentials given by Eq. (2) in the grand canonical
ensemble. Then, using the method of CVs, we can present
the equilibrium grand partition function of the system in the
form of a functional integral (see Ref. [43] and the references
therein):

�rep(s) = �mf
[
ν̃0,ν̃

α
A

] ∫
(dρ)(dω) exp

⎡⎣−β

2

∑
k

Û (k)ρ̂kρ̂−k + i
∑

k

ω̂kρ̂k +
∑
n�2

(−i)n

n!

∑
k1,...,kn

M̂nω̂k1 ω̂k2 . . . ω̂kn
δk1+···+kn

⎤⎦.

(3)

Here, the following notations are introduced: �mf is the mean-field (MF) part of the grand partition function which depends
on the renormalized partial chemical potentials ν̃0 and ν̃α

A [see Eqs. (A1)–(A3) in Appendix A]; β = 1/kBT with kB being the
Boltzmann constant, T the absolute temperature; (dρ) = (dρ0)(dρα

A) [(dω) = (dω0)(dωα
A)] denote volume elements of the phase

space of CVs ρk,0 and ρα
k,A (ωk,0 and ωα

k,A). CVs ρk,0 and ρα
k,A describe the fluctuation modes of the number density of the matrix

and fluid species, respectively (ωk,0 and ωα
k,A are conjugate to ρk,0 and ρα

k,A).
Û (k) denotes a symmetric (2s + 1) × (2s + 1) matrix of elements:

u11 = ũ
(p)
00 (k) = ϕ̃00(k),

u1i = ui1 = ũ
α(p)
0+ (k) = ϕ̃0+(k), i ∈ E,

u1i = ui1 = ũ
α(p)
0− (k) = ϕ̃0−(k), i ∈ O,

uii = ũ
αα(p)
++ (k) = ϕ̃++(k), i ∈ E,

uii = ũ
αα(p)
−− (k) = ϕ̃−−(k), i ∈ O,

uij = uji = ũ
αα(p)
+− (k) = ϕ̃+−(k), i ∈ E, j = i + 1,

uij = 0, i �= j, j �= i + 1,

where the quantities with a “tilde” are the Fourier transforms of the corresponding interaction potentials and E (O) are even (odd)
numbers. ρ̂k indicates a column vector of elements ρk,0, ρ1

k,+, . . ., ρs
k,+, ρ1

k,−, . . ., ρs
k,− and ω̂k is a row vector of elements ωk,0,

ω1
k,+, . . ., ωs

k,+, ω1
k,−, . . ., ωs

k,−.
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M̂n is a symmetric

(2s + 1) × (2s + 1) × · · · × (2s + 1)︸ ︷︷ ︸
n

matrix whose elements are cumulants: the nth cumulant coincides with the Fourier transform of the n-particle truncated correlation
function [44] of the reference system. The elements of matrix M̂2 read

M11 = M00(k),

M1i = Mi1 = M0+(k), i ∈ E, M1i = Mi1 = M0−(k), i ∈ O,

Mii = M
11
++(k), i ∈ E, Mii = M

11
−−(k), i ∈ O,

Mij = Mji = M
11
+−(k), i ∈ E, j ∈ O, j = i + 1,

Mij = Mji = M
12
++(k), i,j ∈ E, i �= j,

Mij = Mji = M
12
−−(k), i,j ∈ O, i �= j,

Mij = Mji = M
12
+−(k), i ∈ E, j ∈ O, j �= i + 1, (4)

where

M00(k) = ρ0δk + ρ0
2h̃

(r)
00 (k), M0A(k) = ρ0 ρAh̃

(r)
0A(k),

M
αβ

AB(k) = ρα
AδABδαβδk + ρα

A ρ
β

Bh̃
αβ(r)
AB (k), (5)

ρ0 = 〈N0〉r/V , ρα
A = 〈Nα

A〉r/V , 〈· · · 〉r indicates the average taken over the reference system and we put ρ1
A = ρ2

A = · · · = ρs
A =

ρA. h̃...(r)
... (k) is the Fourier transform of the corresponding pair correlation function of a (2s + 1)-component reference system,

h
11(r)
AB (r) describes the correlations between particles within the same replica, whereas h

12(r)
AB (r) describes correlations between

the particles from different replicas. The determinant of the matrix M̂2 is of the form

det[M̂2(s)] = [(M11
++ − M

12
++)(M11

−− − M
12
−−) − (M11

+− − M
12
+−)2]s−1(M00{[M11

++ + (s − 1)M12
++][M11

−− + (s − 1)M12
−−]

− [M11
+− + (s − 1)M12

+−]2} − sM2
0+[M11

−− + (s − 1)M12
−−] − sM2

0−[M11
++ + (s − 1)M12

++]

+ 2sM0+M0−[M11
+− + (s − 1)M12

+−]).

We restrict our consideration to the second-order cumulants in Eq. (3). In this case, after integration we obtain the grand
partition function of the replicated system in the Gaussian approximation

1

V
ln �

rep
G (s) = 1

V
ln �r + β

2
(ρ0)2ϕ̃00(0) + sβρ̄0

∑
A

ρAϕ̃0A(0) − 1

2V

∑
k

ln[det(ÛM̂2 + 1)], (6)

where �r is the grand partition function of a (2s + 1)-component reference system.
Using the Legendre transform, from Eq. (6) one can derive the Helmholtz free energy in the random-phase approximation

(RPA):

βfRPA(s) = βF
rep
RPA(s)

V
= βf r − ρ

rep
0

2V

∑
k

βϕ̃00(k) +
(
ρ

rep
0

)2

2
βϕ̃00(0) − s

2V

∑
A=+,−

∑
k

ρ
rep
A βϕ̃AA(k) + sρ0

∑
A=+,−

ρ
rep
A βϕ̃0A(0)

+ 1

2V

∑
k

ln[det(ÛM̂2 + 1)],

where f r is the free energy of the reference system, ρ
rep
0 and ρ

rep
A denote the number densities of the matrix and fluid particles

(cations and anions), respectively.
Here, we consider a particular case where interactions between the matrix particles can be neglected beyond the hard core.

Taking a replica limit of Eq. (6) −β�
G = ln �

G = lims→0
d
ds

ln �
rep
G (s) we derive, after some algebra, an expression for the grand

potential of a partly quenched system in the Gaussian approximation:

−β�
G = −β�

r + ρ0

∑
A

ρAβϕ̃0A(0) − 1

2

∑
k

ln
[
det

(
�̂2M̂

c

2 + 1
)] − 1

2

∑
k

1

det
(
�̂2M̂

c

2 + 1
){ det(�̂2)(Mc

++M
b
−−

+M
c
−−M

b
++ − 2Mc

+−M
b
+−) + 2β2[ϕ̃0+(k)ϕ̃+−(k) − ϕ̃0−(k)ϕ̃++(k)][M0+Mc

+− − M0−Mc
++]

+ 2β2[ϕ̃0+(k)ϕ̃−−(k) − ϕ̃0−(k)ϕ̃+−(k)][M0+Mc
−− − M0−Mc

+−] + det(�̂3)M00 det
(
M̂

c

2

)
−M00

∑
A,B=+,−

βϕ̃0A(k)Mc
ABβϕ̃0B (k) + 2

∑
A=+.−

βϕ̃0A(k)M0A +
∑

A,B=+.−
βϕ̃AB(k)Mb

AB

}
. (7)
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Here, the following notations are introduced: �
r

is the
grand potential of the reference system consisting of a two-
component HS fluid confined in a HS matrix, ρ0 = ρ0|s=0, and
ρA = ρA|s=0. Matrices �̂2 and �̂3 are of the form

�̂2 =
(

βϕ̃++(k) βϕ̃+−(k)

βϕ̃+−(k) βϕ̃−−(k)

)
,

�̂3 =

⎛⎜⎝ 0 βϕ̃0+(k) βϕ̃0−(k)

βϕ̃0+(k) βϕ̃++(k) βϕ̃+−(k)

βϕ̃0−(k) βϕ̃+−(k) βϕ̃−−(k)

⎞⎟⎠.

M
c
AB and M

b
AB are elements of the matrices

M̂
c

2 =
(
Mc

++(k) M
c
+−(k)

M
c
+−(k) M

c
−−(k)

)
,

M̂
b

2 =
(
Mb

++(k) M
b
+−(k)

M
b
+−(k) M

b
−−(k)

)
. (8)

Superscripts “c” and “b” in Eq. (8) denote the connected and
blocking parts of the cumulants MAB (or structure factors of
the reference system):

MAB(k) = M
c
AB(k) + M

b
AB(k) = ρAδAB + ρAρBh̃r

AB(k),

A,B = +, − , (9)

where

M
c
AB(k) = lim

s→0

[
M

11
AB(k) − M

12
AB(k)

]
= ρAδAB + ρAρBh̃

r,c
AB(k),

h̃
r,c
AB(k) = lim

s→0

[̃
h

11(r)
AB (k) − h̃

12(r)
AB (k)

]
, (10)

and

M
b
AB(k) = lim

s→0
M

12
AB = ρAρBh̃

r,b
AB(k),

h̃
r,b
AB(k) = lim

s→0
h̃

12(r)
AB (k). (11)

In Eq. (9), h̃r
AB(k) = h̃

r,c
AB + h̃

r,b
AB is the Fourier transform of

the partial pair correlation function with h̃
r,c
AB (̃hr,b

AB) being its
connected (blocking) part. The connected correlation function
accounts for correlations between a pair of the fluid particles
transmitted through successive layers of fluid particles while
the blocking correlation function accounts for correlations
between two fluid particles separated from each other by matrix
particles [42,45].

For M00 and M0A, we have

M00(k) = lim
s→0

M00 = ρ0 + ρ2
0 h̃r

00(k), h̃r
00(k) = lim

s→0
h̃

(r)
00 (k),

M0A(k) = lim
s→0

M0A = ρ0ρAh̃r
0A(k), h̃r

0A(k) = lim
s→0

h̃
(r)
0A(k),

(12)

where h̃r
00(k) and h̃r

0A(k) are Fourier transforms of the matrix-
matrix and matrix-fluid correlation functions in a partly
quenched reference system. In Eqs. (10)–(12),Mαβ

AB ,M00, and
M0A are the elements of the matrix M̂2 [see Eqs. (4) and (5)].

Similarly, one can find the RPA free energy of a two-
component ionic system confined in a disordered porous

matrix. It should be noted that the expression for free energy
of a binary model liquid in a disordered porous matrix in the
RPA was derived in Ref. [46] in terms of direct correlation
functions.

C. Charge- and size-asymmetric primitive model confined
in a disordered hard-sphere matrix:
Beyond the Gaussian approximation

We are interested in the vapor-liquid phase diagram of
an asymmetric PM confined in a disordered HS matrix. We
assume that interactions between matrix particles and matrix
and fluid particles can be neglected beyond the hard core. In
this case we have

ϕ00(r) = 0, ϕ0+(r) = 0, ϕ0−(r) = 0. (13)

The system is electrically neutral:
∑

A=+,− qAρA = 0 where
qA is a charge of the ion of the Ath species, q+ = +zq, q− =
−q, ρA is the number density of the Ath species.

The model is characterized by the parameters

λ = σ+
σ−

, z = q+/|q−| (14)

describing charge and size asymmetry of ions (σA is the
diameter of the Ath species). In addition, we introduce the
parameter λ0 which describes the size asymmetry between
ions and matrix particles defined as a size ratio of matrix and
negatively charged ions:

λ0 = σ0/σ−. (15)

We use the Weeks–Chandler–Andersen regularization
scheme for the Coulomb potentials ϕAB(r) inside the hard core
[47]. Then, we have for βϕ̃AB(k):

βϕ̃++(k) = 4πzσ 3
+−

T ∗
(1 + λ)

2λ

sin [2xλ/(1 + λ)]

x3
,

βϕ̃−−(k) = 4πσ 3
+−

T ∗z
(1 + λ)

2

sin [2x/(1 + λ)]

x3
,

βϕ̃+−(k) = −4πσ 3
+−

T ∗
sin(x)

x3
,

where T ∗ = kBT σ+−
q2z

is the dimensionless temperature, x =
kσ+−, and σ+− = (σ+ + σ−)/2.

Our aim here is to derive an analytical expression for the
chemical potential conjugate to the order parameter which
takes into account the correlation effects of the order higher
than the second one. To this end, we follow a theoretical
scheme proposed in Ref. [24] for the bulk PM. We start
with the grand potential of a partly quenched model in the
Gaussian approximation (7) under condition (13) and we pass
from the initial chemical potentials ν+ and ν− to their linear
combinations

ν1 = ν+ + zν−√
1 + z2

, ν2 = zν+ − ν−√
1 + z2

.

As was shown in Ref. [26], ν1 is conjugate to the order
parameter of the vapor-liquid critical point

ξ0 = 1√
1 + z2

(
1 + z2

1 + z
ρN + 1 − z

1 + z
ρQ

)
, (16)
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where ρN = ρ+ + ρ− and ρQ = zρ+ − ρ− describe long-
wavelength fluctuations of the total number density and charge
density, respectively. ν2 is conjugate to ρQ. It follows from
Eq. (16) that ξ0 ∼ ρN for z = 1.

Then, we present ν1 and ν2 as

ν1 = ν0
1 + ε�ν1, ν2 = ν0

2 + ε�ν2,

where ν0
1 and ν0

2 are the MF parts of ν1 and ν2, respectively,
and �ν1 and �ν2 are solutions of the equations for chem-
ical potentials. We self-consistently solve the equations for
the relevant chemical potential �ν1 by means of successive
approximations. The procedure of searching for a solution is
described in Refs. [13,24,26].

The expression for the relevant chemical potential ν1 found
in the first nontrivial approximation corresponding to ν2 = ν0

2
is of the form

ν1 = ν0
1 +

√
1 + z2

2[Mc
++ + 2zMc

+− + z2M
c
−−]

×
∑

k

1

det
[
�̂2M̂

c

2 + 1
]

× [βϕ̃++(k)F1 + βϕ̃−−(k)F2 + 2βϕ̃+−(k)F3], (17)

where ν0
1 = νr

1 + νse
1 with νr

1 being the combination of the HS
chemical potentials

νr
1 = νr

+ + zνr
−√

1 + z2

and νse
1 being the combination of self-energy parts of chemical

potentials ν+ and ν−,

νse
1 = − 1

2V
√

1 + z2

∑
k

[βφ̃++(k) + zβφ̃−−(k)].

In addition to the second-order cumulants Mc
AB , Eq. (17) in-

cludes the connected parts of the third-order cumulantsMc
ABC :

F1 = M
c
+++ + zMc

++−, F2 = M
c
+−− + zMc

−−−,

F3 = M
c
++− + zMc

+−−. (18)

In Eq. (17), Mc
AB and M

c
ABC are approximated by their values

in the long-wavelength limit. A general form of Eq. (17) is
similar to that for the bulk case obtained in Ref. [26]. However,
the main difference concerns the reference system. Below, we
consider the reference system in more detail.

III. REFERENCE SYSTEM: THERMODYNAMIC
PROPERTIES FROM SCALED PARTICLE THEORY

We start with general relationships valid for a multicompo-
nent system; in particular, a recurrent formula allowing us to
derive the third-order cumulants in the long-wavelength limit
[48]:

Mα1α2...αn
= Mα1α2...αn

(0, . . .) = ∂Mα1α2...αn−1 (0, . . .)

∂ναn

, (19)

and the equation given by Kirkwood and Buff which relates
the thermodynamic properties with the partial structure factors
at k = 0 [49],

Sα1α2 (0) = 1√
ρα1ρα2

Mα1α2 (0) = 1√
ρα1ρα2

|A|α1α2

det (A)
. (20)

In Eq. (20), A is a matrix with elements given by Aα1α2 =
(∂να1/∂ρα2

)T ,ρα3
, |A|α1α2 indicates the cofactor of the elements

Aα1α2 . Using the Ornstein–Zernike equation we obtain from
Eq. (20) (

∂να1

∂ρα2

)
T ,ρα3

= δα1α2

ρα1

− c̃α1α2 (0), (21)

where c̃α1α2 (0) is the Fourier transform of the partial direct
correlation functions [50] at k = 0. In Ref. [46], general
expressions were presented for thermodynamic quantities and
relations for a two-component system confined in a disordered
matrix. In particular, it was shown that, in this case, Eq. (21) are
satisfied for the connected parts of c̃α1α2 (0) [see Eqs. (47)–(49)
in Ref. [46]]. Using Eq. (19), Mα1α2α3 (0,0) can be expressed in
terms of the partial structures factors Sα1α2 (0) and their deriva-
tives. The corresponding formulas for a two-component system
are given in Appendix B. The same formulas hold for the
connected parts of the quantities entering Eqs. (B1) and (B2).

Now we turn back to our reference system which consists
of a two-component HS fluid confined in a one-component HS
matrix. The matrix is characterized by HS obstacles of diameter
σ0 and different types of porosity; namely, geometrical porosity
φ0 and two probe-particle porosities φ+ and φ− for the two-
fluid species. The probe-particle porosity φ+ (φ−) is defined
by the excess value of the chemical potential of a fluid particle
with diameter σ+ (σ−) in the limit of infinite dilution and,
hence, takes into account the size of adsorbate species [40]. The
geometrical porosity φ0 is independent of adsorbate. It defines
a “bare” pore volume of the matrix and can be considered as
a more general characteristic. For the HS matrix φ0 = 1 − η0,
where η0 = πρ0σ

3
0 /6, ρ0 = N0/V is the number density of

matrix particles.
Using the results obtained for an n-component HS fluid in

an m-component HS matrix [40] we find analytical expressions
for the chemical potentials νr

+ and νr
−. The expression for νr

+
in the SPT2b approximation providing the best accuracy reads

νr
+ = νSPT 2b

+ = ln(�3
+η+) − ln(φ+) + k1

+
ηi/φ0

1 − ηi/φ0
+ k2

+

(
ηi/φ0

1 − ηi/φ0

)2

+ k3
+

(
ηi/φ0

1 − ηi/φ0

)3

− ln

(
1 − ηi

φ

)

×
{

1 − φ

ηi

[
1 − φ

φ+

(η+ + λ3η−)

ηi

]}
− φ0

ηi

ln

(
1 − ηi

φ0

)(
1 − η+ + λ3η−

ηi

)
+ (η+ + λ3η−)

ηi

(
1 − φ

φ+

)
, (22)
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where ηi = η+ + η−, ηA = π
6 ρAσ 3

A (A = +,−), and

φ−1 = 1

ηi

(
η+
φ+

+ η−
φ−

)
. (23)

For φ+, we have

φ+ = (1 − η0) exp

(
− 6τλ

(1 + λ)

η0

(1 − η0)

{
1 + τλ

1 + λ

(
2 + 3η0

1 − η0

)
+ 4

3

(
τλ

1 + λ

)2[
1 + 3η0

1 − η0
+ 3

(
η0

1 − η0

)2]})
, (24)

where the parameter

τ = σ+−
σ0

= 1 + λ

2λ0
(25)

is introduced. φ− is obtained from Eq. (24) by replacing λ with 1/λ.
The expressions for coefficients ki

+ are as follows:

k1
+ = η−λ(λ2 + 3λ + 3) + 7η+

ηi

+ 3τλη0[η−(λ2 + 6λ + 1) + 8η+]

ηi(1 + λ)(1 − η0)
+ 6τ 2λ2η0(1 + 2η0)[η−(1 + λ) + 2η+]

ηi(1 + λ)2(1 − η0)2
, (26)

k2
+ = 3

2

[η2
−λ2(2λ + 3) + 2η+η−λ(λ + 4) + 5η2

+]

η2
i

+ 3τλη0[2η2
−λ(2 + 3λ) + η+η−(λ2 + 14λ + 5) + 10η2

+]

η2
i (1 + λ)(1 − η0)

+ 6τ 2λ2η0[η−(4η0λ + η0 + λ) + η+(5η0 + 1)]

(1 + λ)2(1 − η0)2ηi

, (27)

k3
+ = 3

[
2τλη0

(1 + λ)(1 − η0)
+ η+ + λη−

ηi

]2
η+ + λη−

ηi

. (28)

The expression for νr
− can be obtained from Eqs. (22)–(28) by replacing η+ with η− and vice versa as well as by replacing λ with

1/λ, φ+ with φ−, and ki
+ with ki

− (i = 1,2,3).
Based on the equations for νr

+ and νr
− obtained above one can derive analytic expressions for Mc

AB(0) and M
c
ABC(0,0) which

enter the equation (17) for the relevant chemical potential. In particular, for Sc
AB = M

c
AB(0)/

√
ρAρB we have

Sc
++ =

(
∂νr

−
∂η−

)
η+

η−
det

(
Ar

2

) , Sc
−− =

(
∂νr

+
∂η+

)
η−

η+
det

(
Ar

2

) , Sc
+− = −

(
∂νr

−
∂η+

)
η−

√
λ3η+η−

det
(
Ar

2

) , (29)

where

det
(
Ar

2

) = η+η−

[(
∂νr

+
∂η+

)
η−

(
∂νr

−
∂η−

)
η+

−
(

∂νr
+

∂η−

)
η+

(
∂νr

−
∂η+

)
η−

]
. (30)

Taking into account Eq. (18) and formulas (B1) and (B2) from Appendix B, the coefficients F1, F2, and F3 can be written in the
form

F1

ρ+
=
(

Sc
++ + η+

∂Sc
++

∂η+

)(
Sc

++ + z
√

zSc
+−

) + η−√
z

∂Sc
++

∂η−

(
Sc

+− + z
√

zSc
−−

)
,

F2

ρ−
= 1√

z

(
Sc

−− + η−
∂Sc

−−
∂η−

)(
Sc

+− + z
√

zSc
−−

) + η+
∂Sc

−−
∂η+

(
Sc

++ + z
√

zSc
+−

)
, (31)

F3√
ρ+ρ−

= Sc
+−

(
Sc

++ + η+
∂Sc

++
∂η+

)
+ zSc

+−

(
Sc

−− + η−
∂Sc

−−
∂η−

)
+ 1√

z
Sc

−−η−
∂Sc

++
∂η−

+ z
√

zSc
++η+

∂Sc
−−

∂η+
.

Explicit expressions for Eqs. (29)–(31) are too long to be
presented here.

IV. RESULTS AND DISCUSSION

Using the equations (17) and (18) (as well as the expressions
from Sec. III), we study the vapor-liquid phase diagrams
of the PM confined in a HS matrix. Here, we focus on a
monovalent size-asymmetric PM. Because of symmetry with
respect to the exchange of “+” and “−” ions, only λ > 1

or λ < 1 need be considered in this case. Supplementing the
above-mentioned equations by the Maxwell construction, we
calculate the coexistence curves and the corresponding critical
parameters for different values of size ratios λ and λ0 [see
Eqs. (14) and (15)] and for different matrix porosities φ0.
Estimates of the critical temperature and the critical density
are given by their values for which the maxima and minima of
the van der Waals loops coalesce. The reduced temperature and
the reduced density are chosen in the conventional form, which
is common to the works dealing with the phase behavior of an
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FIG. 1. Vapor-liquid phase diagrams at the fixed size ratios (a) λ0 = 1.5, (b) λ0 = 2.0, and (c) λ0 = 3.0 [see Eq. (15)]. In each case, data
are shown for different ratios of ion size asymmetry λ as indicated in the legends and for different matrix porosities φ0. At the fixed λ, φ0 = 1,
0.95, 0.9, and 0.85 (from top to bottom). The bulk case (φ0 = 1) is presented for comparison. Temperature T ∗ and the ion density ρ∗

i are in
dimensional reduced units defined in Eqs. (32).

asymmetric PM in the bulk state (see, for example, Ref. [14]):

T ∗ = kBT σ+−
q2z

, ρ∗
i = ρiσ

3
+−, (32)

where ρi = ρ+ + ρ− is the total ionic number density. It should
be noted that, for the bulk PM, our theory predicts a reduction
of the coexistence regions as well as a decrease of the critical
parameters T ∗

c and ρ∗
i,c with an increase of size asymmetry

[26,27]. This behavior qualitatively agrees with simulation
results [14–19].

The calculated phase diagrams in the (T ∗-ρ∗
i ) plane for

λ0 = 1.5, 2, and 3 are shown in Figs. 1(a)–1(c). In each
figure, for the given λ0, we show the coexistence curves for
λ = 1, 2, and 3 and for the three values of matrix porosity
φ0 = 0.85, 0.9, and 0.95. The bulk case, φ0 = 1.0, is shown
for comparison. For the fixed λ0 and λ, the phase diagrams
demonstrate the usual behavior of confined fluids, i.e., both the
critical temperature and the critical density decrease when the

porosity decreases and simultaneously the coexistence region
becomes narrower. An increase of size asymmetry of the ions
which corresponds to an increase of the parameter λ essentially
strengthens the tendency of T ∗

c and ρ∗
i,c towards lower values.

By contrast, an increase of the size of matrix particles, i.e.,
an increase of the parameter λ0, leads to the opposite effect.
Hence, in Figs. 1(a)–1(c) one can observe a competition
between different effects controlled by the parameters φ0, λ,
and λ0. Since the matrix is totally defined by its porosity and
by the size of matrix particles σ0, the parameters φ0 and λ0 =
σ0/σ− are responsible for the confinement effects. It is seen
from Fig. 1 that the strongest confinement effect is obtained for
the lowest porosity and for the smallest size of matrix particles,
i.e., for φ0 = 0.85 and λ0 = 1.5 [see Fig. 1(a)]. In this case, the
critical parameters T ∗

c and ρ∗
i,c dramatically decrease with an

increase of the ion size asymmetry λ. Moreover, for λ = 3, the
critical temperature T ∗

c is so low that the vapor-liquid phase
transition gets beyond the temperature range considered in our

FIG. 2. Dependence of the critical temperature T ∗
c on the size of matrix particles λ0 [see Eq. (15)] for different matrix porosities: (a)

φ0 = 0.85, (b) φ0 = 0.9, and (c) φ0 = 0.95. In each case, data are shown for different values of the ion size ratio λ.
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FIG. 3. Dependence of the critical temperature T ∗
c on the ion size ratio λ at the fixed size ratios (a) λ0 = 1.5, (b) λ0 = 2.0, and (c) λ0 = 3.0

[see Eq. (15)]. In each case, data are for different values of the matrix porosity as indicated in the legends. Open symbols denote the results
obtained in this study using the CV approach, filled triangles are MSA results [20], and filled circles denote simulation results [14].

study. On the other hand, the phase transition has been obtained
for larger matrix particles [see Figs. 1(b) and 1(c)], although
for λ0 = 2, the coexistence region is rather small.

In Figs. 2(a)–2(c), we present the dependence of the critical
temperature T ∗

c on λ0 in more detail. It is seen that, for
a symmetric ionic fluid (λ = 1), the dependence of T ∗

c on
λ0 is weak, especially for large porosity (φ0 = 0.95). For
an asymmetric ionic fluid (λ = 2 and 3), this dependence
drastically changes, i.e., T ∗

c starts to sharply decrease at small
values of λ0. This trend is more prominent when the porosity
φ0 is lower.

Similar to the bulk case, the critical temperature T ∗
c of

a confined ionic fluid decreases with an increase of size
asymmetry of ions λ. The corresponding results are shown
in Figs. 3(a)–3(c) for the matrix porosities φ0 = 0.85, 0.9, and
0.95 and for different sizes of the matrix particles λ0 = 1.5,
2.0, and 3.0. By comparison, in these figures we show the
critical temperatures of a bulk PM fluid obtained from the

grand canonical Monte Carlo simulations [14] and from the
calculations performed in the MSA [20]. It is seen that the
dependence of the critical temperature of a PM fluid on the ion
size asymmetry provided within our theoretical approach is
in a qualitative agreement with the simulation studies, while
the MSA leads to the results with the opposite trend which is
considered to be wrong. For a confined PM fluid, the slopes
of the dependence of T ∗

c on λ indicate that at lower matrix
porosities, the critical temperature decreases faster with λ.
The same effect is noticed when the size of matrix particles
is smaller.

The critical density ρ∗
i,c of the confined PM fluid depending

on λ is shown in Figs. 4(a)–4(c) for the same matrix porosities
and sizes of matrix particles as in the previous figures. As
one can see, general conclusions on the behavior of the critical
density ρ∗

i,c qualitatively repeat the conclusions on the behavior
of the critical temperature T ∗

c . It should be noted that our
theoretical predictions of the trend of ρ∗

i,c with λ is in qualitative

FIG. 4. Dependence of the critical density ρ∗
i,c on the ion size ratio λ at the fixed size ratios (a) λ0 = 1.5, (b) λ0 = 2.0, and (c) λ0 = 3.0

[see Eq. (15)]. In each case, data are for different values of the matrix porosity as indicated in the legends. Open symbols denote the results
obtained in this study using the CV approach and filled triangles are MSA results [20].
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agreement with the simulation findings for the bulk PM [14].
On the other hand, the MSA approach again provides a wrong
trend.

V. CONCLUSIONS

We have studied the vapor-liquid phase equilibrium of an
asymmetric binary ionic model confined in a disordered porous
medium formed by a HS matrix. To this end, considering
the whole system as a partly quenched model, we have
developed a theoretical approach that enables us to formulate
a perturbation theory. The approach is based on the CV
method with a reference system. For an asymmetric PM in
the bulk state, it allowed us to obtain the correct trends of
both the critical temperature and the critical density with size
and charge asymmetry. Following the ideas earlier proposed
for the bulk PM, we have derived an explicit expression
for the relevant chemical potential conjugate to the order
parameter which includes the effects of correlations up to third
order. It should be emphasized that the expression takes into
account both charge and size asymmetry at the same level of
approximation.

In this paper, the reference system is considered to be a two-
component HS fluid confined in a disordered HS matrix. The
HS fluid is characterized by the parameter of size asymmetry
λ = σ+/σ− while the matrix is characterized by the diameter of
obstacles σ0 and different types of matrix porosity, geometrical
porosity φ0, and two probe-particle porosities φ+ and φ−.
The description of the reference system has been carried out
by using the recent generalization of the SPT theory for a
multicomponent fluid in a multicomponent matrix. Here, we
have presented explicit expressions for the partial chemical
potentials in the approximation that provides the best accuracy
against the simulation results. Based on these expressions, we
have found analytical formulas for the two- and three-body
correlation functions of the reference system in the long-
wavelength limit.

Using an expression for the relevant chemical potential,
we have calculated the vapor-liquid phase diagrams of a
monovalent PM with λ = 1, 2, and 3 confined in the HS
matrix of different porosities φ0 = 0.85, 0.90, and 0.95 and
with different size ratios between the matrix obstacles and
the negatively charged ions, λ0 = σ0/σ− = 1, 1.5, 2, and 3.
Based on the phase diagrams, the critical parameters T ∗

c

and ρ∗
i,c of a confined PM fluid have been obtained. It has

been shown that both the critical temperature and the critical
density lower when the matrix porosity decreases. On the
other hand, at a fixed porosity, the critical parameters T ∗

c

and ρ∗
i,c are higher in a matrix of large particles than in a

matrix of small particles. An increase in the ratio of ion size
asymmetry λ leads to the lowering of T ∗

c and ρ∗
i,c, and this

trend is essentially strengthened by the confinement effect at
lower porosities, especially when a matrix is composed of the
particles of small sizes. It should be noted that variations in
the critical parameters T ∗

c and ρ∗
i,c with λ and φ0 confirm our

previous results obtained within the framework of the AMSA
where, however, only the case of fixed λ0 = 2 is considered.
A distinguishing feature of the present approach is the pos-
sibility to derive, without additional assumptions such as the
presence of ion pairs, an analytical expression for the chemical

potential conjugate to the order parameter which provides
a qualitatively correct phase behavior of a rather complex
system.

Finally, for the asymmetric PM confined in a disordered
porous matrix, we have proposed an analytical approach which
allows one to make qualitative predictions of the vapor-liquid
phase behavior depending on size and charge asymmetry
of ions and on matrix characteristics such as a geometrical
porosity and a diameter of solid obstacles. We expect that
taking into account of higher-order correlations will lead to
quantitative, but not qualitative, changes to our results. It
should be noted that the present approach can be extended
for more complex models, e.g., for the models which include
attractive or repulsive ion-matrix interactions in addition to a
hard-core repulsion.
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APPENDIX A: GRAND PARTITION FUNCTION
OF A (2s + 1)-COMPONENT REPLICATED MODEL

IN THE MEAN-FIELD APPROXIMATION

The MF part of the grand partition function is of the form

�mf = �r
[
ν̃0,ν̃

α
A

]
× exp

{
〈N0〉r

[
β

2
ρ0ũ

(p)
00 (0) +

∑
α

∑
A

βρα
Aũ

α(p)
0A (0)

]}
,

(A1)

where �r is the grand partition function of a (2s + 1)-
component reference system with the renormalized partial
chemical potentials

ν̃0 = ν0 + β

2V

∑
k

ũ
(p)
00 (k) − ρ0βũ

(p)
00 (0)

−
∑

α

∑
A

ρα
Aβũ

α(p)
0A (0), (A2)

ν̃α
A = να

A + β

2V

∑
k

ũ
αα(p)
AA (k) − ρ0βũ

α(p)
0A (0)

−
∑
B

ρα
Bβũ

αα(p)
AB (0), (A3)

where ν0 = βμ0 − ln �3
0 and να

A = βμα
A − ln �3

A are the di-
mensionless chemical potentials of the corresponding species
(�0 and �A are the de Broglie thermal wavelengths), ρ0 =
〈N0〉r/V , ρα

A = 〈Nα
A〉r/V , 〈. . .〉r indicates the average taken

over the reference system, ũ
(p)
00 (k), ũ

α(p)
0A (k), and ũ

αα(p)
AB (k)

are the Fourier transforms of the perturbative parts of the
corresponding interaction potentials.
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APPENDIX B: EXPRESSIONS FOR Mα1α2α3 (0,0)

For a two-component system, the expressions for the third-order cumulants in the long-wavelength limit are as follows:

M+++(0,0) = ρ+

{
S++(0)

[
S++(0) + η+

(
∂S++(0)

∂η+

)
η−

]
+

√
ρ+
ρ−

S+−(0) η−

(
∂S++(0)

∂η−

)
η+

}
, (B1)

M++−(0,0) = √
ρ+ρ−

{
S+−(0)

[
S++(0) + η+

(
∂S++(0)

∂η+

)
η−

]
+
√

ρ+
ρ−

S−−(0) η−

(
∂S++(0)

∂η−

)
η+

}
. (B2)

The expressions for M−−−(0,0) and M+−−(0,0) can be obtained replacing indices “+” by indices “−” and vice versa. The same
formulas are valid for the connected parts of the corresponding quantities.

[1] J. Le Bideau, L. Viau, and A. Vioux, Chem. Soc. Rev. 40, 907
(2011).

[2] M. P. Singh, R. K. Singh, and S. Chandra, Prog. Mater. Sci. 64,
73 (2014).

[3] S. Zhang, J. Zhang, Y. Zhang, and Y. Deng, Chem. Rev. 117,
6755 (2017).

[4] E. Kierlik, P. A. Monson, M. L. Rosinberg, L. Sarkisov, and G.
Tarjus, Phys. Rev. Lett. 87, 055701 (2001).

[5] L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-
Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).

[6] B. Coasne, A. Galarneau, R. J. M. Pellenq, and F. Di Renzo,
Chem. Soc. Rev. 42, 4141 (2013).

[7] P. A. Monson, Microporous Mesoporous Mater. 160, 47 (2012).
[8] O. Pizio, A. Patrykiejew, and S. Sokolowski, Condens. Matter

Phys. 7, 779 (2004).
[9] O. Pizio, A. Patrykiejew, and S. Sokolowski, J. Chem. Phys. 121,

11957 (2004).
[10] O. Pizio and S. Sokolowski, J. Chem. Phys. 122, 144707 (2005).
[11] B. Loubet, M. Manghi, and J. Palmeri, J. Chem. Phys. 145,

044107 (2016).
[12] D. Schneider, D. Kondrashova, and R. Valiullin, Sci. Rep. 7,

7216 (2017).
[13] O. Patsahan and I. Mryglod, in Order, Disorder and Criticality:

Advances Problems of Phase Transition Theory, edited by Yu.
Holovach (World Scientific, Singapore, 2012), Vol. 3, p. 47.

[14] J. M. Romero-Enrique, G. Orkoulas, A. Z. Panagiotopoulos, and
M. E. Fisher, Phys. Rev. Lett. 85, 4558 (2000).

[15] Q. Yan and J. J. de Pablo, Phys. Rev. Lett. 86, 2054 (2001).
[16] Q. Yan and J. J. de Pablo, Phys. Rev. Lett. 88, 095504 (2002).
[17] Q. Yan and J. J. de Pablo, J. Chem. Phys. 116, 2967 (2002).
[18] D. W. Cheong and A. Z. Panagiotopoulos, J. Chem. Phys. 119,

8526 (2003).
[19] Y. C. Kim, M. E. Fisher, and A. Z. Panagiotopoulos, Phys. Rev.

Lett. 95, 195703 (2005).
[20] E. González-Tovar, Mol. Phys. 97, 1203 (1999).
[21] D. M. Zuckerman, M. E. Fisher, and S. Bekiranov, Phys. Rev. E

64, 011206 (2001).
[22] M. E. Fisher, J.-N. Aqua, and S. Banerjee, Phys. Rev. Lett. 95,

135701 (2005).
[23] Y. Qin and J. M. Prausnitz, J. Chem. Phys. 121, 3181 (2004).
[24] O. V. Patsahan, I. M. Mryglod, and T. M. Patsahan, J. Phys.:

Condens. Matter 18, 10223 (2006).
[25] O. Patsahan and T. Patsahan, AIP Conf. Proc. 1198, 124 (2009).
[26] O. V. Patsahan and T. M. Patsahan, Phys. Rev. E 81, 031110

(2010).

[27] O. V. Patsahan and T. M. Patsahan, Condens. Matter Phys. 13,
23004 (2010).

[28] O. V. Patsahan and T. M. Patsahan, J. Mol. Liq. 164, 44 (2011).
[29] W. G. Madden and E. D. Glandt, J. Stat. Phys. 51, 537 (1988).
[30] B. Hribar-Lee, M. Lukšič, and V. Vlachy, Annu. Rep. Prog.

Chem., Sect. C: Phys. Chem. 107, 14 (2011).
[31] H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31,

369 (1959).
[32] M. Holovko and W. Dong, J. Phys. Chem. B 113, 6360 (2009).
[33] T. Patsahan, M. Holovko, and W. Dong, J. Chem. Phys. 134,

074503 (2011).
[34] M. Holovko, T. Patsahan, and W. Dong, Condens. Matter Phys.

15, 23607 (2012).
[35] M. Holovko, T. Patsahan, and W. Dong, Pure Appl. Chem. 85,

115 (2013).
[36] Y. V. Kalyuzhnyi, M. Holovko, T. Patsahan, and P. T. Cummings,

J. Phys. Chem. Lett. 5, 4260 (2014).
[37] M. Holovko, T. Patsahan, and V. Shmotolokha, Condens. Matter

Phys. 18, 13607 (2015).
[38] M. Holovko, V. Shmotolokha, and T. Patsahan, in Proceedings

of the Physics of Liquid Matter: Modern Problems, edited by
L. Bulavin and N. Lebovka (Springer International Publishing,
Switzerland, 2015), Vol. 171, p. 3.

[39] M. Holovko, V. Shmotolokha, and T. Patsahan, J. Mol. Liq. 189,
30 (2014).

[40] W. Chen, S. L. Zhao, M. Holovko, X. S. Chen, and W. Dong,
J. Phys. Chem. B 120, 5491 (2016).

[41] M. F. Holovko, T. M. Patsahan, and O. V. Patsahan, J. Mol. Liq.
235, 53 (2017).

[42] J. A. Given and G. Stell, J. Chem. Phys. 97, 4573 (1992).
[43] M. F. Holovko, O. Patsahan, and T. Patsahan, J. Phys.: Condens.

Matter 28, 414003 (2016).
[44] G. Stell, in Phase Transitions and Critical Phenomena, edited

by C. Domb and M. S. Green (Academic Press, London, 1975),
Vol. 5b, p. 205.

[45] J. A. Given and G. Stell, Phys. A (Amsterdam, Neth.) 209, 495
(1994).

[46] E. Paschinger and G. Kahl, Phys. Rev. E 61, 5330 (2000).
[47] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.

54, 5237 (1971).
[48] I. R. Yukhnovskii and O. V. Patsahan, J. Stat. Phys. 81, 647

(1995).
[49] J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19, 774 (1951).
[50] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic Press, New York, 1986).

022109-11

https://doi.org/10.1039/C0CS00059K
https://doi.org/10.1039/C0CS00059K
https://doi.org/10.1039/C0CS00059K
https://doi.org/10.1039/C0CS00059K
https://doi.org/10.1016/j.pmatsci.2014.03.001
https://doi.org/10.1016/j.pmatsci.2014.03.001
https://doi.org/10.1016/j.pmatsci.2014.03.001
https://doi.org/10.1016/j.pmatsci.2014.03.001
https://doi.org/10.1021/acs.chemrev.6b00509
https://doi.org/10.1021/acs.chemrev.6b00509
https://doi.org/10.1021/acs.chemrev.6b00509
https://doi.org/10.1021/acs.chemrev.6b00509
https://doi.org/10.1103/PhysRevLett.87.055701
https://doi.org/10.1103/PhysRevLett.87.055701
https://doi.org/10.1103/PhysRevLett.87.055701
https://doi.org/10.1103/PhysRevLett.87.055701
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1039/c2cs35384a
https://doi.org/10.1039/c2cs35384a
https://doi.org/10.1039/c2cs35384a
https://doi.org/10.1039/c2cs35384a
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.5488/CMP.7.4.779
https://doi.org/10.5488/CMP.7.4.779
https://doi.org/10.5488/CMP.7.4.779
https://doi.org/10.5488/CMP.7.4.779
https://doi.org/10.1063/1.1818677
https://doi.org/10.1063/1.1818677
https://doi.org/10.1063/1.1818677
https://doi.org/10.1063/1.1818677
https://doi.org/10.1063/1.1883165
https://doi.org/10.1063/1.1883165
https://doi.org/10.1063/1.1883165
https://doi.org/10.1063/1.1883165
https://doi.org/10.1063/1.4959034
https://doi.org/10.1063/1.4959034
https://doi.org/10.1063/1.4959034
https://doi.org/10.1063/1.4959034
https://doi.org/10.1038/s41598-017-07406-2
https://doi.org/10.1038/s41598-017-07406-2
https://doi.org/10.1038/s41598-017-07406-2
https://doi.org/10.1038/s41598-017-07406-2
https://doi.org/10.1103/PhysRevLett.85.4558
https://doi.org/10.1103/PhysRevLett.85.4558
https://doi.org/10.1103/PhysRevLett.85.4558
https://doi.org/10.1103/PhysRevLett.85.4558
https://doi.org/10.1103/PhysRevLett.86.2054
https://doi.org/10.1103/PhysRevLett.86.2054
https://doi.org/10.1103/PhysRevLett.86.2054
https://doi.org/10.1103/PhysRevLett.86.2054
https://doi.org/10.1103/PhysRevLett.88.095504
https://doi.org/10.1103/PhysRevLett.88.095504
https://doi.org/10.1103/PhysRevLett.88.095504
https://doi.org/10.1103/PhysRevLett.88.095504
https://doi.org/10.1063/1.1435567
https://doi.org/10.1063/1.1435567
https://doi.org/10.1063/1.1435567
https://doi.org/10.1063/1.1435567
https://doi.org/10.1063/1.1612473
https://doi.org/10.1063/1.1612473
https://doi.org/10.1063/1.1612473
https://doi.org/10.1063/1.1612473
https://doi.org/10.1103/PhysRevLett.95.195703
https://doi.org/10.1103/PhysRevLett.95.195703
https://doi.org/10.1103/PhysRevLett.95.195703
https://doi.org/10.1103/PhysRevLett.95.195703
https://doi.org/10.1080/00268979909482922
https://doi.org/10.1080/00268979909482922
https://doi.org/10.1080/00268979909482922
https://doi.org/10.1080/00268979909482922
https://doi.org/10.1103/PhysRevE.64.011206
https://doi.org/10.1103/PhysRevE.64.011206
https://doi.org/10.1103/PhysRevE.64.011206
https://doi.org/10.1103/PhysRevE.64.011206
https://doi.org/10.1103/PhysRevLett.95.135701
https://doi.org/10.1103/PhysRevLett.95.135701
https://doi.org/10.1103/PhysRevLett.95.135701
https://doi.org/10.1103/PhysRevLett.95.135701
https://doi.org/10.1063/1.1770651
https://doi.org/10.1063/1.1770651
https://doi.org/10.1063/1.1770651
https://doi.org/10.1063/1.1770651
https://doi.org/10.1088/0953-8984/18/45/009
https://doi.org/10.1088/0953-8984/18/45/009
https://doi.org/10.1088/0953-8984/18/45/009
https://doi.org/10.1088/0953-8984/18/45/009
https://doi.org/10.1063/1.3284407
https://doi.org/10.1063/1.3284407
https://doi.org/10.1063/1.3284407
https://doi.org/10.1063/1.3284407
https://doi.org/10.1103/PhysRevE.81.031110
https://doi.org/10.1103/PhysRevE.81.031110
https://doi.org/10.1103/PhysRevE.81.031110
https://doi.org/10.1103/PhysRevE.81.031110
https://doi.org/10.5488/CMP.13.23004
https://doi.org/10.5488/CMP.13.23004
https://doi.org/10.5488/CMP.13.23004
https://doi.org/10.5488/CMP.13.23004
https://doi.org/10.1016/j.molliq.2011.05.014
https://doi.org/10.1016/j.molliq.2011.05.014
https://doi.org/10.1016/j.molliq.2011.05.014
https://doi.org/10.1016/j.molliq.2011.05.014
https://doi.org/10.1007/BF01028471
https://doi.org/10.1007/BF01028471
https://doi.org/10.1007/BF01028471
https://doi.org/10.1007/BF01028471
https://doi.org/10.1039/c1pc90001c
https://doi.org/10.1039/c1pc90001c
https://doi.org/10.1039/c1pc90001c
https://doi.org/10.1039/c1pc90001c
https://doi.org/10.1063/1.1730361
https://doi.org/10.1063/1.1730361
https://doi.org/10.1063/1.1730361
https://doi.org/10.1063/1.1730361
https://doi.org/10.1021/jp809706n
https://doi.org/10.1021/jp809706n
https://doi.org/10.1021/jp809706n
https://doi.org/10.1021/jp809706n
https://doi.org/10.1063/1.3532546
https://doi.org/10.1063/1.3532546
https://doi.org/10.1063/1.3532546
https://doi.org/10.1063/1.3532546
https://doi.org/10.5488/CMP.15.23607
https://doi.org/10.5488/CMP.15.23607
https://doi.org/10.5488/CMP.15.23607
https://doi.org/10.5488/CMP.15.23607
https://doi.org/10.1351/PAC-CON-12-05-06
https://doi.org/10.1351/PAC-CON-12-05-06
https://doi.org/10.1351/PAC-CON-12-05-06
https://doi.org/10.1351/PAC-CON-12-05-06
https://doi.org/10.1021/jz502135f
https://doi.org/10.1021/jz502135f
https://doi.org/10.1021/jz502135f
https://doi.org/10.1021/jz502135f
https://doi.org/10.5488/CMP.18.13607
https://doi.org/10.5488/CMP.18.13607
https://doi.org/10.5488/CMP.18.13607
https://doi.org/10.5488/CMP.18.13607
https://doi.org/10.1016/j.molliq.2013.05.030
https://doi.org/10.1016/j.molliq.2013.05.030
https://doi.org/10.1016/j.molliq.2013.05.030
https://doi.org/10.1016/j.molliq.2013.05.030
https://doi.org/10.1021/acs.jpcb.6b02957
https://doi.org/10.1021/acs.jpcb.6b02957
https://doi.org/10.1021/acs.jpcb.6b02957
https://doi.org/10.1021/acs.jpcb.6b02957
https://doi.org/10.1016/j.molliq.2016.11.030
https://doi.org/10.1016/j.molliq.2016.11.030
https://doi.org/10.1016/j.molliq.2016.11.030
https://doi.org/10.1016/j.molliq.2016.11.030
https://doi.org/10.1063/1.463883
https://doi.org/10.1063/1.463883
https://doi.org/10.1063/1.463883
https://doi.org/10.1063/1.463883
https://doi.org/10.1088/0953-8984/28/41/414003
https://doi.org/10.1088/0953-8984/28/41/414003
https://doi.org/10.1088/0953-8984/28/41/414003
https://doi.org/10.1088/0953-8984/28/41/414003
https://doi.org/10.1016/0378-4371(94)90200-3
https://doi.org/10.1016/0378-4371(94)90200-3
https://doi.org/10.1016/0378-4371(94)90200-3
https://doi.org/10.1016/0378-4371(94)90200-3
https://doi.org/10.1103/PhysRevE.61.5330
https://doi.org/10.1103/PhysRevE.61.5330
https://doi.org/10.1103/PhysRevE.61.5330
https://doi.org/10.1103/PhysRevE.61.5330
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1007/BF02179251
https://doi.org/10.1007/BF02179251
https://doi.org/10.1007/BF02179251
https://doi.org/10.1007/BF02179251
https://doi.org/10.1063/1.1748352
https://doi.org/10.1063/1.1748352
https://doi.org/10.1063/1.1748352
https://doi.org/10.1063/1.1748352



