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Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems
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A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex
system with multiple time and length scales. In this approach, the system is formally treated as being composed of
a small subsystem—representing the region where the measurements are made—in contact with a set of “nested
heat reservoirs” corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs
are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The
probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the
temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy
principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The
marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional
distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special
transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is
then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost
reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported
here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E
95, 032315 (2017)] from a stochastic dynamical approach to the problem.
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I. INTRODUCTION

Complex systems with multiple time and length scales occur
frequently in many areas of physics and interdisciplinary fields,
such as turbulence [1], random-matrix theory [2], high-energy
collision physics [3,4], and econophysics [5], to mention
only a few. One common feature among many such systems
is the appearance of probability distributions that deviate
considerably from what one would expect (say, Gaussian or
exponential behavior) on the basis of standard equilibrium
statistical mechanics arguments. A great deal of effort has
therefore been devoted to constructing physical models that
generate such heavy-tailed distributions. One approach that has
attracted considerable attention is the so-called nonextensive
statistical mechanics formalism [6] whereby a power-law
distribution, known as the Tsallis distribution, is obtained
by maximizing a nonextensive entropy that generalizes the
Boltzmann entropy formula. Heavy-tailed distributions can
also be accounted for by a superposition of two statistics—a
procedure known in mathematics as compounding [7] and
in physics as superstatistics [8]. In particular, the Tsallis
distribution can be readily obtained from the superstatistics
approach by an appropriate choice of the weighting distribution
[8]. Furthermore, this choice of weighting distribution can be
justified from both a Bayesian analysis [9,10] and a maximum
entropy principle based on the Boltzmann-Shannon entropy
[11–15], thus circumventing the need to introduce a non-
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extensive entropy to justify the emergence of heavy-tailed
distributions.

Recently, we introduced a general formalism [16–18] that
extends the superstatistics approach to multiscale systems and
gives rise to a large family of heavy-tailed distributions labeled
by the number N of different scales present in the system.
(Usual superstatistics corresponds to N = 1 [19].) In this hier-
archical formalism, to which we refer as H-theory, it is assumed
that at large scales the statistics of the system is described
by a known distribution that contains a parameter (say, the
temperature T0) that characterizes the global equilibrium of the
system. At short scales, however, the system deviates consid-
erably from the large-scale distribution, owing to the complex
multiscale dynamics (intermittency effects) of the system. The
scale dependence of the relevant distributions can be effectively
described by assuming that the environment (background) sur-
rounding the small system under investigation changes slowly
in time. The dynamics of the background is then formulated
as a set of hierarchical stochastic differential equations whose
form is derived from simple physical constraints, yielding only
two “universality classes” for the stationary distributions of the
background variables at each level of the hierarchy: (i) a gamma
distribution and (ii) an inverse-gamma distribution. For both
classes, analytical expressions are obtained for the marginal
distribution of the background variable at the lowest level of
the hierarchy in terms of Meijer G functions, from which the
heavy-tailed distribution of the fluctuating signal is computed
(and also written in terms of G functions). Here two classes of
signal distributions are found [18] according to the behavior
at the tails: (i) power-law decay and (ii) stretched-exponential
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tail. Applications of the H-theory to empirical data from several
systems, such as turbulence [16,17], financial markets [18], and
random fiber lasers [20] have yielded excellent results.

The dynamical formulation of the H-theory reviewed in the
preceding paragraph represents a “microscopic” (i.e., small-
scale) approach to the problem in that it tries to model the
fluctuations in the environment under which the system evolves
by a set of stochastic differential equations, which in principle
provides a full description of the time-dependent stationary
joint distribution function of the background variables. In this
paper we take an alternative, thermodynamic-like approach
in which the background distribution will be derived from a
maximum entropy principle, thus bypassing the need to specify
the underlying dynamics. We remark that this weakening of
the basic dynamical hypothesis of H-theory leads to a con-
siderable expansion of its domain of applicability, which may
now include complex multiscale systems with non-Markovian
stochastic dynamics.

The main purpose of the paper is to present a unified
maximum-entropy principle suitable for hierarchical complex
systems in statistical equilibrium. The main idea in our ap-
proach is to write the Boltzmann-Shannon entropy of the
system in terms of the local equilibrium distribution of states of
the small system under observation and the distributions of the
background variables, representing the effective temperatures
across the hierarchy of length scales. In other words, the system
is treated as being effectively composed of a small system
coupled to a set of “nested heat reservoirs” of increasingly
larger size. Such hierarchy of reservoirs represents the distinct
characteristic length scales of the system, where the temper-
ature of each reservoir is allowed to fluctuate owing to the
complex interactions between scales; see below.

In this multiscale picture, we seek to maximize the entropy
with respect to the conditional temperature distributions at
each level of the hierarchy, subject to certain physically
motivated constraints. In doing so, we obtain a general family
of distributions that includes two particular classes, namely,
the generalized gamma and the generalized inverse-gamma
distributions. The marginal distribution of temperature of the
innermost reservoir (i.e., at the lowest level of the hierarchy)
is obtained by integrating over the conditional distributions of
all larger scales. Remarkably, the resulting distribution can be
written explicitly in terms of a known special function, namely,
the Fox H function. Averaging the quasiequilibrium Boltz-
mann distribution of the small system over the temperature of
the innermost reservoir then yields the marginal distribution of
states, which can also be written in terms of Fox H functions.
Here again the distributions of states can be classified into two
classes according to the tail behavior, namely, the power-law
and stretched-exponential classes. For a particular choice of
constraints our generalized distributions recover the distribu-
tion obtained in Ref. [18] in terms of Meijer G functions.
The H-theory described here thus provides a rather general
framework to describe the statistics of fluctuations in complex
systems with multiple time and length scales.

II. MULTISCALE SYSTEMS

We consider a multiscale complex system that is character-
ized by N well-separated time scales τi , i = 1, . . . ,N , in addi-

FIG. 1. Multiscale system at thermal equilibrium at
temperature T0. Each nested reservoir has an effective temperature
Tj , j = 1, . . . ,N , which fluctuates around the same mean T0.

tion to a large decorrelation time τ0 above which fluctuations in
the system are essentially uncorrelated. Let us order these time
scales from smallest to largest: τN � τN−1 � · · · � τ1 � τ0.
Thus, if one samples the system at time intervals larger than or
comparable to τ0, one will find the usual canonical distribution
of states: p(q|β0) = exp[−β0E(q)]/Z(β0), where q denotes
the state variables, β0 = 1/kBT0 with T0 representing the
“global” temperature of the system, E(q) is the energy of
the state labeled by q, and Z(β0) is the large-scale partition
function defined by Z(β0) = ∫

exp[−β0E(q)]dq.
At short time scales (say, smaller than the smallest char-

acteristic time τN ), the distribution of states p(q) deviates
considerably from the large-scale distribution p(q|β0), owing
to the complex multiscale dynamics of the system. In this
scenario, it is convenient to consider the system as being com-
posed of a small subsystem—corresponding to the effective
region where the measurements are performed—and a large
subsystem that has a slow internal dynamics characterized by
several hierarchically arranged time scales. Thus, in contrast
to the usual canonical formulation, the large subsystem can
no longer be treated as a single heat reservoir with a fixed
temperature. Instead, it must be viewed as a set of N nested
reservoirs where each reservoir is described by a fluctuating
temperature Tj , j = 1, . . . ,N ; a cartoon view of the model
is shown in Fig. 1. Physically, the fluctuations in these
effective “temperatures” at different scales are caused by the
complex interactions (exchange of energy) between scales in
the hierarchy, in analogy with the phenomenon of intermittency
in turbulence [1]. These interactions between scales can be
roughly decomposed into two main components: (i) local
energy exchange between adjacent reservoirs which tends to
“equilibrate” their temperatures and (ii) energy transfer from
larger scales onto smaller ones (not necessarily adjacent in
the hierarchy) which may occur intermittently and represents
a source of noise (i.e., fluctuations) for the temperature at
the smaller scale. Notice, in particular, that if only local
interactions were allowed the system as a whole would relax
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to a state described by only one (constant) temperature T0,
irrespective of the scale, and so one would be back to the usual
canonical formalism. In other words, nonlocal interactions (in
the above sense) are necessary to account for deviations from
the usual Boltzmann-Gibbs distributions.

Invoking Bayes’s theorem, the joint equilibrium distribution
p(q,β1, . . . ,βN ), where βj = 1/kBTj , can be factorized as

p(q,β) = p(q|β)p(β), (1)

where we introduced the notation β ≡ (β1,β2, . . . ,βN ). Be-
cause of the hierarchical nature of our system and separation
of time scales, we assume that the stationary conditional
distribution p(q|β) depends only on the inverse temperature
βN of the innermost reservoir, since this quantity characterizes
the (slowly changing) state of the environment coupled to the
small system of interest. We then write

p(q|β) = p(q|βN ). (2)

This means that the physical constraints imposed on the system
at the large scale (and which fix the global temperature T0) do
not directly influence the small scales but rather are transferred
down the hierarchy through the intervening scales. Under these
assumptions, the marginal distribution p(q) can be written as

P (q) =
∫ ∞

0
P (q|βN )p(βN )dβN, (3)

where the probability distribution p(βN ) of the local inverse
temperature βN is given by

p(βN ) =
∫ ∞

0
· · ·

∫ ∞

0
p(β)dβ1 · · · dβN−1. (4)

Owing to the separation of time scales, it is reasonable to
assume that the small subsystem, which has a fast dynamics,
is in local equilibrium with its immediate vicinity whose
inverse temperature βN changes much more slowly. In other
words, over short time periods (during which βN does not
change appreciably) the conditional probability p(q|βN ) can
be described by a Boltzmann distribution:

p(q|βN ) = exp[−βNE(q)]

Z(βN )
. (5)

The remaining task then is to find the distribution p(βN )
of the local inverse temperature which encodes the complex
dynamics of the multiscale background. This can be done by
exploiting the hierarchical structure of the system, as argued
below.

We assume that the inverse temperature of a subsystem
(reservoir) at a given level j of the hierarchy depends con-
ditionally only on the inverse temperature of the reservoir at
the next level up the hierarchy (a Markov property), albeit its
coupling to the remaining degrees of freedom in the upper
levels are incorporated in the noise source (see below). We
may thus write the joint distribution p(β) as

p(β) =
N∏

j=1

f (βj |βj−1), (6)

where f (βj |βj−1) denotes the probability density of βj con-
ditioned on a fixed value of βj−1. In view of Eqs. (4) and (6),

the marginal distribution p(βN ) can now be written as

p(βN ) =
∫ ∞

0
· · ·

∫ ∞

0

N∏
j=1

f (βj |βj−1)dβ1 · · · dβN−1, (7)

In this way, our task has been reduced to computing the
conditional distributions f (βj |βj−1), for j = 1, . . . ,N . In the
next section we shall use a maximum entropy approach to solve
this problem.

III. ENTROPY FORMULATION

A. Dynamical approach

As pointed out in Ref. [18], a simple way to accommodate
the dynamical requirements of the hierarchical model is to
introduce the following set of coupled stochastic differential
equations for the time evolution of the inverse temperatures at
each level of the hierarchy:

dβj = −γj (βj − βj−1)dt + κjβ
s
jβ

1−s
j−1dWj ; j = 1, . . . ,N,

(8)

where γj ,κj > 0 and s ∈ {1/2,1} parametrizes the two uni-
versality classes. The specific form of the stochastic process
described by Eq. (8) is fixed by the requirements of invariance
under scale transformation (βj → λβj ), positivity (βj (t) > 0),
and linear regression to the average global inverse temperature
[〈βj (t)〉 → β0 as t → ∞]. Notice that the deterministic term
in the dynamical model (8) represents the local interaction
between scales, whereas the noise term accounts for nonlocal
interactions leading to intermittency.

The corresponding Fokker-Planck equation is

∂tP = −
N∑

j=1

∂βj
Jj , (9)

where

Jj = −γj (βj − βj−1)P − κ2
j

2
∂βj

(
β2s

j β2−2s
j−1 P

)
. (10)

To be consistent with Eq. (6), we assume widely separated time
scales γN 	 γN−1 	 · · · 	 γ1 and κN 	 κN−1 	 · · · 	 κ1,
so that the condition of microscopic reversibility Jj = 0
applies for the equilibrium distribution. We thus have

∂βj

(
β2s

j β2−2s
j−1 Peq

) = −αj (βj − βj−1)Peq, (11)

where αj = 2γj/κ
2
j are free parameters. Equation (11) implies

in turn that the stationary distribution Peq(β) can be written in
the factorized form shown in Eq. (6).

Let us now consider the dynamical entropy defined as

S(t) = −
∫

P (β,t) ln P (β,t)dβ, (12)

where we use the short-hand notation dβ = ∏N
j=1 dβj . We

may use the existence of Peq(β) to write Eq. (12) as S(t) =
Si(t) + Se(t), where

Si(t) = −
∫

dβP (β,t) ln[P (β,t)/Peq(β)], (13)
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and

Se(t) = −
∫

dβP (β,t) ln Peq(β). (14)

Here the two terms of entropy have their changes, dSi(t) and
dSe(t), related to irreversible entropy production and reversible
entropy flow, respectively [21,22]. Taking the derivative of S(t)
with respect to time we get

Ṡi(t) = −
N∑

j=1

∫
dβJj∂βj

ln[P (β,t)/Peq(β)], (15)

and

Ṡe(t) = − d

dt
〈ln Peq(β)〉t . (16)

The sign of Ṡe(t) depends on the initial condition P0(β) ≡
P (β,0). In contrast, on using Eqs. (10) and (11) we see that

Ṡi(t) =
N∑

j=1

∫
dβ

2J 2
j

κ2
j β2s

j β2−2s
j−1 P (β,t)

� 0. (17)

We thus conclude that the stationary solution Peq(β) is a
dynamical maximum of Si(t). This result is consistent with
a more general analysis of the entropy evolution of stochastic
dynamical systems [23]. A Fokker-Planck approach to systems
governed by a hierarchical dynamics has also been considered
in the literature [24]. To proceed further we use Eq. (6) to write

ln Peq(β) =
∑

j

ln f (βj |βj−1) (18)

and thus

Si(t) = −
∫

dβP (β,t)

⎡
⎣ln P (β,t) −

∑
j

ln f (βj |βj−1)

⎤
⎦.

(19)

We may now extend Si to a Lagrange functional Si[P ] and
surmise that it reaches a conditional maximum at the stationary
solution P = Peq, with the averages 〈ln f (βj |βj−1)〉 being
constraints. This is the basic principle of the maximum entropy
method which we describe in the next section.

B. Multiscale entropy

We start by defining the information entropy of the joint
distribution p(q,β) by

S[p(q,β)] = −
∫ ∫

p(q,β) ln p(q,β) dq dβ. (20)

In view of Eqs. (1), (2), and (6), the entropy (20) can be
rewritten as

S[p(q,β)] =
∫

p(β)s(βN )dβ−
N∑

k=1

∫
p(β) ln f (βk|βk−1)dβ ,

(21)

where s(βN ) is the thermodynamic entropy of the small
subsystem

s(βN ) = −
∫

p(q|βN ) ln p(q|βN ) dq, (22)

which is a multiscale generalization of the entropy described
in superstatistics [11,15] for the case N = 1. Let us also define
the entropy at level j , for j = 0, . . . ,N − 1, as the average of
s(βN ) over all scales below this level, that is,

s(βj ) =
∫

s(βN )p(β)dβj+1 · · · dβN. (23)

We now seek to maximize Eq. (21) with respect to the
distributions f (βj |βj−1). To this end, let us first discuss the
constraints under which we shall carry out this maximization
procedure.

C. Constraints

The first set of constraints is given by the usual normaliza-
tion condition∫

f (βj |βj−1)dβj = 1, j = 1, . . . ,N. (24)

The second set of constraints entails the choice of a moment to
be kept fixed in the maximization procedure. Usually, the first
moment (mean) is the preferred choice [13,15]. Here, however,
we shall adopt a more general approach and fix the rth moment
of the distributions f (βj |βj−1). More specifically, we require
that ∫

βr
j f (βj |βj−1)dβj = βr

j−1, j = 1, . . . ,N, (25)

for some arbitrary real r 
= 0 (not necessarily an integer).
Notice that Eq. (25) implies that

〈
βr

j

〉 ≡
∫

βr
j p(βj )dβj = βr

0, j = 1, . . . ,N, (26)

where we introduced the notation

βj ≡ (β1, . . . ,βj ).

Equation (26) can be seen as a generalized equilibrium con-
dition in the sense that the average value of βr

j is the same at
all levels of the hierarchy. We anticipate that this generalized
constraint allows us to obtain a larger class of distributions
than that generated by the dynamical [18] approach described
in Sec. III A, as will be discussed in Sec. IV.

As an additional constraint we use the average entropy

〈s(βN )〉 ≡
∫

s(βN )p(β)dβ = s(β0), (27)

where s(β0) is fixed. It then follows from definition (23) that
the average entropy is the same across all scales:

〈s(βj )〉 ≡
∫

s(βj )p(βj )dβj = s(β0), j = 1, . . . ,N,

(28)

which is a reasonable equilibrium condition. Furthermore,
we shall assume that the thermodynamic entropy defined in
Eq. (22) satisfies the following relation:

s(βN ) ∼ s0 ln βN, (29)

where s0 is a constant and the notation ∼ indicates equality
except for an additive constant. [In other words, f (x) ∼ g(x)
means here that f (x) = g(x) + C, where C is a constant.] We
recall that relation (29) is valid for a large class of systems,
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such as those that obey the equipartition theorem, for which
the internal energy is proportional to the temperature [13,15].

We also make the assumption that the distribution
fk(βk|βk−1) is invariant under a rescaling of the variables
β → λβ:

fk(βk|βk−1)dβk = fk(λβk|λβk−1)d(λβk). (30)

Physically, this means that the temperature distributions should
remain of the same form regardless of the temperature scale
one chooses. Now, if we make λ = 1/βk−1 in Eq. (30) we get

fk(βk|βk−1)dβk = gk

(
βk

βk−1

)
dβk

βk−1
= gk(u)du, (31)

for some function gk(u), where u = βk/βk−1. Relation (31)
leads to the following two useful relations, which are proven
in Appendix A:

∫
p(βk) ln βkdβk ∼

∫
p(βj ) ln βjdβj , for j � k, (32)

and
∫

p(βk) ln f (βk|βk−1)dβk ∼ −
∫

p(βj ) ln βjdβj ,

for j < k. (33)

Now, inserting Eq. (29) into Eq. (23) and using Eq. (32), one
finds that

s(βj ) = s0 ln βj + sj , (34)

where sj is a constant that does not depend on βj . In view of
this relation, the constraint (28) can be written as

∫ (
ln βj

)
p(βj )dβj = cj , (35)

where cj is a constant.

D. Entropy maximization

In order to maximize Eq. (21) with respect to f (βj |βj−1),
for any given j , it is necessary to make explicit the dependence
of S[p(q,β)] on f (βj |βj−1). To this end, we first note that on
use of Eqs. (6) and (24) we can rewrite Eq. (21) as

S[p(q,β)] =
∫

s(βj )p(βj )dβj

−
j−1∑
k=1

∫
p(βk) ln f (βk|βk−1)dβk

−
∫

p(βj ) ln f (βj |βj−1)dβj

−
N∑

k=j+1

∫
p(βk) ln f (βk|βk−1)dβk. (36)

Now using Eqs. (33) and (34) in Eq. (36), one finds that

S[p(q,β)] ∼ cj

∫
p(βj ) ln βjdβj

−
∫

p(βj ) ln f (βj |βj−1)dβj

−
j−1∑
k=1

∫
p(βk) ln f (βk|βk−1)dβk, (37)

where cj = N − j − s0. Note that the entropy S[p(q,β)]
depends on f (βj |βj−1) only through the first two terms in
the right-hand side of Eq. (37).

Maximizing Eq. (37) with respect to f (βj |βj−1), subject to
the constraints in Eqs. (24), (25), and (35), yields
∫ [

ln f (βj |βj−1) + Aj + Bjβ
r
j + Cj ln βj

]
δjp(βj )dβj = 0,

(38)

where Aj , Bj , and Cj are Lagrange multipliers and δjp(βj ) ≡
p(βj−1)δf (βj |βj−1). The solution to Eq. (38) takes the form

f (βj |βj−1) = e−Aj β
−Cj

j exp
(−Bjβ

r
j

)
. (39)

To enforce the constraint (25) we choose Bj = αj/β
r
j−1 and

set Cj = −rαj + 1, where αj > 0. Using these parameters in
Eq. (39) one obtains the following general distribution:

fj (βj |βj−1) = |r|ααj

j

βj
(αj )

(
βj

βj−1

)rαj

exp

[
−αj

(
βj

βj−1

)r]
.

(40)

For r > 0 this distribution corresponds to the generalized
gamma distribution, whereas for r < 0 it gives the generalized
inverse gamma distribution.

We note furthermore that for the particular case r = 1 the
distribution (40) yields the usual gamma distribution,

fj (βj |βj−1) = (αj/βj−1)αj


(αj )
βj

αj −1 exp

(
−αjβj

βj−1

)
, (41)

whereas for r = −1 it gives the standard inverse gamma
distribution:

fj (βj |βj−1) = (αjβj−1)αj


(αj )
βj

−αj −1 exp

(
−αjβj−1

βj

)
. (42)

It is interesting to note that the generalized inverse gamma
distribution has been used to model the statistics of certain
complex systems, such as the wealth distribution in ancient
Egypt [25]. The Weibull and the Frechet distributions, which
are particular cases of the generalized gamma and generalized
inverse-gamma distributions, respectively, have also found
important applications in extreme value statistics [26] and sum
of correlated random variables [27]. Here, however, our interest
is to use Eq. (40) not so much as a stand-alone distribution
but rather as a means to obtain the distribution p(βN ) of
inverse temperatures at the innermost reservoir, from which
the distribution of states p(q) can be found. This is done next.
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IV. EQUILIBRIUM DISTRIBUTIONS

As discussed in Sec. II, the complex dynamics of the
large system (background) is felt by the small subsystem
only through the fluctuations of the inverse temperature βN

of the innermost reservoir. Thus, in order to determine the
marginal distribution of states p(q) of the small subsystem, it
is necessary first to compute the distribution p(βN ); see Eq. (3).
It is remarkable that both these distributions can be obtained
in analytical form in terms of some special transcendental
functions known as the Fox H functions [28], as shown below.

A. Background distribution

The marginal distribution p(βN ) at the lowest level of the
hierarchy is given by Eq. (7), where each of the distributions
f (βj |βj−1) appearing in this expression is as shown in Eq. (40).
In computing the multiple integrals in Eq. (7) the cases r > 0
and r < 0 need to be treated separately, but for both cases
these integrals can be calculated explicitly in terms of the Fox
H functions.

As shown in Appendix B, for the case r > 0 one finds

p(βN ) = ωρH
N,0
0,N

( −
(α − ρ1,ρ1)

∣∣∣∣ωρβN

β0

)
, (43)

while for r < 0 the result is

p(βN ) = 

ωρ

H
0,N
N,0

(
((1 − ρ)1 − α,ρ1)

−
∣∣∣∣ βN

ωρβ0

)
, (44)

where ρ = 1/|r|, ωρ = ∏N
j=1 α

ρ

j , and  = 1/[(β0
(α)]. Here
we have introduced the vector notation α ≡ (α1, . . . ,αN ) and

(a) ≡ ∏N

j=1 
(aj ). We have also used a dash in the top row
of the H function in Eq. (43) and in the low row of the H

function in Eq. (44) to indicate that the respective parameters
are not present.

We note in passing that after setting |r| = 1 in expressions
(43) and (44) we recover the two classes of universality for
the background distributions obtained in Ref. [18] from a
stochastic dynamical model. To see this, we note that for ρ = 1
the set of parameters ρ1 ≡ (ρ, . . . ,ρ) appearing in each of
the H functions above becomes simply the identity vector,
in which case the H function reduces to a simpler function,
namely, the Meijer G function [28]. Setting ρ = 1 in Eq. (43)
then yields

p(βN ) = ωG
N,0
0,N

( −
α − 1

∣∣∣∣ωβN

β0

)
, (45)
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FIG. 2. (a) Distribution of states p(E) for the power-law class for the following values of parameters: (a) N = 1, r = 0.5,1,2,3; (b) N = 3,
r = 0.5,1,2,3; (c) r = 1, N = 1,2,3,4; and (d) r = 2, N = 1,2,3,4. In all cases shown here we have used γ = 1, β0 = 1, Z(β0) = 1, and
αj = α = 1.0, for j = 1, . . . ,N .

022104-6



MAXIMUM ENTROPY APPROACH TO H -THEORY: … PHYSICAL REVIEW E 97, 022104 (2018)

0 5 10 15
E

10-6

10-4

10-2

100

p(E)

r=0.5
r=1
r=2
r=3

N=1

10-1 100 101
10-6

10-4

10-2

100

(a)

0 5 10 15
E

10-6

10-4

10-2

100

p(E)

r=0.5
r=1
r=2
r=3

N=3

10-1 100 101

10-4

10-2

100

(b)

0 5 10 15
E

10-4

10-2

100

p(E)

N=1
N=2
N=3
N=4

r=1

10-1 100 101
10-4

10-2

100

(c)

0 5 10 15
E

10-6

10-4

10-2

100

p(E)

N=1
N=2
N=3
N=4

r=2

10-1 100 101

10-4

10-2

100

(d)

FIG. 3. Distribution of states p(E) for the stretched exponential class with the same choice of parameters as in Fig. 2.

while from Eq. (44) one has

p(βN ) = 

ω
G

0,N
N,0

(−α

−
∣∣∣∣ βN

β0ω

)
, (46)

where ω = ∏N
j=1 αj . In comparing the distributions (45) and

(46) with the corresponding expressions given in Ref. [18] one
has to bear in mind that there the distributions are written in
terms of a variable εN which corresponds in the notation of the
present paper to 1/βN .

B. Distribution of states

In view of Eqs. (3) and (5), the marginal distribution of
states p(q) of the small subsystem can be written as

p(q) =
∫ ∞

0

exp[−βNE(q)]

Z(βN )
p(βN )dβN, (47)

where p(βN ) is given by either Eq. (43) or (44). In order
to carry out this integral one needs to know the dependence
of the partition function Z(βN ) on βN . Recalling that S =
∂(kBT ln Z)/∂T , one then sees that the assumption (29) is
compatible with the behavior Z(βN ) ∼ β

−γ

N , for some expo-
nent γ > 0, and so we write

Z(βN ) = Z(β0)

(
βN

β0

)−γ

. (48)

Inserting Eq. (48) into (47) yields

p(q) = 1

Z(β0)

∫ ∞

0

(
βN

β0

)γ

exp[−βNE(q)]p(βN )dβN. (49)

It is also remarkable that this integral can be carried out
explicitly in terms of Fox H functions for both classes of
background distributions, with the resulting distributions being
classified into two classes according to the behavior at the tails,
as follows:

(i) Power-law class. This is the case when r > 0. Upon
inserting Eq. (43) into (49) and using a convolution property
of the H function [28], the resulting integral can be performed
explicitly (see Appendix C), yielding

p(E) = 1

Z(β0)ωγ
ρ 
(α)

H
1,N
N,1

(
((1 − γρ)1 − α,ρ1)

(0,1)

∣∣∣∣β0E

ωρ

)
.

(50)

Here we have omitted the state variable q for simplicity
of notation, with the understanding that p(E) denotes the
probability of a state q with energy E(q). From the asymptotic
expansion of the H function for large arguments one finds [28]
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that the p(E) decays as a power-law for large values of E:

p(E) ∼
N∑

j=1

cj

Eγ+|r|αj
, for E → ∞, (51)

where the ci’s are constants. To illustrate the power-law class of
distributions we show in Fig. 2 some plots of the function p(E)
given in Eq. (50) for cases where γ = 1, β0 = 1, Z(β0) = 1,
and αj = α = 1.0. The values of the parameters N and r for
each plot are indicated in the figure caption. The main plots in
Fig. 2 are in semilogarithmic scale, while the insets show the
same data in log-log scale. One clearly sees from Figs. 2(a) and
2(b) that the smaller the value of the parameter r , for N fixed,
the heavier the tail of the distribution. This is in agreement with
the asymptotic behavior given in Eq. (51) which shows that the
exponent of the power law decreases as r decreases. Similarly,
from Figs. 2(c) and 2(d) one sees that the larger the number
N of scales, for r fixed, the heavier the tails. Note, however,
that the exponent of the power law does not depend on N ; see
Eq. (51). It is instead the prefactor that increases with N , since
we are taking αj = α, for j = 1, . . . ,N , thus causing a slower
decay of the tail.

(ii) Stretched-exponential class. This corresponds to the
case r < 0. Here the integral (49), with p(βN ) as given in
Eq. (44), can be written as

p(E) = ω
γ
ρ

Z(β0)
(α)
H

N+1,0
0,N+1

( −
(α − γρ1,ρ1),(0,1)

∣∣∣∣ωρβ0E

)
,

(52)

as also shown in Appendix C. The asymptotic behavior in this
case is given by a modified stretched exponential:

p(E) ∼ Eθexp[−A(ωρβ0E)1/(ρN+1)], for E → ∞, (53)

where θ = N (ᾱ − γρ − 1/2)/(ρN + 1), ᾱ = (1/N)
∑N

i=1 αi

and A = (ρN + 1)ρ−ρN/(ρN+1). Some illustrative plots of the
function p(E) given in Eq. (52) are shown in Fig. 3 for the
same choice of parameters as in Fig. 2. The same qualitative
dependence of the tails on the parameters N and r are observed
here: the larger the value of N or the smaller the choice of r , the
heavier the tails. This behavior is in agreement with Eq. (53)
which shows that the exponent of the stretched exponential
decreases with both the increase of N and the decrease of r .

We note in passing that the particular cases r = ±1 yield
results consistent with those obtained in Ref. [18], in that
the corresponding distributions can also be written in terms
of G functions. For ρ = 1 the expression (50) simplifies
to

p(E) = 1

Z(β0)ωγ 
(α)
G

1,N
N,1

(
(1 − γ )1 − α

0

∣∣∣∣β0E

ω

)
, (54)

whereas the distribution (52) reads

p(E) = ωγ

Z(β0)
(α)
G

N+1,0
0,N+1

( −
α − γ 1,0

∣∣∣∣ωβ0E

)
. (55)

V. CONCLUSIONS

In this paper, we have used a maximum entropy principle to
derive a generalized version of the multicanonical formalism
(H-theory) introduced in Refs. [17,18]. In our approach the

system is considered to be effectively composed of a small
subsystem in thermal equilibrium with a hierarchical set of heat
reservoirs, whose local temperatures fluctuate owing to weak
interactions between different scales. We characterized the
joint equilibrium distribution of the state variables and the local
inverse temperatures by means of its Shannon information
entropy. This entropy was maximized with respect to the con-
ditional temperature distributions at each level of the hierarchy,
subject to certain physically motivated constraints. The large
family of distributions that were found by this procedure can
be grouped into two classes: the generalized gamma and the
generalized inverse-gamma distributions. The knowledge of
these conditional distributions of inverse temperatures allowed
us to obtain the marginal distribution p(βN ) of the inverse
temperature at the lowest level of the hierarchy, which was
explicitly written for both classes in terms of the Fox H

functions.
The marginal distribution of states p(q) was then obtained

by averaging the conditional distribution of states p(q|βN ) over
the local inverse-temperature βN and the resulting distribution
was also written in terms of Fox H functions. These distribu-
tions exhibit heavy tails that can be classified into two classes,
namely, the power-law and stretched-exponential classes. The
distributions derived in Ref. [18] from a stochastic dynamical
approach, which were written in terms of Meijer G functions,
were shown to be particular cases of the Fox H functions
obtained from the maximum entropy approach. The H-theory
presented here thus provides a rather general framework to
describe the statistics of fluctuations in complex systems with
multiple time and space scales, quite irrespective of the detailed
underlying dynamics. Applications of H-theory in the context
of Eulerian and Lagrangian turbulence, mathematical finance,
and random lasers have had great success. Further applica-
tions of the generalized formalism presented here, including
cases where the conditional distribution p(q|βN ) is not the
Boltzmann-Gibbs distribution, are under current investigation.
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APPENDIX A: DERIVATION OF EQS. (32) AND (33)

First consider a term of the form

∫
p(βk) ln βk dβk. (A1)

This can be rewritten as

∫
p(βk) ln βk dβk =

∫
p(βk)

[
ln

(
βk

βk−1

)
+ ln βk−1

]
dβk.

(A2)
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Upon using property (31) we then obtain∫
p(βk) ln βkdβk =

(∫
gk(u) ln u du

) ∫
p(βk−1)dβk−1

+
∫

p(βk−1) ln βk−1 dβk−1

= Ak +
∫

p(βk−1) ln βk−1 dβk−1, (A3)

where Ak = ∫ ∞
0 gk(u) ln u du is a constant. This implies that∫

p(βk) ln βkdβk ∼
∫

p(βk−1) ln βk−1dβk−1, (A4)

where we recall that the notation ∼ implies equality, except
for an irrelevant additive constant. If we repeat this procedure
recursively we get Eq. (32).

Next consider terms of the form∫
p(βk) ln f (βk|βk−1)dβk. (A5)

Using Eq. (31), we have∫
p(βk) ln f (βk|βk−1)dβk

=
∫

p(βk) ln

[
1

βk−1
gk

(
βk

βk−1

)]
dβk

=
∫

g(u) ln gk(u)du −
∫

p(βk−1) ln βk−1dβk−1

= Bk −
∫

p(βk−1) ln βk−1dβk−1, (A6)

where Bk = ∫ ∞
0 gk(u) ln gk(u) du. Neglecting this additive

constant we can then write∫
p(βk) ln f (βk|βk−1)dβk ∼ −

∫
p(βk−1) ln βk−1dβk−1,

(A7)

which in view of Eq. (32) yields Eq. (33), as desired.

APPENDIX B: DERIVATION OF EQS. (43) AND (44)

Here we calculate p(βN ) explicitly in terms of Fox H

functions. We begin by introducing the variable

y = βN

β0
=

N∏
j=1

ξj , (B1)

where ξj = βj/βj−1, so that p(βN ) = g(y)/β0 and

g(y) =
∫ ∞

0
· · ·

∫ ∞

0

N∏
j=1

gj (ξj )dξj δ(y − ξ1ξ2 · · · ξN ). (B2)

For r > 0 we obtain from Eq. (40) that

gj (ξj ) = rα
αj

j


(αj )
ξ

rαj −1
j e−αj ξ

r
j , (B3)

while for r < 0 we find

gj (ξj ) = r ′ααj

j


(αj )
ξ

−r ′αj −1
j e−αj ξ

−r′
j , (B4)

where we defined r ′ = −r > 0.

Now applying the Mellin transform, defined as

M[g; s] ≡
∫ ∞

0
dyys−1g(y), (B5)

to both sides of Eq. (B2), we find

M[g; s] =
N∏

j=1

M[gj ; s], (B6)

where

M[gj ; s] = 
(αj + (s − 1)/r)

α
(s−1)/r

j 
(αj )
(B7)

is the Mellin transform of Eq. (B3), and

M[gj ; s] = α
(s−1)/r ′
j


(αj + (1 − s)/r ′)

(αj )

(B8)

is the Mellin transform of Eq. (B4). Next, we use the following
property of the Fox H function [28]. If the Mellin transform
of g(y) is

M[g; s] = λ−s
∏m

j=1 
(bj + Bjs)
∏n

j=1 
(1 − aj − Ajs)∏q

j=m+1 
(1 − bj − Bjs)
∏p

j=n+1 
(aj + Ajs)

then

g(y) = Hm,n
p,q

(
(a,A)
(b,B)

∣∣∣∣λy

)
, (B9)

where we introduced the notation (x,X) ≡ {(x1,X1), . . . ,
(xd,Xd )}, with d ∈ {p,q}. Using Eqs. (B6), (B7), and (B9)
we obtain Eq. (43); while using Eqs. (B6), (B8), and (B9) we
get Eq. (44), as desired.

APPENDIX C: DERIVATION OF EQS. (50) AND (52)

We start by considering the Laplace transform of the Fox
H function [28]∫ ∞

0
dx xγ e−sxHm,n

p,q

(
(a,A)
(b,B)

∣∣∣∣λx

)

= s−(γ+1)H
m,n+1
p+1,q

(
(a,A),(−γ,1)
(b,B)

∣∣∣∣λs−1

)
, (C1)

where (x,X) ≡ {(x1,X1), . . . ,(xd,Xd )}, withd ∈ {p,q}. Using
the identities

Hm,n
p,q

(
(a,A)
(b,B)

∣∣∣∣z
)

= Hn,m
q,p

(
(1 − b,B)
(1 − a,A)

∣∣∣∣1

z

)
(C2)

and

zσHm,n
p,q

(
(a,A)
(b,B)

∣∣∣∣z
)

= Hm,n
p,q

(
(a + σ A,A)
(b + σ B,B)

∣∣∣∣z
)

(C3)

we may rewrite Eq. (C1) as∫ ∞

0
dxxγ e−sxHm,n

p,q

(
(a,A)
(b,B)

∣∣∣∣λx

)

= 1

λγ+1
H

n+1,m
q,p+1

(
(1 − b − (γ + 1)B,B)
(1 − a − (γ + 1)A,A),(0,1)

∣∣∣∣ sλ
)

. (C4)
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We are now in position to calculate the Laplace transform of p(βN ). Using Eqs. (43) and (C4), we get for the case r > 0:∫ ∞

0
dβN β

γ

Ne−βN Ep(βN ) = β
γ

0

ω
γ
ρ 
(α)

H
1,N
N,1

(
((1 − γρ)1 − α,ρ1)

(0,1)

∣∣∣∣β0E(q)

ωρ

)
. (C5)

Similarly, in view of Eq. (44), the result for r < 0 is∫ ∞

0
dβN β

γ

Ne−βN Ep(βN ) = (β0ωρ)γ


(α)
H

N+1,0
0,N+1

( −
(α − γρ1,ρ1),(0,1)

∣∣∣∣ωρβ0E(q)

)
. (C6)

Using Eqs. (C5) and (C6), we obtain Eqs. (50) and (52) respectively.
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