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Local pressure for confined systems
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We derive a general closed expression for the local pressure exerted onto the corrugated walls of a channel
confining a fluid medium. When the fluid medium is at equilibrium, the local pressure is a functional of the shape
of the walls. It is shown that, due to the intrinsic nonlocal character of the interactions among the particles forming
the fluid, the applicability of approximate schemes such as the concept of a surface of tension or morphometric
thermodynamics is limited to wall curvatures that are small compared to the range of particle-particle
interactions.
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I. INTRODUCTION

In a variety of scenarios, such as biological systems [1],
micro- and nanofluidic circuitry [2], and energy-harvesting
devices [3], physical systems are composed of a fluid medium
confined by means of solid or liquid interfaces. Clearly,
the confining walls affect both the dynamics and the steady
states of the fluid medium due to the additional interactions
between the fluid phase and the boundaries. For example,
droplet formation [4], electric charge accumulation in confined
electrolytes [5], and active particle accumulation in microchan-
nels [6] are driven by the effective interactions between the
otherwise unbounded fluid medium and the confining walls.
To grasp the effect of the presence of confining walls on
the dynamics of confined fluids, attention has been focused
up to now on the case of fluid media embedded between
parallel plates or in channels with constant cross sections.
However, many experimentally relevant cases are not covered
by these geometries. For example, porous materials, microflu-
idic devices, or biological scenarios are characterized by larger
cavities that alternate with narrow bottlenecks. This inhomo-
geneity in the confining space couples with the dynamics of
the confined systems, possibly leading to novel scenarios.
Indeed, electrolytes confined in varying section pores have
been observed to undergo novel regimes [7–11] that are
absent in the corresponding unbound scenarios. Similarly, both
passive [12–17] and active [18–22] colloidal particles as well
as polymers [23–27] display confinement-induced dynamical
regimes when embedded within varying section channels. To
unravel the general mechanisms responsible for these diverse
phenomena, it is of primary importance to understand the
physical origin of the effective coupling between the fluid
medium and the confining walls. Accordingly, insight into such
coupling can be provided by knowledge of the dependence
of local intensive thermodynamic quantities, e.g., pressure,
on the local geometry of the confining walls. Indeed local
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imbalances in such quantities will lead to net local fluxes that
are tuned by the geometry of the confining walls. Alterna-
tively, imposing the equilibrium condition, i.e., constancy of
intensive thermodynamic variables, will provide insight into
the rearrangement of the fluid medium under inhomogeneous
confining conditions.

In the following, we derive a framework capable of captur-
ing the local dependence of thermodynamic variables of the
embedded fluid medium, and we derive a general expression
for the local pressure exerted onto the confinement. Toward
that end, the fluid medium is described in terms of density
functional theory (DFT), which is, in principle, exact [28]
and for which numerous considerably precise approximation
schemes have been developed in the past [29–33]. Accordingly,
our closed expression for the local pressure is exact within this
framework.

The structure of the text is the following. In Sec. II we define
the model (Sec. II A), set up the DFT approach (Sec. II B), and
derive a closed expression for the local pressure (Sec. II C).
To demonstrate the application of the general form of the
local pressure derived in Sec. II, we discuss our results in
the context of the concept of a surface of tension and in
comparison with the approach of morphometric thermodynam-
ics in Sec. III. Finally, in Sec. IV we give some concluding
remarks.

II. GENERAL FORMALISM

A. Model

As sketched in Fig. 1, consider in the three-dimensional
Euclidean space an s-component mixture that is confined by
two hard walls,

W+[h+] := {(x,y,z) ∈ R3 | z > h+(x)}, (1a)

W−[h−] := {(x,y,z) ∈ R3 | z < −h−(x)} , (1b)

where the positive real functions h± : R → (0,∞) describe
the wall shapes. The particles of species α ∈ {1, . . . ,s} pos-
sess a spherical hard core of radius Rα � 0, and, due to
the hard walls W+[h+] and W−[h−], they are confined to
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FIG. 1. Illustration of the system under study. Particles (depicted
as disks) are confined to the interior of a channel whose upper
and lower walls are located, respectively, at z = h+(x) and z =
−h−(x). Due to their radius Rα , the volume accessible to particles
of species α is given by z ∈ [−H−

α (x),H+
α (x)]. A particle of species

α located at position (x, ± H±
α (x)) touches the wall at the point

(x̄±
α (x,[h±]),h±(x̄±

α (x,[h±]))).

the interior of the accessible volume Vα[h] := {(x,y,z) ∈
R3 | − H−

α (x,[h−]) < z < H+
α (x,[h+])} with the positive real

functions H±
α [h±] : R → (0,∞). Here and in the following,

h := (h+,h−) is an abbreviation of the set of both wall
shape functions h+ and h−. To ensure that the functions
H±

α [h±], which describe the boundary ∂Vα[h] of the acces-
sible volume Vα[h], are well-defined, the radii of curvature
R±

w (x,[h±]) := [1 + h′
±(x)2]3/2/h′′

±(x) of the walls must be
larger than the radius of all particles: |R±

w (x)| > Rα for all
x ∈ R and α ∈ {1, . . . ,s}. Besides the hard-core interactions,
additional fluid-fluid and fluid-wall interactions can be present.
The structure of the fluid is described in terms of the number
density profiles �α of species α ∈ {1, . . . ,s}, which, due to the
translational invariance of the system along the y direction, can
be assumed to depend only on x and z. The hard-core interac-
tion precludes particles of species α ∈ {1, . . . ,s} to be found
outside the accessible volumeVα , i.e., �α(x,z) = 0 for (x,y,z) �
∈ Vα[h].

B. Density functional theory

Without restriction of generality, the grand-canonical den-
sity functional describing the fluid is given by

β�[�,h] = A[�,H+[h+],H−[h−],h] (2)

with the auxiliary functional

A[�,J+,J−,h]

= Ly

∫
dx

s∑
α=1

∫ J+
α (x)

−J−
α (x)

dz�α(x,z){fα[�α(x,z)]

− βμα + βVα(x,z,[h])} + βF ex[�,J+,J−], (3)

where � = (�1, . . . ,�s) denotes the set of all density profiles
and similarly for other quantities, and Ly is the thickness of
the system along the y direction. In Eq. (3), Vα(x,z,[h]) and
μα are, respectively, the particle-wall interaction in excess of
the hard-core interaction for particles of species α ∈ {1, . . . ,s}

and the chemical potential. Note that Vα(x,z,[h]) depends
explicitly on the shapes h+ and h− of the confining walls.
The reference system is described by the free-energy density
per particle fα(�α), which equals exactly ln(�α�3

α) − 1 with
the thermal wavelength �α for the case of an ideal gas, but
which also allows for a description within a local density
approximation (LDA). In the present work, the free-energy
functional F ex in excess of the reference functional is chosen
to be of the rather general form

βF ex[�,J+,J−]

= −Ly

∞∑
n=2

1

n!

s∑
α1,...,αn=1

∫
dx1

×
∫ J+

α1
(x1)

−J−
α1

(x1)
dz1 · · ·

∫
dxn

∫ J+
αn

(xn)

−J−
αn

(xn)
dzn c(0)

α1,...,αn

× (x1,z1, . . . ,xn,zn)�α1 (x1,z1) · · · �αn
(xn,zn). (4)

All weighted density approximations (WDAs), including the
fundamental measure theories (FMTs), are of this form. How-
ever, gradient expansions, such as the well-known square-
gradient approximation within the Cahn-Hilliard approach,
cannot be represented in the form of Eq. (4).

Given some wall shapes h, the equilibrium number density
profiles �eq[h] are solutions of the Euler-Lagrange equations

0 = δβ�

δ�α(x,z)
[�eq[h],h]

= δA
δ�α(x,z)

[�eq[h],H+[h+],H−[h−],h] (5)

for all α ∈ {1, . . . ,s} and (x,y,z) ∈ Vα[h].

C. Deformation work and local pressure

When the fluid medium is at equilibrium, or in some
nonequilibrium steady state, the conditions of the system,
composed of the walls and the fluid medium, are such that the
state of the fluid medium, represented by the density profiles �,
is determined by the shapes of the walls h± alone: � = �∗[h].
In such a scenario, one obtains from Eq. (2) the effective
wall Hamiltonian on the function space of all wall shapes
h = (h+,h−),

β	[h] := β�[�∗[h],h], (6)

which represents the energy of the system for given wall shapes
h.

In the following, we restrict ourselves to the case of the
fluid medium being at equilibrium, i.e., �∗ = �eq, where the
equilibrium state is given by Eq. (5). In such a condition, Eq. (6)
reads

β	[h] = β�[�eq[h],h], (7)

and the degrees of freedom of the fluid medium are accounted
for in terms of the equilibrium state �eq[h].

Accordingly, as is shown in detail in Appendix A, the work
needed to deform the walls h = (h+,h−) by δh = (δh+,δh−)
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is given by

δβ	[h,δh] = Ly

∫
dx ′

s∑
α=1

∑
t∈{±}

[
− ∂x ′Kt

α(x ′,[ht ])�
eq
α

(
x,tH t

α(x,[ht ]),[h]
)2

f ′
α

(
�eq

α

(
x,tH t

α(x,[ht ]),[h]
))∣∣∣

x=Kt
α (x ′,[ht ])

+
∫

dx

∫ H+
α (x,[h+])

−H−
α (x,[h−])

dz �eq
α (x,z,[h])

δβVα

δht (x ′)
(x,z,[h])

]
δht (x

′), (8)

where [compare Eq. (A10) in Appendix A]

K±
α (x ′,[h±]) := x ′ + Rαh′

±(x ′)√
1 + h′±(x ′)2

. (9)

Equation (8) is an expression of the work β	[h,δh] required to deform the walls, whose shape is described by h = (h+,h−),
such that h is changed by δh. It is of the form

δ	[h,δh] = −Ly

∫
dx

[
βP +

z (x,[h]) δh+(x) + βP −
z (x,[h]) δh−(x)

]
, (10)

where

βP t
z (x,[h]) =

s∑
α=1

[
∂xK

t
α(x,[ht ])�

eq
α

(
x ′,tH t

α(x ′,[ht ]),[h]
)2

f ′
α

(
�eq

α

(
x ′,tH t

α(x ′,[ht ]),[h]
))∣∣∣

x ′=Kt
α (x,[ht ])

−
∫

dx ′
∫ H+

α (x ′,[h+])

−H−
α (x ′,[h−])

dz′ �eq
α (x ′,z′,[h])

δβVα

δht (x)
(x ′,z′,[h])

]
(11)

is the local force along the positive (t = +) or negative (t = −) z direction per unit area projected onto the axis of the channel
that the fluid exerts on the walls at (x,y,tht (x)). Using as a reference system in Eq. (3) the ideal gas with free energy per particle
fα(�α) = ln(�α�3

α) − 1, one obtains �2
αf ′

α(�α) = �α , so that Eq. (11) simplifies to

βP t
z (x,[h]) =

s∑
α=1

[
∂xK

t
α(x,[ht ])�

eq
α

(
Kt

α(x,[ht ]),tH
t
α

(
Kt

α(x,[ht ]),[ht ]
)
,[h]

)
−

∫
dx ′

∫ H+
α (x ′,[h+])

−H−
α (x ′,[h−])

dz′ �eq
α (x ′,z′,[h])

δβVα

δht (x)
(x ′,z′,[h])

]
. (12)

The rotation invariance of P t
z (see Appendix B) allows one

to determine the local force P t
x (x,[h]) along the x direction per

unit area projected onto the axis of the channel that the fluid
exerts on the walls at (x,y,tht (x)). By definition, the force
exerted on a surface element of the wall at point (x,y,tht (x))
with rectangular projection of size dx and Ly onto the x-y
plane is given by (P t

x (x,[h]),tP t
z (x,[h]))Lydx. As the force is

a vectorial quantity, it transforms upon rotation T (ϕ) with the
rotation matrix T(ϕ):(

P t
x (x̃,[h̃])

tP t
z (x̃,[h̃])

)
Lydx̃ = T(ϕ)

(
P t

x (x,[h])
tP t

z (x,[h])

)
Lydx. (13)

Substituting z = tht (x) in Eq. (B1) and forming the dif-
ferential of the first component, one obtains the expression
dx̃ = [cos ϕ − sin ϕth′

t (x)]dx. Using this relation as well as
Eq. (B3), one infers from the second component in Eq. (13)
the expression P t

x (x,[h]) = −h′
t (x)P t

z (x,[h]), and hence the
force onto a surface element of the wall [see Eq. (13)] is given
by (

P t
x (x,[h])

tP t
z (x,[h])

)
Lydx = P t

z (x,[h])

(−h′
t (x)
t

)
Lydx

= P t
z (x,[h])nt (x,[ht ])dA, (14)

where nt (x,[ht ]) = (−h′
t (x),t)/

√
1 + h′

t (x)2 is the outer
normal vector of the wall at (x,y,ht (x)), and dA =
Ly

√
1 + h′

t (x)2dx is the size of the surface element. Therefore,
in agreement with the intuitive expectation that a fluid in
equilibrium cannot sustain shear, the force that the fluid
medium is exerting onto the walls acts in the normal direction.
Moreover, the quantities P t

z in Eqs. (11) and (12) represent the
force per wall area, i.e., the local pressure. Therefore, Eqs. (11)
and (12) can be seen as a local version of the so-called “contact
theorems,” which, so far, consider effectively the averages of
the wall density, either due to the symmetry at regularly formed
walls [34–38] or as explicit averages along arbitrarily shaped
walls [39].

III. DISCUSSION

A. Sum rules

Some general statements concerning the local pressures
P ±

z (x,[h]) can be inferred directly from the expression for
the mechanical work, Eq. (10), without the need to determine
the equilibrium density profiles �

eq
α . The work required to

induce the deformation δh = (δh+,δh−) of the channel walls
in general reads

δ	 = −pδV + γ̄+δA+ + γ̄−δA−, (15)
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where δV and δA± are, respectively, the changes in volume
and in surface areas due to the deformation δh of the walls,
p is the bulk pressure, and γ̄± are the associated interfacial
tensions. For the special case of deformations δh leaving the
size of the surface areas unchanged,

δV �= 0,
(16)

δA± = 0,

the total work depends solely on the “bulk” contribution ∼δV
on the right-hand side of Eq. (15). Comparing Eq. (15) to
Eq. (10) under these conditions, one infers the sum rule∫

dx(P ±
z (x,[h]) − p) δh±(x) = 0. (17)

In particular, when the walls are deformed uniformly, i.e.,
δh±(x) does not depend on the position x along the channel,
one obtains from Eq. (17) the sum rule∫

dx(P ±
z (x,[h]) − p) = 0, (18)

i.e., the average pressure equals the bulk pressure, p.
Alternatively, when the deformation δh is such that the

surface areas are modified with the volume left unchanged,

δV = 0,
(19)

δA± �= 0,

the mechanical work is due to the terms ∼δA± on the right-
hand side of Eq. (15). Accordingly, comparing Eq. (15) to
Eq. (10), one infers the sum rule∫

dx

[
P ±

z (x,[h]) − γ̄±
∂

∂x

(
h′

±(x)√
1 + h′±(x)2

)]
δh±(x) = 0.

(20)

In the case of a planar channel, h(x) = (h0,h0), h0 > 0, the
second term in the integrand of Eq. (20) vanishes. Hence the
mechanical work needed to deform a flat channel is at least
quadratic in the deformations δh, which is not captured by the
linear-response functions P ±

z (x,[h]).

B. Noninteracting particles

An application of the main result Eqs. (11) and (12) to cal-
culate the local pressure requires knowledge of the equilibrium
density profiles �

eq
α , usually from solving the Euler-Lagrange

equations (5). In actual applications, the latter task can be a
challenging, typically numerical, problem. However, in order
to highlight some important consequences of Eq. (12), the
following discussion is focused on computationally simple
cases of a single-particle species (s = 1) in a semi-infinite
system [h−(x) = ∞] for a vanishing excess external potential
(Vα = 0). Under these conditions, only the local pressure onto
the upper wall is relevant, so that Eq. (12) takes the form

βPz(x,[h]) =
(

1 + R

Rw(x,[h])

)
× �eq(K(x,[h]),H (K(x,[h]),[h]),[h]),

(21)

where Eq. (A11) has been used, and the indices α and + have
been suppressed.

As a first case, consider a single-component fluid of
noninteracting particles (U = 0) for which the equilibrium
number density �eq(x,z) = βp, p being the pressure of the
particle reservoir, is uniform inside the accessible volume.
Upon rearrangement, one obtains from Eq. (21)

βp − βPz(x,[h]) = βpR
1

−Rw(x,[h])
. (22)

The fraction on the right-hand side of Eq. (22) represents
the wall curvature, which is positive (negative) at concave
(convex) portions of the wall when viewed from inside the
fluid. Equation (22) shows that pointlike particles (R = 0)
imply p = Pz(x,[h]), i.e., the local pressure, Pz(x,[h]), always
equals the bulk pressure, p. In contrast, for finite-sized particles
(R > 0) such as hard spheres, the local pressure is not constant
at walls of nonuniform curvature [see Eq. (22)], and it exceeds
the bulk pressure when Rw > 0 (convex wall), whereas the
opposite holds for Rw < 0 (concave wall). Next we compare
our result Eq. (22) to the concept of surface of tension and to
morphometric thermodynamics.

1. Surface of tension

At first glance, Eq. (22) is similar to Laplace’s law. However,
to make the comparison more strict, one has to locate the
surface of tension (SOT) and to specify the corresponding
interfacial tension in Eq. (22). Toward that end, we note that,
in general, the interfacial tension is defined as

βγ = β�[�eq[h],[h]] + βpṼ

Ã
, (23)

where �[�eq[h],[h]] is the grand-canonical potential of the
system (enclosing an accessible volume V ), −pṼ is the grand-
canonical potential of a uniform system with bulk pressure p

inside the conventional volume Ṽ , and Ã is the area of the
dividing surface. For a cylindrical wall with uniform radius
of curvature |Rw|, the interfacial tension with respect to the
dividing surface of radius R̃ > 0 is

βγ (R̃) = −βp(|Rw| − R)2 + βpR̃2

2R̃
, (24)

and therefore by subtracting Eq. (24) from Eq. (22), one obtains

βp − βPz − βγ (R̃)

R̃
= βpR

|Rw| + βp

2

[( |Rw| − R

R̃

)2

− 1

]
.

(25)

The SOT is defined by that value R̃ = RSOT for which the
right-hand side of Eq. (25) vanishes, i.e., with respect to which
Laplace’s law is valid exactly [40]. The SOT is a function of
the wall curvature 1/|Rw| and of the size of the fluid particles
R:

RSOT = |Rw| − R√
1 − 2R

|Rw|

. (26)

Notice that the SOT is defined only for R < 2|Rw|, whereas
Eq. (21) has been derived under the weaker constraint
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R < |Rw|. Using Eq. (26) in Eq. (24), one obtains the curvature
dependence of the interfacial tension βγ (RSOT) at the SOT.

2. Morphometric thermodynamics

In recent years, several publications on the properties of
fluids in contact with geometrically shaped walls advocated for
an approach termed “morphometric thermodynamics” (MT)
[41–44]. The basic hypothesis of MT is that any thermo-
dynamic quantity can be expressed as a linear combination
of four geometric measures, namely volume, surface area,
integrated mean curvature, and integrated Gaussian curvature,
with intensive coefficients, which depend only on the thermo-
dynamic state of the system [41]. Whereas the framework of
the surface of tension allows for a curvature dependence of the
interfacial tension, the intensive coefficients within MT are
strictly independent of the geometrical features of the system.
If applicable, MT is a very efficient method to characterize
fluids in complicated confinements. However, in recent years
several indications have been found that MT is in general
merely an approximation [45–47]. For the present fluid of
noninteracting particles, the interfacial tension γgeo of a planar
wall with respect to the geometrical wall surface is given by
βγgeo = βpR, as the fluid particles cannot approach the wall
closer than R. Hence Eq. (22) takes the morphometric form

βp − βPz(x,[h]) = βγgeo

−Rw(x,[h])
. (27)

Note, however, that here the MT result is achieved for planar
interfacial tensions only if the dividing surface is the geometri-
cal wall surface. Any other choice of the dividing surface will
lead to additional terms in Eq. (27) that are not in agreement
with the MT approach.

C. Interacting particles

Whereas nonvanishing particle-particle interactions (U �=
0) are typically too complicated to be treated analytically, the
effect of tuning on the interaction is accessible in the limit of
small interactions. Indeed, introducing the auxiliary interaction
potential Uη(r) := ηU (r) for η ∈ [0,1], a closed expression
for the local pressure can be obtained in the limit η → 0 via
a Taylor expansion of Eq. (21) about the noninteracting case,
η = 0. At first order in η, from Eq. (21), one obtains(

d

dη
βPz(x,[Uη,h])

)∣∣∣∣
η=0

=
(

1 + R

Rw(x,[h])

)

×
(

d

dη
�eq(K(x,[h]),H (K(x,[h]),[h]),[Uη,h])

)∣∣∣∣
η=0

.

(28)

Upon taking the derivative of the Euler-Lagrange equation (5)
with respect to the interaction potential and using the general
relation [28]

δF ex[�,U ]

δU (r,r′)
= 1

2
�(r)�(r′)g(r,r′,[�,U ]), (29)

one can derive(
d

dη
�eq(K(x,[h]),H (K(x,[h]),[h]),[Uη,h])

)∣∣∣∣
η=0

= −(βp)2
∫

dx ′
∫

dy ′
H (x ′,[h])∫
−∞

dz′βU (r − r′), (30)

where r = (K(x,[h]),y,H (K(x,[h]),[h])) and r′ = (x ′,y ′,z′).
In light of Eq. (30), it is plausible that, due to the integral over
the accessible volume, one obtains a complicated nonlocal
dependence of the local pressure on the shape of the walls
upon switching on a nonlocal interaction between the fluid
particles. Moreover, due to the nonlocal dependence of the
right-hand side of Eq. (28) on the shape of the contact
surface [see Eq. (30)], for walls with nonconstant curvature
1/Rw(x,[h]) and for nonlocal interactions U (r), the pressure
difference p[U ] − P ±

z [x,U,h] is a functional of the whole wall
shape h and not only a function of the local wall curvature
1/R±

w (x,[h±]). Hence, for arbitrary wall shapes and nonlocal
interactions, neither MT nor the concept of a SOT is applicable
exactly. The range of wall curvatures, for which MT and the
SOT can be applied as approximations, is decreasing upon
increasing the range of the interactions inside the fluid.

1. Morphometric thermodynamics

For the case of uniform curvature 1/|Rw| considered above,
and for the switching on of a square-well or square-shoulder
interaction U (r) = U0
(R0 − |r|) with strength U0 and range
R0 �= 0, one obtains[

d

dη

(
βp[Uη] − βPz[Uη] − βγgeo[Uη]

|Rw|
)]∣∣∣∣

η=0

= π (βp)2βU0R
6
0

384|Rw|3 + R3
0O

5

(
R0

|Rw| ,
R

|Rw|
)

. (31)

Whereas Eq. (31) can be rewritten in the form of Laplace’s
law by means of an appropriate definition of the SOT, it
is impossible to achieve the morphometric form for βU0 �=
0 and R0 �= 0. The latter statement is justified as follows:
the nonvanishing term ∼1/|Rw|3 on the right-hand side is
forbidden within the MT approach since it is of higher power
in the wall curvature. Absorbing this term into an interfacial
tension with respect to some dividing surface (characterized
by R̃) different from the geometrical wall surface is possible,
however this would generate an additional term ∼1/|R̃|2,
which is also forbidden within MT. One can conclude that
for switching on a nonlocal interaction, i.e., with R0 �= 0,
MT cannot be expected to be strictly applicable, and the best
approximation of MT is achieved with the geometrical wall
surface as a dividing interface within which corrections to MT
are ∼1/|Rw|3 and ∼1/|R̃|2 otherwise.

IV. CONCLUSIONS

We have derived a general formula for the dependence of
the local pressure onto the walls of a channel with varying cross
section [see Eq. (11)]. Such a closed formula has been extracted
from the mechanical work [Eq. (7)] needed to induce a local
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deformation of the shape of the wall confining a fluid medium
and under the condition of equilibrium of the fluid medium.
In such a scenario, we have identified the contribution to the
mechanical work due to the local pressure, and we have derived
a general formula, Eq. (11), for the dependence of the local
pressure onto the walls of a channel with varying cross section.
This result applies to the wide class of fluid media that can be
described by density functionals with excess contributions of
the form Eq. (4).

In the case of purely hard walls, the local pressure depends
only on the curvatures of the walls and on the densities at the
surfaces of contact. As expected, for pointlike noninteracting
particles, the mechanical work is due solely to the bulk pres-
sure. In contrast, for finite-sized particle, such as hard-spheres,
and/or interacting particles, we have identified the contribu-
tions to the mechanical work stemming from the interfacial
tension. In particular, for noninteracting finite-sized particles
confined by a constant-curvature wall (e.g., a semicylinder),
we have derived a closed formula for the local pressure. This
has allowed us to derive the dependence of the interfacial
tension upon the choice of the dividing surface [encoded in
R̃ in Eq. (24)], and to identify the surface of tension (SOT) as
the dividing surface for which the Laplace law is recovered.
Interestingly, the SOT does not coincide with the wall surface.

For noninteracting particles, our result is in agreement with
morphometric thermodynamics (MT) [41].

When the fluid particles are interacting among themselves,
the expression for the local pressure becomes more involved.
However, an insight into the corrections to MT can be derived
for weakly interacting particles, for which the expression for
the local pressure can be obtained by expanding about the
noninteracting case. In such a scenario, our results show that
the MT approach breaks down [Eq. (31)] in that additional
contributions with a non-MT form appear as corrections to the
Laplace equation.

Finally, for arbitrary wall shapes and nonlocal interactions
the local pressure does not depend locally on the wall curvature,
so that schemes such as the concept of a surface of tension
or morphometric thermodynamics are merely approximations
whose applicability is limited to ranges of small wall cur-
vatures, which decrease upon increasing the range of the
interactions inside the fluid.
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APPENDIX A: DERIVATION OF Eq. (8)

According to Eq. (7) in Sec. II C of the main text, the work needed to deform the walls h = (h+,h−) by δh = (δh+,δh−) is
given by

δβ	[h,δh] =
∫

dx

( s∑
α=1

∫ J+
α (x)

−J−
α (x)

dz
δA

δ�α(x,z)
[�eq[h],J+,J−,h] δ�α(x,z,[h,δh])

+
s∑

α=1

∑
t∈{±}

(
δA

δJ t
α(x)

[�eq[h],J+,J−,h]δJ t
α(x) + δA

δht (x)
[�eq[h],J+,J−,h] δht (x)

)∣∣∣∣
J±=H±[h±]

=
∫

dx

s∑
α=1

∑
t∈{±}

[(
Ly�

eq
α

(
x,tJ t

α(x),[h]
)(

fα

(
�eq

α

(
x,tJ t

α(x),[h]
)) − βμα + βVα

(
x,tJ t

α(x),[h]
))

+ δβF ex

δJ t
α(x)

[�eq[h],J+,J−]
)

δJ t
α(x) + Ly

∫ J+
α (x)

−J−
α (x)

dz �eq
α (x,z,[h])

∫
dx ′ δβVα

δht (x ′)
(x,z,[h]) δht (x

′)
]∣∣∣∣

J±=H±[h±]

,

(A1)

where Eqs. (3) and (5) have been used. In particular, the Euler-Lagrange equation (5) can be written in the form

Ly

(
fα

(
�eq

α (x,z,[h])
) − βμα + βVα(x,z,[h])

) = −Ly�
eq
α (x,z,[h])f ′

α

(
�eq

α (x,z,[h])
) − δβF ex

δ�α(x,z)
[�eq[h],H+[h+],H−[h−]] (A2)

so that Eq. (A1) is given by

δβ	[h,δh] =
∫

dx

s∑
α=1

∑
t∈{±}

[
δH t

α(x,[ht ,δht ])

(
− Ly�

eq
α

(
x,tH t

α(x,[ht ]),[h]
)2

f ′
α

(
�eq

α

(
x,tH t

α(x,[ht ]),[h]
))

− �eq
α

(
x,tH t

α(x,[ht ]),[h]
) δβF ex

δ�α

(
x,tH t

α(x,[ht ])
) [�eq[h],H+[h+],H−[h−]] (A3)

+ δβF ex

δJ t
α(x)

[�eq[h],H+[h+],H−[h−]]
)

+ Ly

∫ H+
α (x,[h+])

−H−
α (x,[h−])

dz �eq
α (x,z,[h])

∫
dx ′ δβVα

δht (x ′)
(x,z,[h]) δht (x

′)
]
,
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where we have substituted J±
α (x) = H±

α (x,[h±]). From Eq. (4) one obtains

δβF ex

δ�α(x,z)
[�,J+,J−] = −Ly

∞∑
n=2

1

(n − 1)!

s∑
α1,...,αn−1=1

∫
dx1

∫ J+
α1

(x1)

−J−
α1

(x1)
dz1 · · ·

∫
dxn−1

∫ J+
αn−1

(xn−1)

−J−
αn−1

(xn−1)
dzn−1

× c(0)
α1,...,αn−1α

(x1,z1, . . . ,xn−1,zn−1,x,z)�α1 (x1,z1) · · · �αn
(xn−1,zn−1) (A4)

and

δβF ex

δJ±
α (x)

[�,J+,J−] = − Ly

∞∑
n=2

1

(n − 1)!

s∑
α1,...,αn−1=1

∫
dx1

∫ J+
α1

(x1)

−J−
α1

(x1)
dz1 · · ·

∫
dxn−1

∫ J+
αn−1

(xn−1)

−J−
αn−1

(xn−1)
dzn−1

× c(0)
α1,...,αn−1α

(x1,z1, . . . ,xn−1,zn−1,x, ± J±
α (x))�α1 (x1,z1) · · · �αn

(xn−1,zn−1)�α(x, ± J±
α (x)), (A5)

which leads to

−�α(x, ± J±
α (x))

δβF ex

δ�α(x, ± J±
α (x))

[�,J+,J−] + δβF ex

δJ±
α (x)

[�,J+,J−] = 0. (A6)

Note that Eq. (A6) is independent of the microscopic details of the interactions between the fluids molecules. By substituting
Eq. (A6) into Eq. (A3), one obtains the final expression for the work necessary to deform the walls h± by δh±:

δβ	[h±,δh] = Ly

∫
dx

s∑
α=1

∑
t∈{±}

[
− �eq

α

(
x,tH t

α(x,[ht ]),[h]
)2

f ′
α

(
�eq

α

(
x,tH t

α(x,[ht ]),[h]
))

δH t
α(x,[ht ,δht ])

+
∫ H+

α (x,[h+])

−H−
α (x,[h−])

dz �eq
α (x,z,[h])

∫
dx ′ δβVα

δht (x ′)
(x,z,[h]) δht (x

′)
]
. (A7)

To express the deformation work δβ	[h,δh] in Eq. (A7) explicitly in terms of the variation δh± of the wall shapes h±, the
boundaries H±[h±] of the accessible volume have to be determined as functionals of h±. A particle of species α located at point
(x,y, ± H±

α (x,[h±])) touches the wall at point (x̄±
α (x,[h±]),y, ± h±(x̄±

α (x,[h±]))) (see Fig. 1). Since particles of species α have
radius Rα and since wall and particles touch each other tangentially, one can readily derive the following relations:

x = x̄±
α (x,[h±]) + Rαh′

±(x̄±
α (x,[h±]))√

1 + h′±(x̄±
α (x,[h±]))2

and H±
α (x,[h±]) = h±(x̄±

α (x,[h±])) − Rα√
1 + h′±(x̄±

α (x,[h±]))2
. (A8)

Variation with respect to h± in Eq. (A8) leads to δH±
α (x,[h±,δh±]) = δh±(x̄±

α (x,[h±])), i.e., upon changing the wall shape, the
boundary of the accessible volume changes exactly as the wall shape does at the touching point. Substituting the last expression
into Eq. (A7), one obtains

δβ	[h,δh] = Ly

∫
dx

s∑
α=1

∑
t∈{±}

[
− �eq

α

(
x,tH t

α(x,[ht ]),[h]
)2

f ′
α

(
�eq

α

(
x,tH t

α(x,[ht ]),[h]
))

δht

(
x̄t

α(x,[ht ])
)

+
∫ H+

α (x,[h+])

−H−
α (x,[h−])

dz �eq
α (x,z,[h])

∫
dx ′ δβVα

δht (x ′)
(x,z,[h])δht (x

′)
]
. (A9)

In light of the first relation in Eq. (A8), introducing the inverse maps of x 	→ x̄±
α (x,[h±]),

K±
α (x ′,[h±]) := x ′ + Rαh′

±(x ′)√
1 + h′±(x ′)2

, (A10)

one obtains

∂x ′K±
α (x ′,[h±]) = 1 + Rα

h′′
±(x ′)√

1 + h′±(x ′)23 = 1 + Rα

R±
w (x ′,[h±])

. (A11)

Then, finally, one can rewrite Eq. (A9) as Eq. (8) in Sec. II C of the main text.

APPENDIX B: ROTATION INVARIANCE OF Pz

One can show that P t
z is invariant upon rotation of the walls

in the x-z plane. Indeed, consider the rotation T (ϕ) : R2 →
R2,(x,z) 	→ (x̃,z̃) (see Fig. 2) around some center (x0,z0) ∈

R2 by an angle ϕ given by

(
x̃

z̃

)
=

(
x0

z0

)
+ T(ϕ)

(
x − x0

z − z0

)
(B1)
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FIG. 2. Illustration of the tilted scenario.

with the rotation matrix

T(ϕ) =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)
∈ SO(2,R). (B2)

Hence, the point (x,tht (x)) at the wall of the original
system is rotated by T (ϕ) to the point (x̃,t h̃t (x̃)) at the wall
of the rotated system (see Fig. 2). As the two-dimensional
Lebesgue-Borel measure dx δht (x) on the right-hand side of
Eq. (10) is invariant upon rotation, i.e., dx δht (x) = dx̃ δh̃t (x̃),
and as the work required to deform the walls is a scalar quantity,
so is P t

z :

P t
z (x̃,[h̃]) = P t

z (x,[h]). (B3)
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