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Slowest kinetic modes revealed by metabasin renormalization
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Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials,
diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a
kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for
realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the
diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally
applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis
of Okushima et al. [Phys. Rev. E 80, 036112 (2009)] and a Jacobi method. We test the method on an illustrative
model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension
sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy
transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016)], allowing a clear
physical interpretation that the final relaxation consists of two successive, characteristic processes.
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Recently, dynamics of complex systems, such as relaxation
of glass-forming materials [1–14], conformational transitions
in biomolecules [15–21], and rapid diffusion in nanoclusters
[14,22–27], are being studied in a unified way by analyzing
kinetics on rugged potential energy surfaces [28–30]. In the
basin hopping approach, the phase space is divided into basins
of minima on the potential energy surface, and the local equi-
librium in each basin is assumed to be achieved immediately. In
this approach, the dynamical properties are described by the
transition rate matrix, which characterizes all the transitions
between adjacent basins. Hence, the numerical diagonalization
of the transition rate matrix enables us in principle to derive
every detail of the time evolution. However, for realistic,
complicated systems, this procedure is impractical because
of the huge matrix dimensions. Even if the diagonalizations
were computable, extracting physical understandings from the
large number of large dimensional eigenvectors would be very
difficult. In order to reduce the matrix dimensionality, various
coarse-graining methods, such as lumping [31–33], Perron-
cluster analysis [34], and discrete path sampling [29,35] have
been developed. Nevertheless, it is well known that there is
as yet no coarse-graining method applicable to such realistic,
complicated systems without deterioration of the accuracy of
relaxation modes and relaxation rates [29,34].

In this Rapid Communication, to overcome this difficulty,
we develop an alternative renormalization method tailored for
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extracting the slow dynamics precisely, which is based upon
metabasin analysis [36,37] and a variant of the Jacobi rotation
method for matrix diagonalization. Through the accurate renor-
malization procedure, a slow kinetic equation is generated that
can reproduce the slow relaxation modes precisely. Further,
we successfully apply the renormalization method to elucidate
the final relaxation process of fast vacancy transport in ionic
nanoparticles, which was first observed experimentally by [38]
and explored numerically by [27].

In the basin hopping approach, the kinetic state is de-
scribed by the distribution of probability, pi , of being in
the basin of ith local minimum (LM) for i = 1,2, . . . ,n,
where n denotes the number of LMs. The kinetic equations
are given by dpi/dt = ∑n

j=1 kijpj − pi

∑n
j=1 kji , where kij

is the transition rate from j th to ith LM. In the harmonic
approximation [29], kij is evaluated at temperature T , as
kij = νij exp {−β[E(SPij ) − E(LMj )]} for i �= j and kii = 0,
where β = 1/kBT with kB Boltzmann constant. E(LMj ) and
E(SPij ) are the potential energies at j th LM and at the saddle
point (SP) connecting the basins of LMi and LMj , respectively.
The prefactor νij is the frequency factor of this transition,
which is determined from the second derivatives of potential
energy at LMj and at SPij . Now, the transition rate matrix K

is defined by (K)ij = kij − δij

∑n
j ′=1 kj ′i for i,j = 1, . . . ,n.

Consequently, the kinetic equations can be expressed in a
matrix form: d p/dt = K p where p = (p1, . . . ,pn)T with the
superscript T denoting the transpose. We assume the equilib-
rium, limt→∞ p(t), to be unique. Accordingly, the eigenvalues
of K satisfy 0 = λ0 > λ1 � · · · � λn−1 [39]. The equilibrium
p(∞) coincides with the zeroth eigenvector of K , and the first,
second, . . . eigenvectors of K represent the slowest relaxation
modes with the relaxation times of |λ1|−1 � |λ2|−1 � . . . ,
respectively.
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Next we consider sets of LMs, called metabasins (MBs),
that are determined with the use of monotonic sequences
[36]. A sequence LMi1 → LMi2 → . . . is called monotonic
if it consists only of most probable transitions. Hence, mono-
tonic sequences with the same terminal LM belong to the
same MB. This classification scheme groups all n LMs
into a finite number, say m, of MBs: e.g., MB1 =
{LMσ (1,1), . . . ,LMσ (1,n1)},MB2 = {LMσ (2,1), . . . , LMσ (2,n2)},
. . . ,MBm = {LMσ (m,1), . . . ,LMσ (m,nm)}. Here, n� denotes the
number of elements in MB� and σ (�,i) gives the index
j of LMj that is the ith energy LM in MB�. We re-
arrange the columns and rows of K in the ordering of
σ (1,1), . . . ,σ (1,n1), . . . ,σ (m,1), . . . ,σ (m,nm), and the resul-
tant matrix is denoted by Kσ .

In the Kσ representation, the intra-MB, diagonal blocks
tend to be larger than the inter-MB, off-diagonal blocks, i.e.,
maxi{Kσ (�,i)σ (�,j )} > Kσ (�′,i ′)σ (�,j ) for arbitrary �′ �= � and i ′,
since all LMs in a MB� are connected by most probable tran-
sitions. Hence, we regard the off-diagonal blocks as perturba-
tions to the diagonal blocks. Thus, we first consider the block-
diagonal matrix diag(K1, . . . ,K�, . . . ,Km), where K� is given
by (K�)ij = kσ (�,i),σ (�,j ) − δij

∑n�

j ′=1 kσ (�,j ′),σ (�,i). Namely, K�

describes the intra-MB� relaxations, whose j th eigenvalues
λ�,j satisfy 0 = λ�,0 > λ�,1 � · · · � λ�,n�−1. The intra-MB
relaxation modes are obtained as follows: By using the local
equilibrium p�,0 in MB� satisfying K� p�,0 = 0, we form
T� = D−1

� K�D�, using the diagonal matrix D� with (D�)i,i =√
( p�,0)i . T� is the symmetric matrix and can be diagonal-

ized with an orthogonal matrix S� = [
√ p�,0,v�,1, . . . ,v�,n�−1],

as ST
� T�S� = diag(0,λ�,1, . . . ,λ�,n�−1) ≡ ��, where the j th

eigenvectors,v�,j , describe the j th intra-MB� relaxation modes
of relaxation rates λ�,j . Note here that T� is diagonalized more
easily than the whole system of Kσ .

Next, we consider the inter-MB transitions. The
global equilibrium peq satisfies Kσ peq = 0 as well as
diag(K1,K2, . . . ) peq = 0. Hence, the diagonal matrix D

with (D)i,i = √
( peq)i and S = diag(S1,S2, . . . ) satisfy

ST D−1diag(K1,K2, . . . )DS = diag(�1,�2, . . . ). Hence, the
symmetric matrix �′ = ST D−1KσDS describes the couplings
between intra-MB relaxation modes. Note that �′ has nonzero
off-diagonal elements not only in inter-MB off-diagonal
blocks, but also in intra-MB diagonal blocks [Fig. 1(a), upper
panel].

The unperturbed fast intra-MB relaxation modes promptly
decay and would hardly contribute to the global slowest
modes at all, while the unperturbed slow relaxation modes do
interact with each other and mainly form the global slowest
relaxation modes. Hence, we introduce a certain threshold
λcut and divide the unperturbed relaxation modes into two: the
slow relaxation modes (0 � λ�,j � λcut) and the fast relaxation
modes (λcut > λ�,j ) [Fig. 1(a), upper panel]. For the sake of
convenience, we reorder the columns and lows of �′ in the
slow-to-fast relaxation block order, as shown in the middle
panel of Fig. 1(a). The resultant matrix is denoted by �slow-fast,
where �slow is the first nslow × nslow submatrix with nslow

denoting the number of unperturbed slow relaxation modes.
In the following, we first show that the existing coarse-

graining procedures for kinetic problems, which assume
intra-MB local equilibriums, are insufficient to obtain accurate

FIG. 1. (a) Renormalization procedure is illustrated for a two-MB
model. Upper panel: In �′ representation, the diagonal blocks are
slow block in MB1 (black), fast block in MB1 (green), slow block
in MB2 (black), fast block in MB2 (green), and off-diagonal blocks
are interactions between them. Middle panel: �slow-fast is obtained by
exchanging the positions of slow block of MB2 and fast block of
MB1 in �′. Lower panel: Transforming �slow-fast by Jacobi rotation
G produces renormalized matrices �RG

slow-fast, in which the slow-fast
blocks are zero, and�RG

slow. (b) Saddle connectivity graph [36] of a four-
funnel model. The horizontal axis represents the index i = 1,2, . . . ,48
of LMi and the vertical axis represents the potential energies of
LMs and SPs. LMi is represented by the vertical line starting at
(i,E(LMi)). SPij is represented by the horizontal line from (i,E(SPij ))
to (j,E(SPij )). The (red) arrows represent monotonic sequences. The
four MBs show funnel structures [29], where the typical inter-MB
barrier height ∼1 and the typical intra-MB barrier height ∼0.1.
(c) For the kth slowest relaxation modes of k = 0,1,2,3, the coeffi-
cients, (vk)j , in the following basis are plotted: j = 1, . . . ,4 represent
the eigenrelaxation modes of �slow and j = 5, . . . ,48 represent the
fast modes of �slow-fast. We see that (vk)j 	 δj,k+1 hold. The deviations
from δj,k+1 indicate both slow-slow mode mixing for j = 1, . . . ,4,
resulting in the renormalization of the intra-MB slow-mode couplings,
and slow-fast mode mixing for j = 5, . . . ,48.

results, as stated in [34]. Then, we develop a renormalization
procedure with the use of the Jacobi method, where the
resultant coarse-graining errors are reduced to zero.

Let us start with exemplifying how the coarse-graining
procedure gives rise to errors with use of the four-funnel
model depicted in Fig. 1(b). For simplicity, all frequency
factors, νij , in the transition rate matrix are set to be
1. With the use of the MB analysis, we obtain the
following four MBs: MB1 = {LM1, . . . ,LM12}, MB2 =
{LM13, . . . ,LM26}, MB3 = {LM27, . . . ,LM37,LM48}, and
MB4 = {LM38, . . . ,LM47}. Here we set λcut = 0 and the slow
relaxation modes are thereby composed of four intra-MB local
equilibria (nslow = 4). The corresponding 4 × 4 submatrix
�slow has the eigenvalues of 0, −0.104, −0.208, and −0.355,
which are approximations to the exact slowest four
eigenvalues of 0, −0.089, −0.154, and −0.235 at β = 5.
The discrepancies come from the inter-MB transitions.
Figure 1(c) shows that the global relaxation modes are
composed not only of slow unperturbed modes but also of fast
relaxation modes. Namely, the couplings between slow and
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fast relaxation modes in �slow-fast also modify the couplings
among the intra-MB slow modes. This is the reason why
any existing coarse-graining procedures for kinetic problems,
which simply neglect the fast intra-MB relaxation modes and
assume the states to be linear combinations of intra-MB local
equilibriums, are insufficient to obtain accurate results.

Now we construct a renormalized transition matrix, �RG
slow,

describing the global slowest relaxation modes accurately.
To this end, we use a Jacobi rotation �slow-fast 
→ �RG

slow-fast =
GT �slow-fastG such that the resultant couplings between slow
and fast modes, (�RG

slow-fast)ij with i � nslow < j , are van-
ishing. We here choose the repeated Givens matrix G =
G1G2 . . . Gr for G, where Gs = G(ps,qs,θs) are defined
by (G(p,q,θ ))pp = (G(p,q,θ ))qq = cos θ , (G(p,q,θ ))pq =
−(G(p,q,θ ))qp = sin θ , (G(p,q,θ ))ii = 1 for i �= p,q, oth-
erwise (G(p,q,θ ))ij = 0. In actual computation, we re-
peat the following procedures for s = 1,2, . . . ,r: We
first choose ps,qs randomly from ps � nslow < qs , and
set θs as θs = 1

2 tan−1[2(As−1)psqs
/((As−1)psps

− (As−1)qsqs
)],

so as to eliminate (ps,qs) entry of As , where As =
GT

s . . . GT
1 �slow-fastG1 . . . Gs and A0 = �slow-fast. In short, this

procedure is a Jacobi method, originally developed for sym-
metric matrix diagonalization [40], which is modified to
eliminate not all the off-diagonal elements, but only those of
the slow-fast couplings. Therefore, as the procedure is repeated
sufficiently many times (say, r times), the couplings between
slow and fast relaxation modes in Ar do converge to zero
and these modes are decoupled in the final representation.
Hence, we set �RG

slow-fast = Ar and �RG
slow is defined by the first

nslow-by-nslow submatrix of �RG
slow-fast [Fig. 1(a), lower panel].

It is �RG
slow that exactly describes the transitions among the

renormalized slow relaxation modes.
Using the four-funnel model, we examined how the renor-

malization procedure works. First, we confirmed that the slow-
fast coupling elements of �RG

slow-fast do converge to zero as in
the lower panel of Fig. 1(a). The resultant matrices �slow and
�RG

slow are as follows:

�slow =

⎛
⎜⎝

−0.108 0.078 0.019 0.020
0.078 −0.142 0.037 0.033
0.019 0.037 −0.185 0.144
0.020 0.033 0.144 −0.232

⎞
⎟⎠,

�RG
slow =

⎛
⎜⎝

−0.088 0.057 0.018 0.021
0.057 −0.104 0.028 0.023
0.018 0.028 −0.128 0.090
0.021 0.023 0.090 −0.159

⎞
⎟⎠.

Comparing these matrices, we see that the coupling terms be-
tween slow modes are modified by relative ratios of 0.01–0.1,
as a result of the renormalization. Due to the renormal-
ization effect, we get the right eigenvalues of 0, −0.089,

−0.154, and −0.235 by diagonalizing ARG
slow, which numer-

ically agree with the above-mentioned exact values of the
slowest four eigenvalues at β = 5.

Finally, the kinetics of vacancy diffusion in KCl nanoclus-
ters [27] is examined for a realistic problem. Suppose one
chlorine ion is extracted from a cube of ionic crystal, with
equal NL-atom edges. Assume also that NL is an odd number
2nL + 1 and the resultant (NL

3 − 1)-atom cluster is electrically
neutral. Then, the vacancy moves around the cluster, which

FIG. 2. MBs of the NL = 13 cluster are represented by arrows
(see text): (a) 8 MBs located at the vertexes, (b) 6 MBs located at
the faces, (c) 12 MBs located at the edges, and (d) 9 saddlelike MBs
located in the central part. Thin red lines in (c) and thin black lines
in (d) are drawn to show that the saddlelike MBs are hubs among the
edge MBs.

induces atomic diffusion. Note that the cubic form of the cluster
is kept in the course of time evolution, when the temperature
is sufficiently low [41]. At such low temperatures, the position
of the vacancy is specified by the cubic lattice point (nx,ny,nz)
with −nL � nx,ny,nz � nL. In addition, we are able to find
the atomic structure of LM specified by (nx,ny,nz) as follows:
First, atoms are arranged at d(mx,my,mz) with lattice constant
d = 3.147 Å for KCl, where (mx,my,mz) �= (nx,ny,nz) and
−nL � mx,my,mz � nL. Then, the configuration of atoms is
relaxed to the LM energy structure by, e.g., steepest descent
method. In this way, the LM atomic structure is assigned to
(nx,ny,nz). For computational details of enumerating LMs as
well as SPs, we refer the reader to Ref. [27].

The MBs of the NL = 13 cluster at temperature kBT =
0.03 eV are depicted in Fig. 2, where the monotonic se-
quences, LMi1 → LMi2 → . . . , are shown by the arrows,
(nx,ny,nz)i1 → (nx,ny,nz)i2 → . . . , which connect the corre-
sponding vacancy lattice points. The collections of LMs with
the same terminal LMs represent MBs. In Fig. 2(a), the eight
most stable MBs, containing the lowest energy terminal LMs
of (±nL, ± nL, ± nL), are shown. In addition, there exist six
MBs with terminal LMs at the centers of faces (±nL,0,0),
(0,±nL,0), and (0,0, ± nL) [Fig. 2(b)], and 12 MBs with termi-
nal LMs at the centers of edges (±nL,±nL,0), (±nL,0,±nL),
and (0,±nL,±nL) [Fig. 2(c)]. Moreover, due to the cubic
symmetry, there are “saddlelike” LMs, which have at least
two monotonic sequences reaching different terminal LMs.
For example, eight monotonic sequences emanating from
(0,0,0) have terminal LMs at (±nL,±nL,±nL). Hence, (0,0,0)
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FIG. 3. (a) For the NL = 13 cluster at kBT = 0.03 eV, the slowest
relaxation rates, λk (×105s−1), are plotted as a function of k =
0,1, . . . ,17. Markers , , and indicate the slowest eigenvalues
of �slow, �slow-fast, and �RG

slow, respectively. For the kth relaxation
modes, (vk)� are plotted in (b) and (c). In the horizontal axes,
� = 1, . . . ,8 (shaded) correspond to the vertex MBs, � = 9, . . . ,14 to
the face-centered MBs, � = 15, . . . ,26 (shaded) to the edge-centered
MBs, and � = 27, . . . ,35 to the saddlelike MBs. (b) Inter hetero-MB
relaxation modes: and are the results of k = 1 and 11, respec-
tively, where (vk)� = (vk)�′ hold for �,�′ in the same type of MBs. In
this case, the equilibrations occur only among the different types of
MBs. (c) Inter iso-MB relaxation modes: , , and are, respectively,
the results of k = 2, 3, and 4, where

∑
�∈same type of MBs(vk)� 	 0 hold.

In this case, the equilibrations can occur only among the same type
of MBs.

mediates the transitions among the vertex MBs like a saddle.
To obtain a more coarse-grained description, we apply the MB
analysis again only to saddlelike LMs and the SPs connecting
these LMs [42], to classify them into nine saddlelike MBs, as
shown in Fig. 2(d).

We divide the intra-MB relaxation modes into slow and
fast modes by setting λcut = 5.0 × 105 s−1. The resultant total
dimension of slow modes is nslow = 137. We first diagonalize
the 137 × 137 dimensional �slow. The eigenvalues are plotted
in Fig. 3(a), where the approximate result is in qualitative
agreement with the exact result of �slow-fast, although nslow =
137 is a quite small dimension compared to the full dimension
of 1099. We then apply the renormalization procedure devel-
oped above to �slow-fast, and obtain the renormalized �RG

slow and

the Givens matrix G. After diagonalizing �RG
slow, we also plot

the eigenvalues of �RG
slow in Fig. 3(a), which shows that the

slowest relaxations are exactly described by the quite small
137 × 137 matrix of �RG

slow.
Now lastly, we show the usefulness of the metabasin

representation for describing the slowest relaxation modes. We
plot the intra-MB� equilibrium components, (vk)� of the kth
slowest relaxation modes, vk = GvRG

k , in Figs. 3(b) and 3(c),
from which we see that the global relaxations are grouped into
two types: inter hetero-MB relaxation modes and inter iso-MB
relaxation modes. As shown in Fig. 3(b), the inter hetero-MB
modes equilibrate the disturbance only among different types
of MBs. As a result, they equilibrate the disturbance along
the radial direction from the cubic center. The plot for v1

in Fig. 3(b) shows that the bottleneck of equilibration is the
process transporting the vacancy to the vertex MBs. On the
other hand, the iso-MB equilibration modes equilibrate just
among the same type of MBs, and moreover typically localize,
as shown in Fig. 3(c). For example, as depicted in Fig. 3(c),
the vertex MBs hardly equilibrate at all in these modes. To
sum up, the slowest kinetics is two-step relaxation, the inter
iso-MB relaxations of λ2, λ3, and λ4, followed by the slowest
inter hetero-MB relaxation of λ1. It should be noted that
these results were obtained with the use of the high accuracy
renormalization procedure combined with the analysis by MB
representation. Our method provides a firm and systematic
basis for the elucidation in [27], where the bottleneck in the
mixing process of the KCl cluster was numerically studied with
the use of mean first passage times [43] from the center LM to
the vertex LMs.

In summary, we developed a renormalization procedure for
transition rate matrices based on metabasin analysis, which
is an accurate and efficient method for computing slowest
relaxation modes. We also show, with the use of the multifunnel
model and the ionic nanoparticle diffusion model, that the
metabasin analysis is useful for grasping when, where, and
how global equilibration occurs. Finally, it should be noted that
this procedure can be extended to be applicable to transition
probability matrices of discrete-time kinetic equations with
small modifications [44]. We hope that with these methods,
characteristics of slowest relaxations are revealed for generic
multi-metabasin systems.
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