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Modeling evolution of crosstalk in noisy signal transduction networks
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Signal transduction networks can form highly interconnected systems within cells due to crosstalk between
constituent pathways. To better understand the evolutionary design principles underlying such networks, we
study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use
a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness
functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk
while the other leads to pathway specificity. Our results offer insights on the relationship between network
architecture and information transmission for noisy biomolecular networks.

DOI: 10.1103/PhysRevE.97.020402

An essential characteristic of living cells is their ability to
regulate their own behavior, based on environmental signals,
to ensure survival, growth, and proliferation [1]. Reliable
transmission of information about the environment along
cellular signaling pathways is crucial for accurate regula-
tion. Malfunctioning of signaling pathways underlies many
pathological conditions in higher organisms, including cancers
and Alzheimer’s disease [2–4]. However, signaling pathways
are often highly interconnected, creating signal transduction
networks composed of multiple pathways [5,6]. Crosstalk
between pathways accounts for many of the complex behaviors
exhibited by signaling networks [7,8]. How did such com-
plex, interconnected networks evolve and what constraints did
the dynamics of evolution place on their architecture? Does
crosstalk between pathways necessarily lead to reduction in
the amount of information that can be reliably transmitted?
This Rapid Communication describes a theoretical study of
the evolution of crosstalk between signaling pathways with
the aim of addressing these and related questions.

In order to understand the effect of crosstalk on the transmis-
sion of information, we draw from Shannon’s work on com-
munication theory [9] and quantify information transmission
along noisy signaling pathways in terms of the mutual informa-
tion (MI) between the input and output. However, rigorously
computing the mutual information for noisy biochemical
channels is challenging and thus often noise is assumed to
be additive and Gaussian [10,11]. In this Rapid Communi-
cation, we model noisy biochemical channels using chemical
stochastic Langevin equations [12], where the strength of noise
nontrivially depends on the input. To this end, we introduce a
method for computing mutual information in the context of
such channels. Surprisingly, we find that crosstalk may not
lead to a reduction in total information transmitted and that
optimal information transmission need not correspond to zero
crosstalk. This contrasts with the case of Gaussian channels
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with constant additive noise where crosstalk necessarily leads
to a reduction in information transmission [13].

Modeling the evolution of biomolecular networks poses
an additional challenge because evolutionary processes are
governed by changes at the genotypic level, whereas selection
occurs at the phenotypic level [14] and the mapping between
genotype and phenotype is generally poorly understood.
Currently, much of the theory related to evolution of signal
transduction networks focuses on changes at the phenotypic
level (e.g., direct changes to protein interactions) [15,16].
In this Rapid Communication we adapt a sequence-based
evolutionary model due to Ali et al. [17] that allows us to
map from sequence space (genotype) to rate constant space
(phenotype). In biological systems, new signaling pathways
can enter the genome via gene duplication and subsequent
divergence [18]. Therefore, for our evolutionary study, we
consider two parallel pathways that arise via gene duplication
but are then allowed to diverge. We evolve our network using
two biologically motivated fitness functions related to the
transmission of information. For the first fitness function,
we focus on a system which may have evolved to transmit
the total information content along the signaling network;
the fitness for this scenario is determined by the total mutual
information between inputs and outputs, denoted by MItotal.
For the second fitness function, we consider a system where
inputs transmitted through their cognate signaling pathways
lead to distinct responses. A natural choice of fitness function
for this scenario is the sum of the mutual information of
individual pathways, denoted by MIsum. We find that the two
fitness functions lead to very different evolutionary outcomes.
In particular, evolution retains a high degree of crosstalk for
the case of MItotal while leading to high specificity for MIsum.

In cells, there exist examples of both high degrees of
crosstalk and high degrees of specificity. As an example
of crosstalk, studies have shown interactions between the
IGF-I and the TGF-β pathways, where in the Hep3B hu-
man hepatoma cell line, IGF-I and insulin were each shown
to block TGF-β induced apoptosis, via a PI3-kinase/Akt
dependent pathway [19]. In another example of crosstalk,
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FIG. 1. (a) Signaling network showing direct and crosstalk path-
ways along with their associated reaction rate constants. (b) Mutual
information versus k11 shown for several values of system volume V .
The input probability distribution, P (I ), is chosen to be a Gaussian
(mean μ = 0.5 and standard deviation σ = 0.1). (c) MItotal and (d)
MIsum versus crosstalk rate constants k21 and k12, with k11 = k22 = 1,
for V = 3.

cyclic AMP helps regulate cell proliferation by interacting
with the mitogen-activated protein kinase pathway [20]. More
examples can be found in [6,21–23]. On the other hand,
two-component signaling systems, which form the dominant
signaling modality in bacteria, exhibit a high degree of pathway
isolation and therefore a high degree of specificity [8]. Exam-
ples of specificity in signaling are found in [24–29]. Indeed,
undesirable crosstalk underlies many pathological conditions
in higher organisms [2–4].

In our model of a signaling pathway, we assume two
layers of proteins that represent an input-output process. The
first layer corresponds to a set of proteins (e.g., cell surface
receptors or protein kinases) that become activated by an
extracellular signal (e.g., a ligand); the activated fraction of
these proteins represents the input. These input proteins, in
their active form, can activate a second layer of proteins whose
activated fraction represents the output. To study information
transmission in this system [see Fig. 1(a)], we employ the
chemical Langevin equation, which approximately models the
stochastic dynamical behavior of a well-stirred mixture of
molecular species that chemically interact:

dO∗
j /dt = Aj + Bjξj (t), (1)

where functions A and B are deterministic and stochastic parts
of the Langevin equation, respectively, defined as

Aj =
∑

i

kij IiOj − αO∗
j ,

Bj =
[(∑

i

kij IiOj + αO∗
j

)/
V

]1/2

. (2)

Ii is the strength of input i, O∗
j is the concentration of activated

output protein j (aka the output), and Oj is the inactive
concentration, with the total concentration of output protein
held fixed, i.e., Otot = Oj + O∗

j . We assume a background
deactivation rate of α = 1 and Otot = 1, which define our units
of time and volume. V represents the volume of the system,
and controls the level of noise. The factors kij are reaction rate
constants. ξj is a stochastic variable which represents Gaussian
white noise with zero mean, 〈ξj (t)〉 = 0, and is temporally
uncorrelated 〈ξi(t)ξj (t ′)〉 = δ(t − t ′)δij .

For our evolutionary scheme, we adopt the model by
Ali et al. [17] where the rate constants are determined by
interactions between protein interfaces. We assume that input
proteins possess an out-face and output proteins possess an
in-face which form a pair of interaction interfaces; as in
[17], we associate a binary sequence, �σin/out, of hydrophobic
residues (1’s) and hydrophilic residues (0’s) to each interface.
The interaction strength between a protein (denoted by index i)
and its target (denoted by index j ) is determined by the
interaction energy Eij = ε �σ i

out · �σ j

in between the out-face of the
input protein and the in-face of the output protein. ε represents
the effective interaction energy between two hydrophobic
residues. (All energies are expressed in units of the thermal
energy kBT .) The reaction rate is

kij = k0/{1 + exp[−(Eij − E0)]}, (3)

where E0 plays the role of a threshold energy, e.g., accounting
for the loss of entropy due to binding. In our calculations we
varied k0 between 1 and 20, ε between 0.2 and 0.6, and V

between 1 and 100. We set E0 = 5, and we took the length of
each sequence representing an interface to be M = 25. This
choice of parameters allowed us to vary the resulting rate
constants kij over three orders of magnitude. Additionally, our
range of rate constants contain the biologically relevant range
for functional signaling pathways, as values of kij > 3 can
cause the network to become saturated, resulting in extremely
low values of mutual information between input and output
[see Figs. 1(b)–1(d)], whereas for kij � 1, very few output
proteins can become activated, leading once again to low
mutual information.

For our evolutionary scheme, we assume a population
sufficiently small that each new mutation is either fixed or
entirely lost [30].1 We consider only point mutations, namely,
replacing a randomly chosen hydrophobic residue (1) in the
in- or out-face of one protein by a hydrophilic residue (0), or
vice versa. In this study, mutations are accepted if and only if
they produce a fitness that is greater than or equal to the current
fitness. In this work, we study two fitness functions based on
the mutual information between the inputs and outputs of our

1The time it takes for a mutation to become fixed in a population
increases with population size N , whereas the time between succes-
sive mutations goes as 1/N (see, for example, [31]). In the small
population limit, mutations fix much more rapidly than they occur.
This is the limit we have assumed for this Rapid Communication, so
that an accepted mutation in our model corresponds to a mutation that
gets fixed in the population.
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system, with MI defined as [9]

MI(I ; O∗) =
∫∫

P (I,O∗) log
P (I,O∗)

P (I )P (O∗)
dIdO∗, (4)

where P always represents a probability distribution func-
tion. The two fitness functions can be expressed as MItotal =
MI(I1,I2; O∗

1 ,O∗
2 ) and MIsum = MI(I1; O∗

1 ) + MI(I2; O∗
2 ). For

calculating MI, we chose the input probability distribution
P (I ) to be Gaussian and used the Fokker-Planck (FP) equation
corresponding to our Langevin equation [Eq. (1)] to calculate
the conditional probability distributions of the output given
inputs.

We first consider the simpler case of a one-input, one-
output system to develop tools to address multiple input-output
systems with crosstalk. For a one-input, one-output system, the
resulting FP equation (in the Itô formulation [32]) is

∂P

∂t
= − ∂

∂O∗ {AP } + 1

2

∂2

∂O∗2 {B2P }, (5)

where P (O∗|I ) represents the conditional output probability
distribution given input. Note that Eq. (5) has the form of a
continuity equation for probability

∂P (O∗,t)
∂t

+ ∂J (O∗,t)
∂O∗ = 0, (6)

where J = ∂
∂O∗ [AP − 1

2 (B2P )] can be viewed as a proba-
bility current. The steady-state solution of the FP equation
corresponds to a constant value of J . Imposing the boundary
conditions J = 0 at O∗ = 0 and at O∗ = 1 then implies
that J = 0 everywhere. The solution of the steady-state FP
equation for zero-probability-current boundary conditions can
be written as [13]

P (O∗|I,k11) = Ne−2V O∗(Ik11+α)/α−Ik11

×
[

1+ (α − Ik11)O∗)

Ik11Otot

][4Ik11OtotαV /(α−Ik11)2]−1

,

(7)

where N is a normalization constant. Note that this conditional
output probability distribution is peaked for V = 2 or higher.
Additionally, it might appear that the right-hand side of Eq. (7)
approaches ∞ as α → Ik11; however, setting δ = α − Ik11

and Taylor expanding around δ = 0, we find that the divergent
terms cancel [13]. We determine the output probability P (O∗)
by numerically integrating the conditional output probability
over the input distribution, and thereby obtain the mutual
information as a function of k11, as shown in Fig. 1(b). The
mutual information is nearly zero both at very small values of
k11 because of low activation and at very large values of k11

because of saturated output.
We now extend the one-input, one-output system to two

inputs and two outputs, and allow for crosstalk. The resulting
FP equation for the joint probability distribution P (O∗

1 ,O∗
2 ,t)

is [33,34]

∂P

∂t
= −

∑
i

∂

∂O∗
i

{AiP } + 1

2

∑
ij

∂2

∂O∗
i ∂O∗

j

{[BiBj ]P }. (8)

The steady-state solution that satisfies the zero-probability-
current boundary conditions for Eq. (8) is [13]

P (O∗
i |I1,I2) = Ne{−2V O∗

i [(αR∗
i +1)/(αR∗

i −1)]}

×
[

1 + (αR∗
i − 1)O∗

i

RiR
∗
i

][
4V RiR

∗
i

2α/(αR∗
i −1)2

]−1

.

(9)

For notational convenience we have introduced modified
rates Rj ≡ Otot,j (

∑
i kij Ii) and R∗

j ≡ O∗
j (

∑
i kij Ii). Having

obtained the conditional probabilities, we now obtain the two
fitness functions numerically. For V = 3, if we set k11 =
k22 = 1 [i.e., corresponding to values of these rate constants
close to the optimum of MI for a single pathway, as seen
in Fig. 1(b)], then we can depict the density plots of fitness
versus crosstalk, as in Figs. 1(c) and 1(d), and observe that
both fitness landscapes look similar and both have a fitness
maximum at zero crosstalk (larger volumes yield qualitatively
similar landscapes, see [13] for a calculation with V = 10).
However, Figs. 1(c) and 1(d) provide only a slice through
parameter space. How might an evolving system explore the
full space? To answer this question we take an evolutionary
approach.

We implement our evolutionary scheme as described earlier
with the initial state of the system corresponding to duplicated
pathways, where all the rate constants kij are equal (e.g.,
for all strings initialized to zero and ε = 0.2). Figure 2(a)
shows some sample runs of the evolutionary algorithm for a
few different choices of initial conditions; each solid curve
represents the average fitness for 100 runs for a specific set
of initial strings, while the shaded regions indicate the 25th–
75th fitness percentiles at that particular number of accepted
mutations over all trajectories. Figure 2(a) shows results for
MItotal; however, the results for MIsum are qualitatively similar.
We can see that the final values of the rate constants do not
depend critically on our choice of initial strings.

Surprisingly, evolving MItotal leaves the optimized network
with a high degree of crosstalk, contrary to our expectations
based on Fig. 1. For example, for ε = 0.2, if we start with low
values of all kij , we typically find that all the rate constants
increase simultaneously, as shown in Fig. 2(b), implying high
crosstalk. Strikingly, for larger ε, the majority of runs exhibit
bifurcations in rate constants, but still leave the optimized
network with a high degree of crosstalk [see Fig. 2(c)]. In
a typical bifurcation, k11 and k12 might dominate while k21

and k22 are suppressed, whereas k21 and k22 might dominate
in a different run. These bifurcations yield examples of signal
“fan-out” (single input, multiple outputs) and signal “fan-in”
(multiple inputs, single output), found in biological systems
[35]. Figure 2(d) shows a probability distribution of rate
constants after rate constants have stopped changing under
MItotal evolution; the peaks of the histogram occur at similarly
high values of the crosstalk and direct rate constants, implying a
high degree of crosstalk as an evolutionary outcome for MItotal.

On the other hand, evolution under the fitness function
MIsum leads to low crosstalk and thus isolated pathways. Fig-
ure 2(e) shows a typical run of greedy evolution under MIsum.
Note that in this typical run, the direct rate constant values
grow [e.g., k11,k22 ∼ 1 in the evolved network, corresponding
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FIG. 2. (a) Fitness versus accepted mutations with four different
initial conditions (labeled “IC” on the legend) [13]; solid curves
represent fitness averaged over 100 simulations while shaded curves
represent 25th–75th percentiles from each of the simulations at
every accepted mutation. (b) Evolution under MItotal; log(kij ) versus
accepted mutations. (c) Bifurcations in pairs of rate constants for
ε = 0.6. (d) Probability distribution of rate constants showing high
degree of crosstalk for ε = 0.2. kd represents the direct rate constants;
kc represents the crosstalk rate constants. (e) Evolution under MIsum

and the probability distribution of kij ; rate constants versus accepted
mutations. (f) Probability distribution of rate of constants showing
suppression of crosstalk for ε = 0.2; constructed from 10 000 simu-
lations. k0 = 20, E0 = 5, V = 3.

to the optimal values in the single-input single-output case,
as in Fig. 1(b)], whereas the crosstalk rate constants stay low
(e.g., k12,k21 ∼ 0.1). Figure 2(f) shows a histogram exhibiting
separation of crosstalk and direct rate constants, with high
values of direct rate constants and low values of crosstalk rate
constants.

How can we understand this striking difference in evolu-
tionary outcomes for the two fitness functions given that the
maximum fitness depicted in Fig. 1 occurred at zero crosstalk
for both functions? Although the two landscapes appeared
similar, it is important to recall that the phase space of the
fitness landscapes is really four dimensional and the landscapes
in Fig. 1 correspond to a particular two-dimensional slice. We
are then faced with the question of how to construct a lower
dimensional slice of the fitness landscapes that could help
us understand the difference in evolutionary outcomes. The
crucial difference between evolutionary outcomes pertained to
the typical ratio between direct and crosstalk rate constants; we

FIG. 3. Fitness landscapes plotted for k21 = k12 and k11 = k22 for
(a) MItotal and (b) MIsum. MItotal does not have a single global maxi-
mum associated with zero crosstalk, whereas MIsum does. (c) MItotal

for k21 = k12 and k11 = k22 for V = 10 displays similar behavior
qualitatively. (d) MItotal plotted as a function of rates k11 = k12 and
k22 = k21 for V = 3.

therefore want to distinguish between the fitness dependence
on the direct rate constants and crosstalk rate constants. Thus,
we set k11 = k22, corresponding to the direct rate constant, and
k12 = k21, corresponding to the crosstalk rate constant, and
construct a two-dimensional slice where one axis represents
the direct rate constant and the other the crosstalk rate constant.
As shown in Fig. 3, the resulting fitness landscapes reveal
a striking difference between the two fitness functions. In
particular, we note that while MIsum is peaked at zero crosstalk
(albeit with some spread to finite crosstalk), MItotal is optimal
over an entire band corresponding to a range of direct and
crosstalk rate constants; see Figs 3(a) and 3(b) [Fig. 3(c)
shows a calculation for MItotal for V = 10, displaying similar
qualitative behavior]. The existence of a single peak near zero
crosstalk in the fitness landscape of MIsum and no such single
peak in the landscape of MItotal helps explain why evolution
under MIsum leads to low crosstalk while MItotal can result in
high crosstalk. Lastly, to understand the bifurcations shown
in Fig. 2(c), we construct another two-dimensional slice of the
fitness landscape where we set k11 = k12 and k22 = k21 and plot
the resulting MItotal in Fig. 3(d). We note that while the gradient
of MItotal along the diagonal is positive, it can be smaller than
the gradient along either axis so that MItotal could increase
in the transverse direction away from the diagonal. For larger
ε, the change in the rate constants due to a mutation could be
larger, which increases the likelihood for the system to take a
larger step away from the diagonal and to subsequently move
toward either axis, leading to a bifurcation in the magnitudes
of the rate constants.
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We have adapted a sequence-based protein-protein interac-
tion model to study the evolution of crosstalk in multiple-input,
multiple-output signaling networks. Evolution is driven by
random mutations in sequence space, whereas selection occurs
in the space of phenotypes. Using our evolutionary scheme
we have shown that MItotal retains a high degree of crosstalk
(contrary to our initial expectations based on Fig. 1), whereas
MIsum leads to insulated pathways with lowered crosstalk. We
related the evolutionary outcomes to the fitness landscapes and
showed that while MIsum is optimized for zero crosstalk, MItotal

is optimal over an entire band corresponding to a range of direct
and crosstalk rate constants [see, e.g., Fig. 3(a)]. Our results
pertaining to dependence of MItotal on crosstalk are unique to
biochemical channels where the strength of the noise depends
on input; these results are different from Gaussian channels
with constant additive noise where crosstalk always leads to
reduction in total mutual information [13].

Our work focuses on stochasticity inherent to biochemical
reactions (intrinsic noise) rather than variability in cellular
states (extrinsic noise) [36]. While generally both intrinsic and
extrinsic noise degrade information transmitted through signal-
ing networks, experiments show that signaling networks can
mitigate, and potentially eliminate, extrinsic-noise-induced
information loss [37]. Furthermore, the impact of extrinsic
noise decreases with increasing network complexity [38],
which justifies our focus on intrinsic noise (note, however,
that owing to its simplicity, our framework can easily be
generalized to incorporate extrinsic noise [39]). Our results
are also robust to parameter choices. We varied our model

parameters k0, ε, and V such that the resulting rate constants
kij spanned three orders of magnitude and observed similar
outcomes in our simulations.

In order to appreciate the biological significance of our
results, we note that systems for which inputs have to be
integrated in order to produce output, such as quorum sensing
[40], MItotal would be the appropriate fitness function. In
such cases, our results indicate that evolution is likely to lead
to high degrees of crosstalk or to fanning-in or fanning-out
from inputs to outputs. In cases where distinct inputs require
distinct responses from the system, we expect MIsum to be the
suitable quantity for fitness, in which case our results suggest
an evolutionary drive to eliminate crosstalk. An example for
the latter is the high osmolarity response in yeast where the
pathways respond to the appropriate environmental cues in
very distinct and highly precise ways [41].

In this Rapid Communication we assumed completely
uncorrelated input distributions for our system; in the future, it
would be interesting to explore how correlated inputs might
affect evolution of crosstalk. Moreover, we focused here
on two-layer signaling processes, but these can readily be
extended to include multilayer cascades. Future work could
also address the effects of adding feedback, a higher number
of pathways, and proteins such as histidine kinases that act
both as activators and deactivators [8].

This work was supported in part by the National Science
Foundation, Grant No. PHY-1305525, and the National Insti-
tutes of Health, Grant No. R01 GM082938.
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