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Self-organization in a bimotility mixture of model microswimmers
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We study the cooperation and segregation dynamics in a bimotility mixture of microorganisms which swim at
low Reynolds numbers via periodic deformations along the body. We employ a multiparticle collision dynamics
method to simulate a two component mixture of artificial swimmers, termed as Taylor lines, which differ from
each other only in the propulsion speed. The analysis reveals that a contribution of slower swimmers towards
clustering, on average, is much larger as compared to the faster ones. We notice distinctive self-organizing
dynamics, depending on the percentage difference in the speed of the two kinds. If this difference is large, the
faster ones fragment the clusters of the slower ones in order to reach the boundary and form segregated clusters.
Contrarily, when it is small, both kinds mix together at first, the faster ones usually leading the cluster and then
gradually the slower ones slide out thereby also leading to segregation.
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Introduction. The collective motility of microorganisms is
quintessential in a range of biological activities [1–5]. Much
insight has been gained regarding the various aggregating
patterns, such as swarming, clustering, or band formation in
their suspensions [4–11]. Large scale cooperative movement
is seen in microorganisms which propagate by virtue of
deformations along the cell body. Such swimming strategies
are commonly seen in spermatozoa, Caenorhabditis elegans
and various flagellated microswimmers [11–19]. Taylor [20]
designed a simple model for such swimmers composed of
small amplitude waves traveling along a two dimensional sheet
and studied that two such sheets are most efficient when they
beat in synchronization. The evolution of phase locking in the
Taylor sheets due to hydrodynamics was analyzed later [21].
In a recent work, Münch et al. [22] formulated a generalized
model of the microswimmers in question, termed as the Taylor
line, which was in fact a discretized model of the Taylor
sheet. Using similar models, Yang et al. have previously
shown that aggregation in case of spermatozoa and flagella
is a consequence of synchronization of beating waves and is
hydrodynamically favorable as it reduces energy consump-
tion in transport [23,24]. Although the dynamic clustering
behavior has been studied for active particles in the case of
chemotaxis [25–29], these processes also seem to occur even
in the absence of cell to cell signaling or chemotaxis [9–
13]. However, only a small amount of works explore the
various factors leading to the dynamic clustering in such
particles [6–8].

The real systems composed of swimmers have a range of
different motilities. In addition, a portion of swimmers may
be unhealthy or may employ atypical swimming strategies
and hence immensely differ in propagating strengths. Con-
sequently, a positive feedback between clustering and segre-
gation was reported for a mixture of active self-propelled rods
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and their passive counterparts [1,30]. Also, phase separation
in a mixture of active and passive Brownian particles has been
intensively studied for the high activity ratio [31]. The same
phenomenon was recently shown for a lower activity ratio in
the case of polymer mixtures [32]. We investigate the bimotility
homogeneous mixture of microswimmers which propel with
the help of planar beating mechanisms in a Newtonian fluid.
In contrast to previous works, here the segregation is observed
even when both components comprising the mixtures are active
and are exactly same in shape, size, and mass but differ in
propulsion speed. Apart from the segregation dynamics, the
two component system also provides information about the
cooperation between the swimmers which assists aggregation.
Understanding this cooperation is prerequisite to a deeper
understanding of the collective motion of microswimmers.

Simulation method. In the present Rapid Communication,
we consider only hydrodynamic and steric interactions be-
tween the swimmers. To model an artificial swimmer, we use
the two dimensional discretized model termed as the Taylor
line [22]. The Taylor line hydrodynamically interacts with
the fluid using a sinusoidal bending wave which moves along
the body [32]. To simulate fluid environment, multiparticle
collision dynamics (MPC) is used which employs coarse-
grained particles of mass m = 1 [33,34].

As the Taylor line is continuously pumping energy into the
system, we have used MPC with Anderson thermostat and
angular momentum conservation [34]. The method consists
of consecutive collision and streaming steps. In the ballistic
streaming step, the coordinates of the fluid particles {−→ri }
having velocity {−→vi } are updated with integration time Dt . For
the collision step, the particles are segregated into collision
cells of length a0 = 1 and are imparted random velocities
chosen from the Gaussian distribution of variance kBT /m such
that the momentum of the cell is conserved. kBT is taken to
be unity where kB is the Boltzmann constant and T is the
temperature of the system. The position of the grid with respect
to the box is randomly changed in each step so as to incorporate
Galilean invariance. We have chosen the density of fluid as
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10m/a0
3. The unit of time is [t] = a0

√
(m/kBT ). We make

use of both rigid and periodic boundary walls in this Rapid
Communication. In the case of a rigid boundary, we use a
L × L square and a circle of radius R as the types of wall. To
mimic fluid flow at the rigid walls of a confinement, we bounce
back the fluid particles crossing the walls and employ the ghost
particle method in order to satisfy the no-slip (rigid) boundary
condition [34].

A Taylor line consists of a sequence of N beads each of mass
10m. The ith bead points towards the next bead with a bond
vector −→

ti . These beads interact with the nearest neighbors by
two kinds of potentials. First, a Hooke’s spring potential with
an equilibrium distance of l = 0.5a0 and a spring constant of
D = 106. Second, a bending potential VB = κ

2

∑N−1
i=1 [−→ti+1 −

R(αi)
−→
ti ] [22] that keeps the consecutive bond vectors aligned

at an equilibrium angle of αi with the bending rigidity κ . Here,
R(α) is a rotation matrix that rotates a vector clockwise by an
angle α. A sinusoidal wave of beating frequency ν is generated
along the contour of the Taylor line by varying curvature
c(i,t) = αi/ l spontaneously with time t and bead position i,

c(i,t) = b sin

[
2π

(
νt + 2i

N

)
+ φ

]
, (1)

where parameter b controls the amplitude and φ is the initial
phase shift. The factor of 2 with i assures that the phase
difference between the first and the last bead is 4π .

In order to model the interaction among various swimmers,
we use a truncated Leonard-Jones potential,

VI = 4ε

[( ro

r

)12
−

( ro

r

)6
]
, r < 21/6ro, (2)

where r is the separation between the beads of different Taylor
lines, ro is taken to be equal to a0, and ε = 13.75 [23,24] is
the strength of the potential. Using this potential along with
the intraswimmer potentials, we calculate the acceleration on
every bead and update their positions with integration time
step dt = 0.01Dt . To simulate the hydrodynamic interaction
between the swimmers, we make the beads participate in every
collision step. This incorporates the Taylor line into the fluid
environment. The Taylor lines are allowed to easily slide on
the walls by implementing a bounce forward rule on the beads.
We have performed simulations with a number density of ρ =
1.5 × 10−3. Initially, the swimmers are scattered inside MPC
fluid with a random center of mass coordinate, orientation,
initial phase, and direction of motion.

For the purpose of our simulations we choose N to be
100 so that the contour length of the swimmer is Lc = 50a0.
In order to mimic microorganisms which show propulsion
with small amplitude waves, such as nematodes [35] and
bull sperms [19,24], we calibrate b to be 0.15 in Eq. (1)
so that the amplitude is 10% of the wavelength. To get a
directed motion we choose κ/Lc = 5 × 103kBT so that the
mechanical forces are stronger than the thermal forces. A
single swimmer in the periodic boundary condition yields a
velocity of 0.0025–0.0224 for the respective frequency range
of 0.001–0.009, similar to the work of Münch et al. [22]. With
these parameters the Taylor lines propagate with the Reynolds
number in the range of 0.003–0.028 which is typically seen for
microswimmers.

FIG. 1. Snapshots of the stable state of a system with three
kinds of boundaries evolved from a random initial state. (a) Circular
confinement of R = 100 with 150 swimmers, (b) 100 × 100 square
confinement with 75 swimmers, and (c) 150 × 150 periodic boundary
with 110 swimmers. Each system contains a uniform mixture of
swimmers with two different beating frequencies (δν = 0.1), νa =
0.005 25 (green) and νb = 0.004 75 (red).

Segregation of bimotility mixture. Yang et al. [23] showed
that, if the velocity of each swimmer was chosen from a
Gaussian distribution, the cooperation of the swimmers was
enhanced when the variance σ < 3%. In the present Rapid
Communication we analyze a simple system consisting of
two types of swimmers which differ from each other only in
the swimming speed. Since for a Taylor line the velocity is
directly proportional to the beating frequency [22] ν in Eq. (1),
we vary the frequency of actuation in our simulations. The
beating frequency of the faster swimmers is taken to be νa ,
and that of the slower swimmers is taken to be νb. We define
δν = |νa − νb|/〈ν〉 as the relative difference in frequencies.
We employ δν ranging from 10−2 − 1. As the system evolves,
the swimmers form aggregations by interacting with the other
swimmers via a steric potential [Eq. (2)] and with the fluid
through hydrodynamics.

In Fig. 1 we have shown the snapshots as obtained from the
simulation for three different boundary conditions where the
red color signifies slow swimmers and the green color signifies
fast swimmers. In Fig. 1(a) we show the aggregates formed
due to the circular rigid boundary condition where we observe
that the slow swimmers are usually near the center. A visual
inspection reveals that the swimmers have segregated into slow
and fast swimmer clusters. In Fig. 1(b) we have shown the
aggregate formed due to the rigid square boundary condition
where we observe that the faster swimmers are clustering at the
corners of the square. Here too a segregation between fast and
slow swimmers can be seen. Whereas in Fig. 1(c) we use the
periodic boundary condition and observe that the segregation
is accompanied by the formation of bands. The Supplemental
Material [36], Fig. S1 shows the snapshots of these systems at
different time instants.

To quantify the collective behavior, we calculate the cluster
size of the swimmers as follows. We consider two swimmers to
be part of a cluster if they simultaneously satisfy two conditions
for one complete beating period of the faster swimmer. First,
if the minimum distance between at least 10% of the beads of
the two swimmers is less than 2.27a, which is the amplitude
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FIG. 2. Comparison of (a) average cluster size (〈n〉) and
(b) segregation index (D) vs time of a standard system with circular
confinement (R = 100) with three similar systems in which the
hydrodynamics, the steric force, or the boundary is switched off. In
all the systems, δν = 0.8, the average frequency is 〈ν〉 = 0.005, and
the number density of the Taylor lines is ρ = 0.0048.

of a swimmer in our case, and second, if the angle between the
end-to-end vectors [22] is less than π/6. See the Supplemental
Material [36], Fig. S2 for an illustration of the clusters.

In Fig. 2(a) we show the evolution of the average cluster
size 〈n〉 = {∑ n�(n)}/∑�(n), where �(n) is the cluster
size distribution. In the present Rapid Communication a
combination of interactions through hydrodynamics, the steric
potential, and the boundary leads to clustering and segregation.
To perceive the significance of a particular type of interaction,
we compare the standard circular boundary system (where
all interactions are included) with systems in which hydro-
dynamic, steric, or boundary interaction is turned off, such
that the system parameters are the same. The hydrodynamic
interactions are turned off as proposed in Ref. [37] whereas the
steric and boundary interactions are turned off by neglecting
the force in Eq. (2) and by the periodic boundary condition,
respectively. For the standard case, we observe that initially
〈n〉 increases, signifying that clusters are being formed. These
clusters keep on growing until 〈n〉 reaches a steady state,
and then it oscillates around eight indicating there is constant
aggregation and fragmentation of the clusters. The increase in
〈n〉 is not significant in the systems without hydrodynamics or
without boundaries as compared to other systems. This implies

that steric interactions are not as crucial for clustering as
hydrodynamic or boundary interactions. Without the boundary,
clusters are in the form of unobstructed parallel bands whereas
in a system with a circular boundary, the clusters are able to
slide over the walls and collide with other swimmers. This
lack of interaction in the periodic boundary condition results
in lower 〈n〉 in the steady state. Likewise, when hydrodynamic
interactions are switched off, the swimmers are no longer able
to propel themselves to interact with other clusters. Hence, we
can infer that the boundaries and hydrodynamics assist in the
formation of clusters.

To understand whether we have a segregated state or a mixed
state we employ a dimensional number called the segregation
index (D) [38],

D = 1

2

∑
clusters

∣∣∣∣ na

Na

− nb

Nb

∣∣∣∣, (3)

where na,b is the population of a or b type swimmers in a
particular cluster and Na,b is the total number of a or b type
swimmers in the system. The summation runs over all the
clusters in the system, which means D = 1 implies completely
segregated and D = 0 implies completely mixed systems.
Figure 2(b) illustrates that, for the standard case, D initially
increases and reaches 1 signifying a completely segregated
state and at later times it oscillates between 0.8 and 1. Also,
we observe that when 〈n〉 is at a maximum D is at a minimum
and vice versa. This indicates that, when D is at a minimum,
both kinds of swimmers partly mix and form a larger cluster.
Then they completely segregate at later times, and therefore
we have a minimum in 〈n〉 and a maximum in D. It has
already been shown that a Taylor line always goes towards
the rigid wall [22]. In our system, they form clusters close
to the wall, and these clusters then start moving along the
wall. Even when the system is segregated (D = 1) both types
of swimmers would eventually encounter each other as we
have a circular boundary and one is slower than the other.
This can also be seen in the Supplemental Material Movie
1 [36]. In Fig. 2(b) we notice that, except for the system without
steric interactions, all the other systems are segregated (D >

0.7). Hence, the swimmer-swimmer interactions have leading
contributions towards segregating swimmers with different
beat wave frequencies.

In the case of the periodic boundary condition, the system
interacts with virtual copies of itself, and therefore they form
bands which are quite stable. In the rigid square boundary
system, the swimmers get stuck at the corners, whereas they
are able to slide on the walls in the case of the circular boundary
system and interact with other swimmers. Hence, all the
results we discuss from here on are for rigid circular boundary
conditions only. We have tested systems eight times the area
of the system shown in Fig. 1(a) to assert that segregation is
observed irrespective of the system size. We also simulated
systems in which either the contour length is half or the
amplitude is larger by 30% than that used in Fig. 1, snapshots
of which are shown in the Supplemental Material [36], Fig. S1.
The dynamics is similar even when the length or amplitude of
the Taylor line is changed.

Self-organizing dynamics. The cluster size distribution
�(n) in the case of circular confinement is plotted in Fig. 3(a).
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FIG. 3. (a) Time averaged cluster size distribution for two differ-
ent systems S1 (red) and S2 (black). S1 contains 100 swimmers in
200 × 200 square confinement, whereas S2 contains 150 swimmers
in circular confinement of R = 100. Density, ρS1 = 0.0025 and ρS2 =
0.0048. The curves follow power law decay which breaks down
at large values. The data are taken over 12 simulations for various
frequencies of swimmers with δν ranging from 0.005 to 1. (b) The
probability of finding a swimmer at a fractional distance r/R from the
center, P (r/R) vs r/R for a circularly confined system of R = 100
with δν = 0.1.

A power law decay �(n) ∝ nβ is observed for smaller clusters
followed by an exponential decay for the higher values of
n. The power law exponent β is independent of δν and
the system size and depends only on the density of the
swimmers. Figure 3(a) shows β is approximately −1.4 for high
density (ρ = 0.0048) and approximately −1.9 for low density
(ρ = 0.0025) similar to what has been reported before for
simulations with self-propelled rods [39], spermatozoa [23],
and flagella [24] as well as for an experiment with Myxococcus
xanthus [27]. The distribution is time averaged up to the steady
state. We observed that β remains the same even if the time
used to average over is increased or decreased by a factor of
2, confirming that it is an inherent property of the system. The
decrease in exponent with density shows the importance of
interactions for cluster formation. In Fig. 3(b) we have plotted
the probability of finding a slow or fast swimmer at a distance
r/R from the center of the circle when the system has attained
a steady state. Here we notice that the fast swimmers reach the
wall earlier and stay near the wall as the distribution is nearly
zero towards the center whereas they have sharp peaks close
to the walls. In the case of the slow swimmers the distribution
is very broad with a very small peak close to the walls. We
know that the Taylor lines prefer to be closer to the walls, but
when clusters of slower swimmers reach the wall, the faster
swimmers fragment and swim through the slow moving cluster.
The fragmented segments again move towards the center. See
the Supplemental Material Movie 1 [36].

The power laws suggest intermittent behavior in cluster
dynamics [39] resulting from aggregation and fragmentation
at the steady state. To quantify the contribution of the fast
and slow swimmers towards cluster formation we introduce a
parameter η defined as

ηa,b =
∑ (na,b

n

)
�(n)∑

�(n)
, (4)

which gives the contribution of either an a or b swimmer in a
cluster of size n. The time dependence of η is plotted in Fig. 4

FIG. 4. ηa and ηb vs time for three systems having circular
confinement with R = 100. For all systems, Na = Nb = 75. The
systems differ only in the beating frequency of the swimmers,
(a) δν1 = 0.6, (b) δν2 = 0.3, and (c) δν3 = 0.06. The 〈ν〉 in all three
cases is 0.005. The segregation index for these systems is plotted in
the Supplemental Material [36], Fig. S3.

for the time period before the system reaches a steady state. We
can observe that the contribution of slower swimmers to the
clusters is higher than that of the faster swimmers. In Fig. 4 we
have plotted the evolution of η(a) and η(b) for three different
values of δν. It can be seen that, for both large and small values
of δν, the values of ηb are always above 0.5 and the values of
ηa are below 0.5. For the large difference in δν the slower
swimmers contribute more for the cluster formation, whereas
the faster swimmers prefer to form smaller clusters. As δν

is reduced to an intermediate value, i.e., δν = 0.2, ηa and ηb

fluctuate around 0.5, i.e., the contribution towards the cluster
by both swimmers is almost the same. If we further decrease δν,
we again observe that the contribution of the slower swimmers
is much more than the faster swimmers.

In the present Rapid Communication thus we are able to
observe three different regions based on the clustering of
swimmers. Figure 5 shows a time average of 〈η〉 for the

FIG. 5. The time average of η plotted vs δν. The data are averaged
over systems with circular confinement varying in R and 〈ν〉. The
mixtures are homogeneous with number density ρ ≈ 0.005. The inset
shows the time average of segregation index vs δν. The average is
taken over the simulation period.
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whole simulation period vs δν. Each point is averaged over
six different configurations with ρ ≈ 0.005. In region I, the
faster ones push through the slower ones to reach the walls
in small clusters, whereas the slower ones are at that time
dispersed around the center of the system. As a result, the
segregation index as apparent from the inset of Fig. 5 and
the Supplemental Material [36], Fig. S3 is greater than 0.8
and 〈ηb〉 > 0.5. Whereby, the suspended slower ones easily
form clusters at the center of the circular confinement. With
the decrease in difference in beating frequency of swimmers
in region II, the fast swimmers are unable to push through,
and there is virtually a competition between both kinds of
swimmers to form clusters in the confinement. As a result,
on average, there is almost an equal contribution from both
kinds to cluster, and thus 〈ηb〉 tends to 0.5. If δν is decreased
further in region III, both kinds of swimmers easily form
clusters with each other as 〈D〉 < 0.8. 〈ηb〉 > 0.5 suggests that
the concentration of slower swimmers is higher in a cluster
and the slow ones exploit the thrust of the fast swimmers to
form clusters. Thus the faster swimmers are always leading
inside a cluster, whereas there is a high density of slower
swimmers at the back of the cluster. See the Supplemental
Material Movie 2 [36]. Gradually, the faster swimmers start
swimming out of the cluster thereby increasing the segre-
gation. Thus, the parameter δν plays an important role in
controlling the cluster dynamics of the system. We have also
simulated systems with δν = 0.004 to observe that, as δν

tends to zero, η and 〈D〉 tend to 0.5 and zero, respectively,
as expected.

Conclusion. For the Taylor lines in confinement, we have
shown that the cooperation in a bimotility mixture of swimmers
involves distinct interactions which result in their aggregation
along with segregation into faster and slower ones. The
interactions with the fluid and the boundary primarily assist
in aggregation, whereas the swimmer-swimmer interactions
induce segregation of the mixture. The tendency of segregation
has been reported in experiments [2,5,11,13] in which such
binary mixtures are developed artificially or in natural response
to external stimuli and in recent simulations of active and
passive particles [31,32,40,41]. However, we have shown that
the system shows different behaviors depending on the relative
difference in speed. The results can be exploited to understand
the collective dynamics among microswimmers in real systems
which are composed of a continuous distribution of motility.
We can infer that a stable cluster of swimmers is composed of
those with small differences in ν in which the slower ones are
at the back guided by small numbers of the faster ones, which
is also observed experimentally [1,9]. When the difference
in ν between clusters is large, the faster ones move away
from the center assisting efficient swarming which has also
been reported in the study of mixtures of healthy and dying
microorganisms [2,11,13]. Our simulations reveal the novel
kinds of cooperation between different microswimmers which
stimulate the collective motion in a suspension.
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